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1 Introduction

Lexical analysis is the first phase of a compiler. Its job is to turn a raw
byte or character input stream coming from the source file into a token
stream by chopping the input into pieces and skipping over irrelevant de-
tails. The primary benefits of doing so include significantly simplified jobs
for the subsequent syntactical analysis, which would otherwise have to ex-
pect whitespace and comments all over the place. The job of the lexical
analysis is also to classify input tokens into types like INTEGER or IDEN-
TIFIER or WHILE-keyword or OPENINGBRACKET. Another benefit of the
lexing phase is that it greatly compresses the input by about 80%. A lexer
is essentially taking care of the first layer of a regular language view on the
input language. For further background we refer to [WM95, Ch. 7] and
[App98, Ch. 2].

2 Lexer Specification

We fix an alphabet Σ, i.e., a finite set of input symbols, e.g., the set of all
letters a-z and digits 0-9 and brackets and operators +,- and so on. The
the set Σ∗ of words or strings is defined as the set of all finite sequences
of elements of Σ. For instance, ifah5+xy-+ is a string. The empty string
with no characters is denoted by ε. We specify the input that a lexer accepts
by regular expressions. Regular expressions r, s are expressions that are
recursively built of the following form:
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regex matches
a matches the specific character a from the input alphabet
[a− z] matches a character in the specified range a to z
ε matches the empty string
r|s matches a string that matches r or that matches s
rs matches a string that can be split into two parts, the first

matching r, the second matching s
r∗ matches a string that consists of n parts where each

part matches r, for any number n ≥ 0

For instance, the set of strings over the alphabet {a, b} with no two or
more consecutive a’s is described by the regular expression b∗(abb∗)∗(a|ε).
Other common regular expressions are

regex defined matches
r+ rr∗ matches a string that consists of n parts where each

part matches r, for any number n ≥ 1
r? r|ε optionally matches r, i.e., matches the empty string

or a string matching r
To specify a lexical analyzer we can use a sequence of regular expres-

sions along with the token type that they recognize (the last one, LPAREN,
for instance, recognizes a single opening parenthesis, which we need to
quote to distinguish it from brackets used to describe the regular expres-
sion):

IF ≡ i f
GOTO ≡ g o t o
IDENTIFIER ≡ [a− z]([a− z]|[0− 9])∗

INT ≡ [0− 9][0− 9]∗

REAL ≡ ([0− 9][0− 9]∗.[0− 9]∗)|(.[0− 9][0− 9]∗)
LPAREN ≡ "("
SKIP ≡ " "∗

In addition, we would say that tokens matching the SKIP whitespace
recognizer are to be skipped and filtered away from the input, because the
parser does not want to see that. Likewise with comments.

Regular expressions themselves are not unambiguous for splitting an
input stream into a token sequence. The input goto5 could be tokenized
as IDENTIFIER or as the sequence GOTO NUM. The input sequence if 5
could be tokenized as IF INT or as IDENTIFIER INT.

As disambiguation rule we will use the principle of the longest possible
match. The longest possible match from the beginning of the input stream
will be matched as a token. And if there are still multiple regular expression
rules that match the same length, then the first one with longest match takes

LECTURE NOTES



Lexical Analysis L6.3

precedence over others.
Why do we choose the longest possible match as a disambiguation

rule instead of the shortest? The shortest would be easier to implement.
But with the shortest match, ifo = ford trimotor would be tokenized
as IF IDENTIFIER ASSIGN FOR IDENTIFIER and not as IDENTIFIER
ASSIGN IDENTIFIER. And, of course, the latter is what one would have
meant by assigning the identifier for the 1925 Ford Trimotor aircraft “Tin
Goose” to the identified flying object (ifo).

3 Lexer Implementation

Lexers are specified by regular expressions but implemented differently.
They are implemented by finite automata.

Definition 1. A finite automaton for a finite alphabet Σ consists of

• a finite set Q of states,

• a set ∆ ⊆ Q×Σ×Q of edges from states to states that are labelled by letters
from the input alphabet Σ. We also allow ε as a label on an edge, which then
means that (q, ε, q′) is a spontaneous transition from q to q′ that consumes
no input.

• an initial state q0 ∈ Q

• a set of accepting states F ⊆ Q.

The finite automaton accepts an input string w = a1a2 . . . ak ∈ Σ∗ iff there is an
n ∈ N and a sequence of states q0, q1, q2, . . . , qn ∈ Q where q0 is the initial state
and qn ∈ F is an accepting state such that (qi−1, ai, qi ∈ ∆ for all i = 1, . . . , n.

In pictures, this condition corresponds to the existence of a set of edges
in the automaton labelled by the appropriate input:

q0
a1→ q1

a2→ q2
a3→ q3

a4→ · · · an−1→ qn−1
an→ qn ∈ F

As an abbreviation for this situation, we also write (q0, w) →∗ (qn, ε). By
that we mean that the automaton, when starting in state q0 can consume all
input of word w with a series of transitions and end up in state qn with no
remaining input to read (ε). For instance, an automaton for accepting REAL
numbers is
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Of course, when we use this finite automaton to recognize the number
3.1415926 in the input stream 3.1415926-3+x;if, then we do not only
want to know that a token of type REAL has been recognized and that the
remaining input is -3+x;if. We also want to know what the value of the
token of type REAL has been, so we store it’s value along with the token
type.

The above automaton is a deterministic finite automaton (DFA). At ev-
ery state and every input there is at most one edge enabling a transition.
But in general, finite automata can be nondeterministic finite automata
(NFA). That is, for the same input, one path may lead to an accepting state
while another attempt fails. That can happen when for the same input let-
ter there are multiple transitions from the same state. In order to be able
to work with the longest possible match principle, it becomes necessary
to keep track of the last accepting state and reset back there if the string
cannot be accepted anymore. Consider, for instance, the nondeterministic
automaton that accepts both REAL and INT and starts of by a nondetermin-
istic choice between the two lexical rules.
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In the beginning, this poor NFA needs to guess which way the future input
that he hasn’t seen yet will end up. That’s hard. But NFAs are quite conve-
nient for specification purposes (just like regular expressions), because the
user does not need to worry about these choices.

4 Regular Expressions Nondeterministic Finite Au-
tomata

For converting a regular expression r into a nondeterministic finite automa-
ton (NFA), we define a recursive procedure. We start with an extended
NFA that still has regular expressions as input labels on the edges.

q0start qf
r

Then we successively transform edges that have improper input labels by
their defining automata patterns. That is, whenever we find a regular ex-
pression on an edge that is not just a single letter from the input alphabet
then we use the transformation rule to get rid of it
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When applying the rule we match on the pattern on the left in the current
candidate for an NFA and replace it by the right, introducing new states
q1, q2 as necessary.

5 Nondeterministic Finite Automata Deterministic
Finite Automata

The conversion from regular expressions to NFAs is quite simple and NFAs
are convenient for specification purposes, but bad for implementation. It
is easy to implement a DFA. We just store the current state in a program
variable, initialized to q0, and depending on the next input character, we
transition to the next state according to the transition table ∆. Whenever
there is an accepting, we notice that this would be a token that we recog-
nized. But in order to find the longest possible match, we still keep going.
If we ultimately find an input character that is not recognized or accepted,
then we just backtrack to the last possible match that we have remembered
(and unconsume the input characters we have read from the input stream
so far). But how would we implement an NFA? There are so many choices
that we do not know which one to choose.

What we could do to implement an NFA is to follow the input like in a
DFA implementation, but whenever there is a choice, we follow all options
at once. That will branch quickly and will require us to do a lot of work
at once, which is inefficient. Nevertheless, it gives us the right intuition
about what has to be done. We just need to turn it around and follow the
same principle in a precomputation step instead of at runtime. We follow
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all options and keep the set of choices of where we could be around.
This is the principle behind the powerset construction that turns an

NFA into a DFA by following all options at once. That is, instead of a sin-
gle state, we know consider the set of states in which we could be. We,
of course, want to start in the initial powerset state {q0} that only con-
sists of the single initial state q0. But, first we have to follow all possible
ε-transitions that lead us from q0 to other states. When S ⊆ Q is a set of
states, we define Clε(S) to be the ε-closure of S, i.e., the set of states we
can go to by following arbitrarily many ε-transitions from states of S, but
without consuming any input.

Clε(S) :=
⋃
q∈S
{q′ : (q, ε)→∗ (q′, ε)}

Now from a set of states S ⊆ Q we make a transition, say with input letter
a and figure out the set of all states to which we could get to by following
a-transitions from any of the S states, again following ε-transitions:

N(S, a) := Clε({q′ ∈ Q : (q, a, q′) ∈ ∆ and q ∈ S})

We can summarize all these transitions by just a single a-transition from S
to N(S, a). Repeating this process results in a DFA that accepts exactly the
same language as the original NFA. The complexity of the algorithm could
be exponential, though, because there are exponentially many states in the
powerset that we could end up using during the DFA construction.

Definition 2 (NFA DFA). Given an NFA finite automaton (Q,∆, q0, F ), the
corresponding DFA (Q′,∆′, q′0, F

′) accepting the same language is defined by

• Q′ is a subset of the sets of all subsets of Q, i.e., a part of the powerset
Q′ ⊆ 2Q

• ∆′ := {(S, a,N(S, a)) : a ∈ Σ}.

• q′0 := Clε(q0)

• F ′ := {S ⊆ Q : S ∩ F 6= ∅}

After turning the NFA into a DFA, we can directly implement it to rec-
ognize tokens from the input stream.
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6 Minimizing Deterministic Finite Automata

Another operation that is often done by lexer generator tools is to minimize
the resulting DFA by merging states and reducing the number of states
and transitions in the automaton. This is an optimization and we will not
pursue it any further.

7 Summary

Lexical analysis reduces the complexity of subsequent syntactical analysis
by first dividing the raw input stream up into a shorter sequence of tokens,
each classified by its type (INT, IDENTIFIER, REAL, IF, ...). The lexer also
filters out irrelevant whitespace and comments from the input stream so
that the parser does not have to deal with that anymore. The steps for
generating a lexer are

1. Specify the token types to be recognized from the input stream by a
sequence of regular expressions

2. Bear in mind that the longest possible match rule applies and the first
production that matches longest takes precedence.

3. Lexical analysis is implemented by DFA.

4. Convert the regular expressions into NFAs.

5. Join them into a master NFA that chooses between the NFAs for each
regular expression by a spontaneous ε-transition

6. Determinize the NFA into a DFA

7. Optional: minimize the DFA for space

8. Implement the DFA for a recognizer. Respect the longest possible
match rule by storing the last accepted token and backtracking the
input to this one if the DFA run cannot otherwise complete.

Quiz

1. Why do compilers have a lexing phase? Why not just work without
it?

LECTURE NOTES



Lexical Analysis L6.9

2. Should a lexer return whitespaces and comments?

3. Why do we categorize tokens into token classes, instead of just work-
ing with the particular piece of the input string they represent?

4. Why are there programming languages that do not accept inputs like
x----y?

5. What aspects of the programming language does a lexer not know
about?

6. Do lexer tools work with regular expressions or automata internally?
Should they?

7. Why can lexers not work with nondeterministic finite automata? They
are so useful for description purposes.

8. Should a reserved keyword of a programming language be a token
class of its own? What are the benefits and downsides?

References

[App98] Andrew W. Appel. Modern Compiler Implementation in ML. Cam-
bridge University Press, Cambridge, England, 1998.

[WM95] Reinhard Wilhelm and Dieter Maurer. Compiler Design. Addison-
Wesley, 1995.

LECTURE NOTES


	Introduction
	Lexer Specification
	Lexer Implementation
	Regular Expressions  Nondeterministic Finite Automata
	Nondeterministic Finite Automata  Deterministic Finite Automata
	Minimizing Deterministic Finite Automata
	Summary

