
Lecture Notes on
Cache Iteration & Data Dependencies

15-411: Compiler Design
André Platzer

Lecture 23

1 Introduction

Cache optimization can have a huge impact on program execution speed. It
can accelerate by a factor 2 to 5 for numerical programs. Loops are the parts
of the program that are generally executed most often. That is why cache
optimization usually focuses exclusively on handling loops. Especially for
loops that execute very often, optimizing small chunks of source code can
have a fairly significant effect. Furthermore, loops often use mathemat-
ically regular access to arrays which is amenable to mathematical analy-
sis. Cache optimization techniques are also important for vectorization and
parallelization optimizations.

Some other information on cache optimization can be found in [App98,
Ch 21].

2 The Importance of Cache Optimization

For illustration purposes, take a look at a computer with a small cache of
two cache lines with two data entries per cache line.

We further assume a directly mapped cache (without associativity) to sim-
plify the presentation. We assume that a (small) array A with 8 elements
has the following memory layout and maps as indicated by the solid blue
lines to the cache lines. We illustrate the cache to array field association in

LECTURE NOTES

L23.2 Cache Iteration & Data Dependencies

blue:

Cache Capacity Miss Consider the following loop that repeats the same
data access in a one-dimensional array 8 times:

i n t A[8] ;
for (i = 0 ; i <8; i ++)

for (j = 0 ; j <8; j ++)
A[j] = . . .

As illustrated by the dashed red iteration order, even though every ar-
ray cell is used repeatedly, the data does not fit into the cache and will be
reloaded twice during each repetition of the outer loop.

These 100% cache misses are caused by insufficient cache capacity miss.
Hence, this loop should be cache-optimized to avoid suboptimal loop traver-
sal in the cache.

Cache Line Capacity Miss Next, consider the following program

i n t A[8] ;
for (i = 0 ; i <8; i ++)

for (j = 0 ; j <8; j +=2)
A[j] = . . .

As illustrated by the dashed red iteration order, even though every ar-
ray cell is used repeatedly, and even though the data would fit into the
cache, unnecessary data wastes cache line space that is never used. Thus,
the data will still be reloaded twice during each repetition of the outer loop.

These 100% cache misses are caused by insufficient cache line capacity
miss. Hence, this loop should be cache-optimized to avoid suboptimal loop
traversal in the cache. Here, possible cache optimizations for this partic-
ular loop traversal order also include reordering matrix elements, which
is sufficient here. But that does not work if the program accesses the data
in different ways in other parts of the program unless the compiler copies
the matrix before. Thus, loop traversal optimization usually makes more
sense.

LECTURE NOTES

Cache Iteration & Data Dependencies L23.3

Cache Conflict Miss Next, consider the following program

i n t A[2] [4] ;
for (i = 0 ; i <8; i ++)

for (j = 0 ; j <1; j ++)
for (k = 0 ; k<1; k++)

A[j , k] = . . .

As illustrated by the dashed red iteration order, even though every ar-
ray cell is used repeatedly, and even though the data would fit into the
cache, the same cache lines are always used for all accessed data. Thus, the
data will still be reloaded twice during each repetition of the outer loop.

These 100% cache misses are caused by cache conflict miss. Hence, this
loop should be cache-optimized to avoid suboptimal loop traversal in the
cache.

3 Data Dependencies

We use the following abbreviations for data dependencies between two lo-
cations ` and `′ in a program:

• `δt`′ true data dependency (read after write)

• `δo`′ output dependency (write after write)

• `δa`′ anti-dependency (write after read)

• `δi`′ input dependency (read after read)

These data dependencies can come in two flavors. Either just within a sin-
gle iteration of the loop or they can be loop-carried, i.e., data dependencies
between different loop iterations.

i n t A[8] ;
for (i = 0 ; i <8; i ++) {
`1 : A[i] = . . . ;
`2 : x = a [i] ; / / `1δt`2 l o op−i n d e p e n d a n t
`3 : y = a [i −1] ; / / `1δt`3 l o op−c a r r i e d

}

LECTURE NOTES

L23.4 Cache Iteration & Data Dependencies

4 Loop Iteration Vectors

In the following we simplify the presentation. We refer to previous lec-
tures for guarding against array access out of bounds and mostly ignore
this here. We generally assume that we have perfectly nested loops (outer
loops have no other statements than just the induction variable increment
and the inner loop).

for (i 1 = o1 ; i 1 < n1 ; i 1 ++)
for (i 2 = o2 ; i 2 < n2 ; i 2 ++)

for (i 3 = o3 ; i 3 < n3 ; i 3 ++)
. . .

for (id = od ; id < nd ; id ++) {
loop body ;

}
We assume that we have already performed induction variable analysis
and found basic induction variables corresponding to the respective loop
nesting. We denote the above loop iteration by a single iteration vector

i =

i1
i2
i3
...
id

Loops determine an iteration order ≺ on the index set Zd. We generally
restrict attention to affine array references, i.e., those where the index expres-
sion is an affine linear function of the iteration vector i. That is all array
accesses are of the form A[Mi + c] for a matrix M and vector c. For in-
stance,

A[3∗i1+i2−1, 4∗i2+5, 2∗i3] corresponds to access of A at

3 1 0
0 4 0
0 0 2

 i+

−1
5
0

Two affine array accesses A[Mi + c] and A[M ′i + c′] are called uniform iff
M = M ′. If there is a dependency LδtL′ between two statements writing
to uniform array access A[Mi + c] and reading from uniform array access
A[Mi + c′] with Mi + c ≺ Mi + c′ then the uniform distance d := c − c′
is called dependency distance. This distance only makes sense in the case of
uniform access, because the difference is not a constant vector otherwise.
For example,

LECTURE NOTES

Cache Iteration & Data Dependencies L23.5

for (i 1 = o1 ; i 1 < n1 ; i 1 ++)
for (i 2 = o2 ; i 2 < n2 ; i 2 ++)

for (i 3 = o3 ; i 3 < n3 ; i 3 ++)
. . .

for (in = on ; in < nn ; in ++) {
A[M i + c] = A[M i + c ′] + 5

}

has dependency distance d := c− c′.
If the dependency distance is of the form

d =

0
...
0
dk
...
dn

for some dk ≥ 0

then the loop ik carries that data dependency.
Loop ij can be parallelized if the dependency distances d of all data

dependencies satisfy

dj = 0 or dk > 0 for some k < j

Then such a dependency either has no data dependency (dj = 0) or de-
pends on data from a past iteration of an outer loop k, and thus, from an
iteration of the outer loop that will already have completed.

If these assumptions are met, we can parallelize loop ij , for instance us-
ing SSE3 vector processing instructions. See Chapter 4 of http://www.
intel.com/Assets/PDF/manual/248966.pdf. SSE3 works on var-
ious subdivisions of 128 bit data. Automatic vectorization using single
instruction multiple data (SIMD) is one very important reason why Intel
compilers often achieve better performance compared to gcc.

5 Data Dependencies and Loop Optimizations

Data dependencies need to be respected in loop optimizations. The follow-
ing loop uses data from the past iteration:

LECTURE NOTES

http://www.intel.com/Assets/PDF/manual/248966.pdf
http://www.intel.com/Assets/PDF/manual/248966.pdf

L23.6 Cache Iteration & Data Dependencies

for (i 1 =1; i1 <=4; i 1 ++)
for (i 2 =1; i2 <=4; i 2 ++)

A[i1 , i 2] = A[i1 −1, i 2 +1]+5

i1

i2

1 2 3 4

1

2

3

4

Dependency distance vector d=(1,-1)

for (i 2 =1; i2 <=4; i 2 ++) / / swap
for (i 1 =1; i1 <=4; i 1 ++)

A[i1 , i 2] = A[i1 −1, i 2 +1]+5

i1

i2

1 2 3 4

1

2

3

4

Dependency distance vector d=(-1,1)
When swapping the loops, however, we
violate the data dependency, which now
depends on data from a future iteration.

LECTURE NOTES

Cache Iteration & Data Dependencies L23.7

Data dependencies also limit parallelization and vectorization

for (i 1 =1; i1 <=4; i 1 ++)
for (i 2 =1; i2 <=4; i 2 ++)

A[i1 , i 2] = A[i1 −2, i 2]−5

i1

i2

1 2 3 4

1

2

3

4

Dependency distance vector d=(2,0)
Because of the above data dependencies, the i2 loop can be parallelized,

but the i1 loop cannot be parallelized.

6 Data Dependency Analysis

What we need is a checkable criterion which we can use to decide if two
array references lead to a dependency or not. In practice, we restrict our
attention to affine array references in perfectly nested loops. That is, given
two array accesses A[Mi + c] and A[M ′i + c′] we need to find instances
i, i′ ∈ Zd of the iteration vector with i ≺ i′ such that Mi + c = M ′i′ + c′.
If such instances i, i′ exist that have integer values and are within the loop
bounds, then the two references have a data dependency. Unfortunately,
this problem is that of solving linear Diophantine equation systems, which
is NP-complete.

In order to find a reasonable approximation of the dependency analy-
sis, we first pretend all references were dependent (which is a conservative
overapproximation) and then remove some dependencies if we can show
that they are independent. A simple (approximate) independency check is
the gcd test. Suppose we have the loop

LECTURE NOTES

L23.8 Cache Iteration & Data Dependencies

for (i =0 ; i <10; i ++)
A[m∗ i +c] = A[m’ ∗ i +c ’]+7

The question is, whether there are two positions of the iteration vector (here
just ǐ, î ∈ Z1 for the write iteration ǐ and the read iteration î) such that the
array accesses interfere because m ∗ ǐ+ c = m′ ∗ î+ c′.

m ∗ ǐ+ c = m′ ∗ î+ c′

⇔ m ∗ ǐ−m′ ∗ î = c′ − c

The last linear Diophantine equation can only have an integer solution if
gcd(m,m′) divides c′ − c. The reason for this is that, for integers ǐ, î, the
term m ∗ ǐ−m′ ∗ î can only take on exactly the values that are multiples of
the gcd(m,m′). (More formally, this is a simple property of principal ideals
in Euclidean domains.)

For instance, consider

for (i =0 ; i <10; i ++)
A[2∗ i +2] = A[2∗ i −2]+7

with the gcd check

2 ∗ ǐ+ 2 = 2 ∗ î− 2

⇔ 2 ∗ ǐ− 2 ∗ î = −4

We see that gcd(2, 2) divides −4. Thus, there could be a dependency. We
read off by dividing both sides by the gcd 2 that ǐ− î = −2. This could be

1. A true dependency δt (read after write) of the form ǐ+ 2 = î, i.e., with
dependency distance 2. “The array position that we read at iteration
î is the same one that we have written 2 iterations before at ǐ.”
This dependency survives the check for loop bounds and is a real
dependency.

2. And/or an anti-dependency δa (write after read) of the form î−2 = ǐ.
“The array position that we write at iteration ǐ is the same one that we
have read 2 iterations before at î.” This dependency is incompatible
with the constraint that î < ǐ, because we need data to use from pre-
vious iterations before we can use it for subsequent definitions.

More conservatively, one can consider all resulting dependencies as depen-
dencies, without checking for feasibility with the loop bounds.

More precise but computationally more involved algorithms exist, for
instance, Fourier-Motzkin elimination for linear systems of inequalities.

LECTURE NOTES

Cache Iteration & Data Dependencies L23.9

Quiz

1. What changes with 4-way associative cache instead of a directly mapped
cache? Give an example showing whether the cache miss rates are
better or whether they can still be as bad as this lecture showed.

2. Why is the data dependency vector only defined for uniform array
access? Is that an oversight?

3. Write down an explicit optimization (for common cases) that makes
use of SSE3 instructions to optimize loops. Which side conditions do
you need to check? How can you make them easier compared to the
general case?

4. How do you recognize perfectly nested loops by analysis of your in-
termediate language?

5. Should your intermediate language representation have the for loop
as a primitive? Should it have the while loop as a primitive? Should
it insist on (conditional) gotos as the only way to represent looping
behavior? Discuss benefits and disadvantages for various phases of
your compiler.

6. Which of the dependencies (all 4 combinations of read/write after
write/read) does your compiler have to worry about and for which
purpose?

7. Should compiler writers try to convince chip designers to produce
fully associative caches to make loop cache optimizations easier?

8. Why did the dependency distance vector flip by swapping loops. It’s
still the same dependency, right? Why should the vector be different
after a swap?

9. How can you implement the gcd test efficiently and which approxi-
mations make most sense computationally?

References

[App98] Andrew W. Appel. Modern Compiler Implementation in ML. Cam-
bridge University Press, Cambridge, England, 1998.

LECTURE NOTES

	Introduction
	The Importance of Cache Optimization
	Data Dependencies
	Loop Iteration Vectors
	Data Dependencies and Loop Optimizations
	Data Dependency Analysis

