
Lecture Notes on
Linear Cache Optimization & Vectorization

15-411: Compiler Design
André Platzer

Lecture 25

1 Introduction

The big missing questions on cache optimization are how and when gen-
erally to transform loops? What is the best choice to find a loop transfor-
mation? Is there a big common systematic picture? How to get fast by
vectorizing and/or parallelizing loops after the loop transformations have
made some loops parallelizable? And, finally, how can we use more fancy
transformations for complicated problems.

2 Linear Loop Transformations

We have seen a number of loop transformations, but they all have been dif-
ferent, needing different analysis and implementation. However, a closer
look reveals that the previous list of loop transformations (permutation, re-
versal, skewing) all follow a general pattern of linear loop transformations.
Each of those transformations (and combinations and many others) can be
represented by unimodular linear transformations. That is, such a trans-
formation on n loops corresponds to an n × n integer matrix U ∈ Zn×n

with determinant detU = ±1. Because of the unit determinant detU , they
actually form a group, because it contains inverses

GL(n,Z) := {U ∈ Zn×n : detU ∈ {1,−1}}

Because of | detU | = 1, these linear transformations are volume-preserving.
This makes intuitive sense. After all, if the volume would change during
a transformation, then the number of grid points in it changes too, which

LECTURE NOTES

L25.2 Linear Cache Optimization & Vectorization

would change the total number of iteration points of the loop incorrectly.
Linear transformations furthermore preserve the orientation (here of the
loop) if detU = 1, otherwise orientations change.

For instance, here are the unimodular transformations for loop permu-
tation (matrix Up) and loop reversal (matrix Ur) and loop skewing by fac-
tor f (matrix Uf):

Up =

1
. . .

1
0 1
1 0

1
. . .

1

Ur =

1
. . .

1
−1

1
. . .

1

Uf =

1
. . .

1
1 f
0 1

1
. . .

1

The corresponding inverse transformations are

U−1p = Up U−1r = Ur U−1f = U−f

Since unimodular transformations form a group, every combination of any
number of the above matrixes is again a unimodular transformation and
thus represents a possible loop transformation.

Given a unimodular matrix U ∈ GL(n,Z), we can apply the corre-
sponding transformation by multiplying the iteration vectors by U , which
may swap loops and transform their bounds as in the previous examples.
Using vectorial notation for the iteration vector i, the linear loop transfor-
mation by the unimodular matrix U can turn

for each vector<int> i in order ≺ do
A[Mi+c] = A[Ni+e] + 55

LECTURE NOTES

Linear Cache Optimization & Vectorization L25.3

(for matrixM,N and vector c, e that correspond to the linear array accesses)
obviously into

for each vector<int> j in order ≺ do
k = U j
i = U−1k
A[Mi+c] = A[Ni+e] + 55

because U−1U = UU−1 = id. In particular, U−1Uj indeed equals j, hence
has the same value as the original iteration variable that we previously
called i. Now, if we make sure that we actually change the perfectly nested
loops so that they directly iterate over k = Uj instead of j (e.g., by swap-
ping/reversing/skewing according to U) so that k walks in the linearly
transformed order U≺, then we can use copy propagation to reach the fol-
lowing result of linear loop transformation:

for each vector<int> k in order U≺ do
A[MU−1k+c] = A[NU−1k+e] + 55

Note that the matrix product MU−1 and NU−1 can be computed statically
by the compiler and does not happen at runtime. Thus the overall effect of
the linear loop transformation is to apply transformationU to the loops and
make up for that by multiplying all uses of the induction vector by U−1.

This linear loop transformation with U is admissible if, for all iterations
i, i′ ∈ Zn and all data dependencies δ:

iδi′ ⇒ Ui ≺ Ui′

That is, whenever there is a data dependency between i and i′, then, after
the transformation U , the transformed Ui should come before the trans-
formed Ui′ in the iteration order.

3 SIMD Vectorization and SSE / MMX

For more information see Chapter 4 of http://www.intel.com/Assets/
PDF/manual/248966.pdf. Vectorization turns a series of sequential in-
structions operating on scalars into a single instruction operating on mul-
tiple data (SIMD). Vectorization, of course, requires that the loop has been
transformed with all previous techniques to make sure that all data depen-
dencies are compatible with vectorization. This is essentially equivalent to
the data dependency check for parallelization.

LECTURE NOTES

http://www.intel.com/Assets/PDF/manual/248966.pdf
http://www.intel.com/Assets/PDF/manual/248966.pdf

L25.4 Linear Cache Optimization & Vectorization

Intel’s Streaming SIMD Extensions (SSE) require data to be aligned at
addresses divisible by 16 bytes. See newer SSE for more flexible and general
vector instructions. For instance, the following loop with 4 iterations

f l o a t ∗A, ∗B , ∗C;
for (i n t i = 0 ; i < 4 ; i ++)

C[i] = A[i] + B [i]

can be implemented in a vectorized form

MOVAPS xmm0, A
ADDAPS xmm0, B
MOVAPS C, xmm0

this depends on knowing that A,B,C do not have other aliases in the loop. It
also depends on knowing that the length of the arrays A,B,C is a multiple of
128bits. Otherwise either loop peeling can be used to handle the remainder
or array padding to fill up the array with irrelevant 0 data.

Another consideration for transforming data layout for SIMD usage is
that an array of structs is less useful than a struct of arrays, because, in a
struct of arrays, the data of one field is layed out contiguously in mem-
ory, enabling SIMD processing. In contrast, an array of structs may have
scattered access in memory.

Another thing that can be useful for SIMD computation is to use mask
for implementing conditional effects per element in a single vector sweep:

short A[] , B [] ,C[] ,D[] , E [] ;
for (i n t i =0 ; i<N; i ++)

i f (A[i] > B [i])
C[i] = D[i]

e lse
C[i] = E [i]

compiles into

XOR eax , eax ; SSE4 . 1 process 8 s h o r t s a t once
L :MOVQ xmm0, [A+eax]

PCMPGTW xmm0, [B+eax] ; gt compare mask
MOVDQA xmm1, [E+eax]
PBLENDV xmm1, [D+eax] ,xmm0
MOVDQA [C+eax] ,xmm1
ADD eax , 16
CMP eax ,N
JLE L

LECTURE NOTES

Linear Cache Optimization & Vectorization L25.5

4 Loop Sectioning / Section Striping

Loop sectioning is a simple transformation that turns a loop into two nested
loops, where the inner loop traverses one section or block at a time. That is
we turn a loop

for (i n t i = 0 ; i < N; i ++)
S

into two loops, where the inner one iterates over blocks of size B

for (i n t b = 0 ; b < N; b+=B)
for (i n t i = b ; i < b+B && i<N; i ++)

S

For SIMD it is useful to pick block size B to be the size of the 128bit chunk
size or whatever size the vector instructions support. Then the inner loop
can be turned into a SIMD vector instruction.

The inverse transformation is possible too (turn nested perfect loops
into a single loop) and called loop product transformation.

5 Loop Fusion

If two loops have the same index range and no tricky data dependencies
exist between the loops, then loop fusion can turn two sequential loops

for (i n t i = 0 ; i < N; i ++) {
B [i] = A[i] + C[i]

}
for (i n t i = 0 ; i < N; i ++) {

R[i] = B [i] ∗ (D[i] + A[i])
}

into a single loop

for (i n t i = 0 ; i < N; i ++) {
B [i] = A[i] + C[i]
R[i] = B [i] ∗ (D[i] + A[i])

}

After fusion, the latter loop body can then be optimized to remove the array
B altogether if it is dead afterwards

for (i n t i = 0 ; i < N; i ++) {
R[i] = (A[i] + C[i]) ∗ (D[i] + A[i])

LECTURE NOTES

L25.6 Linear Cache Optimization & Vectorization

}

In combination with loop sectioning, that loop can further be turned into
SIMD instructions that add A[i] to C[i] with a single vector instruction and
then multiply the result to the result of vectorially adding D[i] to A[i] with a
single vector instruction. Another pleasant effect of loop fusion here is that
this is a cache optimization, because the same element A[i] will be loaded
into the cache only once, decreasing cache misses by half for large N.

Generally, loop fusion can also have a bad effect on caches for indepen-
dent arrays where a lot of extra data will suddenly need to be stored in the
cache, possibly leading to unnecessary cache spilling.

Bad data dependencies arise, e.g., if iteration i of the second loop al-
ready uses data like A[i+1] that the first loop writes in iteration i + 1 or
if the second loop uses scalar data that the first loop defines, because the
value of those scalars may be different after the first loop ran in full than in
between.

Again, the inverse transformation is possible too and called loop split-
ting. Loop splitting can be useful to reduce the data load, possibly leading
to reduced cache misses. It can help pulling parallelizable parts of a loop
body out of the loop. Loop splitting can also be used to turn imperfectly
nested loops into perfectly nested loops.

6 Loop Tiling

The loop blocking or loop tiling optimization partitions multidimensional
loops into rectangles (or, more generally hypercubes), walking one rect-
angle at a time. This optimization can reduce cache capacity misses by
making sure that the full cache line data within the rectangle will already
be used before the data in the cache line is replaced by other information.
That is useful if loop swapping doesn’t solve the cache locality issues, e.g.,
because there are other operations that prevent it. In matrix multiplication,
for instance, arrays are traversed in both column and row order, leading to
bad cache effects regardless. Loop tiling is an extremely useful optimiza-
tion for matrix multiplication and similar problems of mixed array itera-
tion.

LECTURE NOTES

Linear Cache Optimization & Vectorization L25.7

for (i 1 =1; i1<=n ; i 1 ++)
for (i 2 =1; i2<=n ; i 2 ++)

A[i1 , i 2] = A[i1 −1, i2 −1] + 2

i1

i2

Dependency distance d=(1,1)
Lots of cache misses for large n
Swapping doesn’t solve this problem

LECTURE NOTES

L25.8 Linear Cache Optimization & Vectorization

for (B1 =1; B1<=n ; B1+=3) / / l o o p t i l i n g
for (B2 =1; B2<=n ; B2+=3) / / l o o p t i l i n g

for (i 1 =B1 ; i1<B1 +3; i 1 ++)
for (i 2 =B2 ; i2<B2 +3; i 2 ++)

A[i1 , i 2] = A[i1 −1, i2 −1] + 2

i1

i2

After loop tiling, the loops iterate one block tile at a time
This simple loop tiling assumes that n is divisible by block size 3
Otherwise use loop peeling
Loop tiling combines 2 loop sectioning and loop swapping

As a very useful application of loop tiling, consider, for instance, matrix
multiplication, which has both column and row traversal so that no loop
swapping helps:

for (i =0 ; i<n ; i ++)
for (j =0 ; j<n ; j ++)

LECTURE NOTES

Linear Cache Optimization & Vectorization L25.9

for (k =0; k<n ; k++)
R[i] [j] = R[i] [j] + A[i] [k] ∗ B [k] [j]

If all data fits into the cache and there are no problems with small associa-
tivity, then the innermost k loop may run fast because there are almost no
cache misses (only once per cache line). If the matrix is too large then the
data will have been flushed from the cache already before it’s used next.

Loop tiling with a constant c that is just large enough for all the c × c
matrix blocks to fit into the cache turns matrix multiplication into:

for (B=0; B<n ; B+=c) / / l o o p t i l i n g
for (C=0; C<n ; C+=c) / / l o o p t i l i n g

for (i =B ; i<B+c&&i<n ; i ++)
for (j =C; j<C+c&&j<n ; j ++)

for (k =0; k<n ; k++)
R[i] [j] = R[i] [j] + A[i] [k] ∗ B [k] [j]

The innermost R[i][j] access will be a cache hit every time but once. Nev-
ertheless, it is an almost loop-invariant expression for the innermost loop
k. Its address arithmetic is loop-invariant and can be moved out by loop-
invariant code motion. Yet R[i][j] itself is not loop-invariant. After all it’s
assigned to all the time. One step better, however, we can even replace the
assignment to R[i][j] by a scalar accumulator (favorably placed in a register
as a very busy expression).

for (B=0; B<n ; B+=c) / / l o o p t i l i n g
for (C=0; C<n ; C+=c) / / l o o p t i l i n g

for (i =B ; i<B+c&&i<n ; i ++)
for (j =C; j<C+c&&j<n ; j ++) {

a = R[i] [j] / / s c a l a r o p t i m i z a t i o n
for (k =0; k<n ; k++)

s = s + A[i] [k] ∗ B [k] [j]
R[i] [j] = s

}

This also reduces the number of load/stores in the loop body to 2, which is
good, because almost no architecture supports 3 load/stores very well.

Finally, strength reduction can be used to replace the respective address
arithmetic by simple addition.

LECTURE NOTES

	Introduction
	Linear Loop Transformations
	SIMD Vectorization and SSE / MMX
	Loop Sectioning / Section Striping
	Loop Fusion
	Loop Tiling

