
Lecture Notes on
Calling Conventions

15-411: Compiler Design
Frank Pfenning

Lecture 10

1 Introduction

In Lab 3 you will be adding functions to the arithmetic language with loops
and conditionals. Compiling functions creates some new issues in the front
end and the back end of the compiler. In the front end, we need to make
sure functions are called with the right number of arguments, and argu-
ments of the right type. In the back end, we need to create assembly code
that respects the calling conventions of the machine architecture. Strict ad-
herence to the calling conventions is crucial so that your code can interop-
erate with library routines, and the environment can call functions that you
define.

Calling conventions are rather machine-specific and often quite arcane.
You must carefully read the Section 3.2 of the AMD64 ABI [?], available at
http://www.x86-64.org/documentation/abi.pdf. Examples and
additional information is provided in Section 6 of a handout on x86-64
Machine-Level Programming by Bryant & O’Hallaron.

2 IR Trees

We have already seen in Lecture 9 that function calls should take pure ar-
guments in order to easily guarantee the left-to-right evaluation order pre-
scribed by our language semantics. Moreover, they should be lifted to the
level of commands rather than remain embedded inside expressions be-
cause functions may have side-effects.

LECTURE NOTES

http://www.x86-64.org/documentation/abi.pdf
http://www.cs.cmu.edu/~fp/courses/15411-f09/misc/asm64-handout.pdf
http://www.cs.cmu.edu/~fp/courses/15411-f09/misc/asm64-handout.pdf
http://www.cs.cmu.edu/~fp/courses/15411-f09/lectures/09-irtrees.pdf


L10.2 Calling Conventions

3 Low-Level Intermediate Language

In the low level intermediate language of quads that we have used so far
in this course, it is convenient to add a new form of instruction

d← f(s1, . . . , sn)

where each si is a source operand and d is a destination operand.
The generic def(l, x), use(l, x) and succ(l, l′) predicates are easily de-

fined, assuming for simplicity that source and destinations are all temps.

l : d← f(s1, . . . , sn)

def(l, d)
use(l, si) (1 ≤ i ≤ n)
succ(l, l + 1)

J8

Unfortunately, this is overly simplistic, because calling conventions pre-
scribe the use of certain fixed registers for passing arguments and receiving
results, so we will have to extend the above rule further.

4 x86-64 Calling Conventions

In x86-64, the first six arguments are passed in registers, the remaining ar-
guments are passed on the stack. The result is returned in a specific re-
turn register %rax. These conventions do not count floating point argu-
ments and results, which are passed in the dedicated floating point reg-
isters %xmm0 to %xmm7 and on the stack only if there are more than eight
floating point parameters. Fortunately, our language has only integers at
the moment, so you do not have to worry about the conventions for floating
point numbers.

On the x86, stack frames were required to have a frame pointer %ebp
(base pointer) which had to be saved and restored with each function call.
It provided a reliable pointer to the beginning of a stack frame for easy cal-
culation of frame offsets to handle references to arguments and local vari-
ables. It also allowed tools such as gdb to print backtraces of the stack. On
the x86-64, this information is maintained elsewhere and a frame pointer is
no longer required.

The general organization of stack frames at the time a procedure is
called, will be as follows.

LECTURE NOTES



Calling Conventions L10.3

Position Contents Frame
· · · · · · Caller

16(%rsp) argument 8
8(%rsp) argument 7
(%rsp) return address

Note that all arguments take 8 bytes of space on the stack, even if the
type of argument would indicate that only 4 bytes need to be passed.

The function that is called, the callee, should set up its stack frame, re-
serving space for local variables, spilled temps that could not be assigned
to registers, and arguments passed to functions it calls in turn. We recom-
mend calculating the total space needed and then decrementing the stack
pointer %rsp by the appropriate amount. By changing the stack pointer
only once, at the beginning, references to parameters and local variables
remain constant throughout the function’s execution. The stack then looks
as follows, where the size of the callee’s stack frame is n.

Position Contents Frame
· · · · · · Caller

n+ 16(%rsp) argument 8
n+ 8(%rsp) argument 7
n+ 0(%rsp) return address

local variables Callee
· · ·

argument build area
for function calls

· · ·
(%rsp) end of frame

128 bytes red zone

Note that %rsp should be aligned 0 mod 16 before another function is
called, and may be assumed to be aligned 8 mod 16 on function entry.
This happens because the call instruction saves the 64-bit return address
on the stack.

The area below the stack pointer is called the red zone and may be used
by the callee as temporary storage for data that is not needed across func-
tion calls or even to build arguments to be used before a function call. The
ABI states that the red zone “shall not be modified by signal or interrupt
handlers.” This can be tricky, however, because, for example, Linux kernel

LECTURE NOTES



L10.4 Calling Conventions

code will not respect the red zone and overwrite this area. We therefore
suggest not using the red zone.

5 Typical Calling Sequence

If we have 6 or fewer arguments, a typical calling sequence for 32-bit argu-
ments with an instruction

d← f(s1, s2, s3)

will have the following form:

movl s3, %edx
movl s2, %esi
movl s1, %edi
call f
movl %eax, d

First we move the temps into the appropriate argument registers, then we
call the function f (represented by a symbolic label), and then we move the
result register into the desired destination.

This organization, perhaps just before register allocation, has the advan-
tage that the live ranges of fixed registers (called pre-colored nodes in register
allocation) is minimized. This is important to avoid potential conflict. We
have already applied a similar technique in the implementation of div and
mod operations, which expect their arguments in fixed registers.

We can now see a problem with our previous calculation of def and use
information: the above sequence to actually implement the function call
will overwrite the argument registers %edx,%esi,%edi as well as the result
register %eax (the lower 32bits of the return register %rax)! In fact, any of
the argument registers, the result register, as well as %r10 (temporary reg-
ister for passing static function chain pointers) and %r11 (temporary reg-
ister) may not be preserved across function call and therefore have to be
considered to be defined by the call. If we represent this in the low-level
intermediate language, we would add to the rule R8 the following rule R′

8:

l : d← f(s1, . . . , sn)
r ∈ {%rax,%rdi,%rsi,%rdx,%rcx,%r8,%r9,%r10,%r11}

def(l, r)
R′

8

LECTURE NOTES



Calling Conventions L10.5

Here we assume that register aliasing is handled correctly, that is, the
register allocator understands that, for example, %eax constitutes the lower
32 bits of %rax.

Now if a temp t (except for d) is live after the function call, we have to
add a edge connecting t with any of the fixed registers noted above, since
the value of those registers are not preserved across the function call.

One more note: if it is possible that the function f is a function accept-
ing a variable number of arguments, some additional considerations apply.
For example, the low 8 bits of %rax, called %al hold the number of float-
ing point arguments passed to the function. One therefore sometimes sees
xorl %eax,%eax before a function call to define zero variable arguments.

6 Callee-Save Registers

The typical calling sequence above takes care of treating caller-save reg-
isters correctly. But what about callee-save registers, namely %rbx, %rbp,
%r12, %r13, %r14 and %r15? In compiling a function we are required that
the generated code preserves all the callee-save registers.

The standard approach is to save those that are needed onto the stack
in the function prologue and restore them from the stack in the function
epilogue, just before returning. Of course, saving and restoring them all
is safe, but may be overkill for small functions that do not require many
registers.

One way to let register allocation do the job for us, is to remember the
rule that fixed registers should have short live ranges. Callee-save registers
contradict that rule, because they are essentially live throughout the body
of a function. In order to avoid this, we can move the contents of the callee-
save registers into temps at the beginning of a function and then move
them back at the end. If it turns out these temps are spilled, then they will
be saved onto the stack. If not, they may be moved from one register to
another and then back at the end. In order to avoid this move, we can apply
register coalescing after register allocation. Register coalescing is briefly
described in Section 8 of Lecture 3. Another optimization that can eliminate
register-to-register moves is copy propagation, covered in a later lecture.
Register coalescing is essentially copy propagation for registers.

The general shape of the code for a function f before register allocation

LECTURE NOTES

http://www.cs.cmu.edu/~fp/courses/15411-f09/lectures/03-regalloc.pdf


L10.6 Calling Conventions

would be
f :

t1 ← %rbx
t2 ← %rbp
· · ·
function body
· · ·
%rbp← t2
%rbx← t1
ret

One complication with this approach is that we need to be sure to spill
the full 64-bit registers, while registers holding 32-bit integer values might
be saved and restored (or directly used as operands) using only 32 bits.
Looking ahead, we see that we will need both 32 bit and 64 bit registers and
spill slots in the next lab, so we might decide to introduce this complication
now. Or we can still treat callee-save registers specially and switch over to
a more uniform treatment in the next lab.

References

LECTURE NOTES


	Introduction
	IR Trees
	Low-Level Intermediate Language
	x86-64 Calling Conventions
	Typical Calling Sequence
	Callee-Save Registers

