
Lecture Notes on
Monotone Frameworks

&
Abstract Interpretation

15-411: Compiler Design
André Platzer

Lecture 26
November 30, 2010

1 Introduction

More information on dataflow analysis and monotone frameworks can be
found in [NNH99]. More information on abstract interpretation can be
found in [CC77, CC79] and [WM95, Chapter 10].

2 Forward May Dataflow Analysis

A forward may dataflow analysis follows the principle shown in Fig. 1.
There, A◦(l) is the information that holds at the entry of a block and

we compute it as a union of all that may hold at the previous blocks. Thus
A◦(l) will hold anything that may hold at any previous block. A•(l) is the
information that holds at the exit of a block. kill(l) holds the information
that we remove from the input. gen(l) holds the information that we add to
the input. We compute A•(l) as a function of the information A◦(l) holding
at the entry, minus those that we remove (kill(l)) plus those that we add
(gen(l)).

If we choose ι = ∅ for a may analysis, we obtain the least fixed point.
Recall, for example, the reaching definitions analysis, which is a for-

ward may analysis with the choice in Table 1. It analyses which assign-
ments may have been made before but have not been overwritten yet.

LECTURE NOTES NOVEMBER 30, 2010

L26.2

Monotone Frameworks
&

Abstract Interpretation
· · ·

A•(l1) A•(l2)

A◦(l)

A•(l)

A◦(l) =
⋃

li 7→l

A•(li)

A•(l) = (A◦(l) \ kill (l)) ∪ gen(l)

A•(init) = c

Figure 1: Dataflow analysis schema for forward may analysis

Table 1: Forward may analysis definitions for reaching definitions

Statement l gen(l) kill(l)

init A•(init) = Lbl
l : x← a� b {l} {l : def(l, x)}
l : x← ∗a {l} {l : def(l, x)}
l : ∗a← b ∅ ∅
goto l′ ∅ ∅
if a > b goto l′ ∅ ∅
l′ : ∅ ∅
l : x← f(p1, . . . , pn) {l} {l : def(l, x)}

3 Forward Must Dataflow Analysis

Forward may dataflow analysis looks for information that may hold on
some of the paths. If, instead, we need information about something that
must hold on all of the paths, we use a forward must dataflow analysis
instead (Figure 2). If we choose ι as everything for a must analysis, we
obtain the greatest fixed point.

Recall, for instance, the dataflow equations for the available expres-
sion analysis from the optimization lecture, which we show again in Ta-
ble 2. Other forward must analysis includes dominator analysis to deter-
mine which statements dominate the program point, i.e., must have been
executed before.

LECTURE NOTES NOVEMBER 30, 2010

Monotone Frameworks
&
Abstract Interpretation L26.3

· · ·
A•(l1) A•(l2)

A◦(l)

A•(l)

A◦(l) =
⋂

li 7→l

A•(li)

A•(l) = (A◦(l) \ kill (l)) ∪ gen(l)

A•(init) = c

Figure 2: Dataflow analysis schema for forward must analysis

Table 2: Forward must analysis definitions for available expressions (recall)

Statement l gen(l) kill(l)

init A•(init) = ∅
x← a� b {a� b, a, b} \ kill(l) {e : e contains x}
x← ∗a {∗a} \ kill(l) {e : e contains x}
∗a← b ∅ {∗z : for all z}
goto l′ ∅ ∅
if a > b goto l′ ∅ ∅
l′ : ∅ ∅
x← f(p1, . . . , pn) ∅ {e : e contains x or is ∗ z}

4 Backward May Dataflow Analysis

Following the control flow forward is not the only direction that makes
sense. Backward dataflow analysis follows the control flow backwards in-
stead. It again comes in two flavors: backward may and backward must
dataflow analysis. For backward dataflow analysis, we no longer initialize
the analysis at the initial node, but at all final nodes instead, because we
follow the control flow backwards from the final nodes to the beginning.

Live variable analysis is an example of a backward may analysis (Fig-
ure 3), i.e., which variables may be live, i.e., there is a path to a use without
redefinition. See Table 3.

LECTURE NOTES NOVEMBER 30, 2010

L26.4

Monotone Frameworks
&

Abstract Interpretation

· · ·
A◦(l1) A◦(l2)

A•(l)

A◦(l)

A•(l) =
⋃

l 7→li

A◦(li)

A◦(l) = (A•(l) \ kill (l)) ∪ gen(l)

A◦(final) = c

Figure 3: Dataflow analysis schema for backward may analysis

Table 3: Backward may analysis definitions for live variables

Statement l gen(l) kill(l)

final A•(final) = ∅
x← a� b {a, b} {x}
x← ∗a {a} {x}
∗a← b {a, b} ∅
goto l′ ∅ ∅
if a > b goto l′ {a, b} ∅
l′ : ∅ ∅
x← f(p1, . . . , pn) V ars({p1, . . . , pn}) {x}

5 Backward Must Dataflow Analysis

Very busy expressions is an example of a backward must analysis (Figure 4),
i.e., which expressions will be used on every path before any of its vari-
ables is redefined. Very busy expressions are needed for partial redundancy
elimination (PRE) and can be useful for determining which variable to keep
in a register instead of spilling. Variables that are used again on every path
may be more useful to keep in a register than those that are only used on
one path. See Table 4.

LECTURE NOTES NOVEMBER 30, 2010

Monotone Frameworks
&
Abstract Interpretation L26.5

· · ·
A◦(l1) A◦(l2)

A•(l)

A◦(l)

A•(l) =
⋂

l 7→li

A◦(li)

A◦(l) = (A•(l) \ kill (l)) ∪ gen(l)

A◦(final) = c

Figure 4: Dataflow analysis schema for backward must analysis

Table 4: Backward must analysis definitions for very busy expressions

Statement l gen(l) kill(l)

final A•(final) = ∅
x← a� b {a� b} {e : e contains x}
x← ∗a {∗a} {e : e contains x}
∗a← b {b} {e : e contains ∗z for any z}
goto l′ ∅ ∅
if a > b goto l′ {a, b} ∅
l′ : ∅ ∅
x← f(p1, . . . , pn) ∅ {e : e contains x or any ∗z}

LECTURE NOTES NOVEMBER 30, 2010

L26.6

Monotone Frameworks
&

Abstract Interpretation

6 Monotone Frameworks

Even though all of them are different, the forward/backward may/must
dataflow analysis are nevertheless very similar. They all follow a general
pattern:

A◦(`) =

{
ι if ` ∈ E⊔{A•(`′) : (`′, `) ∈ F} otherwise

A•(`) = f`(A◦(`))

where, depending on the specific analysis:

• the operator
⊔

is either
⋃

for information from any source or
⋂

for
information joint to all sources

• the flow relation F is either the forward control flow or the backward
control flow

• the initialization setE is either the initial block or the set of final nodes

• ι specifies the starting point of the analysis at the initial or final nodes

• f` is the transfer function for the node, which, in the previous exam-
ples is always of the special form

f`(X) = (X \ kill(`)) ∪ gen(`)

More formally, the property that we are analyzing is part of a property
space L. This space L could be the set of all sets of variables ℘(V ars), if we
are looking for the set of all live variables. Or, for available expressions,
it could be the set of all sets of expressions ℘(Expr) ordered by ⊇. Or,
in fairly advanced analyses, we might even be tempted to try the set of
all mappings V ars → Z2 from variables to intervals, if we are trying to
find interval bounds for each variable. The latter scenario is more difficult,
though.

For the property space and the way how property values flow through
the control flow, we need a number of assumptions.

Definition 1 A monotone framework consists of

LECTURE NOTES NOVEMBER 30, 2010

Monotone Frameworks
&
Abstract Interpretation L26.7

1. a Noetherian complete semi-lattice L: a set L with a partial order v that is
complete, i.e., such that each subset Y ⊆ L has a least upper bound

⊔
Y . A

lattice is Noetherian iff it satisfies the condition that each ascending chain

a1 v a2 v a3 v ...

is finite, i.e., there is an n such that an = an+1 = an+2 =

2. a set F of monotone functions f : L→ L that contains the identify function
id : L → L; a 7→ a and is closed under composition, i.e., if f, g ∈ F then
the composition f ◦ g ∈ F . A function f : L→ L is monotone iff

a v b implies f(a) v f(b)

A “distributive” framework is a monotone framework where each f ∈ F is
distributive (or, more precisely, a homomorphism)

f(a t b) = f(a) t f(b)

Note that we use the binary operator notation a t b as an abbreviation for
the more verbose

⊔{a, b}. In addition, we denote the least upper bound⊔ ∅ by ⊥, which is the least element of the semi-lattice L.

Definition 2 The analysis equations corresponding to a monotone framework are

A◦(`) =
⊔
{A•(`′) : (`′, `) ∈ F} t

{
ι if ` ∈ E
⊥ if ` 6∈ E

(1)

A•(`) = f`(A◦(`)) (2)

7 Solving Monotone Framework Equations as Least
Fixed Points

A simple way of solving the analysis equations of a monotone framework
works by iteratively updating the left hand side of (1) to match the right
hand side of (1) until nothing changes anymore. This is the worklist algo-
rithm1:

1In this context this algorithm is often called “Maximum” Fixed Point, which is rather
confusing for a least fixed point.

LECTURE NOTES NOVEMBER 30, 2010

L26.8

Monotone Frameworks
&

Abstract Interpretation

Table 5: Dataflow analysis examples as monotone frameworks

L v ⊔ ⊥ ι E F

For-may: Reach def ℘(Lbl) ⊆ ⋃ ∅ Lbl init flow
For-must: Available expr ℘(Exp) ⊇ ⋂

Exp ∅ init flow
Back-may: Live variables ℘(V ar) ⊆ ⋃ ∅ ∅ final flow−1

Back-must: Very busy expr ℘(Exp) ⊇ ⋂
Exp ∅ final flow−1

f`(l) = (l \ kill(`)) ∪ gen(`)
F = {f : L→ L : f(l) = (l \ kill) ∪ gen for some kill, gen}

W := F // working l i s t
for ` ∈ F ∪ E

i f (` ∈ E) then A◦[`] := ι e lse A◦[`] := ⊥
for (`′, `) ∈W

W := W \{(`′, `)}
i f f`′(A◦[`

′]) 6v A◦[`] then
A◦[`] := A◦[`] t f`′(A◦[`′])
W := {(`, `′′) : (`, `′′) ∈ F}∪ W

end for

This algorithm computes the least fixed point of (1), because it starts at
the bottom ⊥ of the semi-lattice and successively follows the fixed point
condition. It also always terminates. Let’s convince ourselves why.

Theorem 3 (Kleene fixed point theorem) If L is a complete partial order and
f : L→ L is a Scott-continuous function (i.e.,

⊔
f(Y) = f(

⊔
Y) for every subset

Y ⊆ L with a supremum
⊔
Y ∈ L), then the least fixed point µf of f is

µf =
⊔
{fn(⊥) : n ∈ N}

The Kleene fixed point theorem is very useful, because it shows that succes-
sive iteration like we are doing in the worklist algorithm really yields the
least fixed point. Yet are we in a position to use the theorem? It doesn’t
quite look like it. We have montone transfer functions but need Scott-
continuous functions. Every Scott-continuous function f : L→ L is mono-
tone:

a v b ⇒
⊔
{f(a), f(b)} = f(

⊔
{a, b}) = f(b) ⇒ f(a) v f(b)

LECTURE NOTES NOVEMBER 30, 2010

Monotone Frameworks
&
Abstract Interpretation L26.9

But in monotone frameworks, we deal with monotone functions f : L→ L
and need to know whether they are Scott-continuous. Now fortunately,
the semi-lattice L underlying monotone frameworks is actually Noethe-
rian. Thus, if we start with any set Y ⊆ L and want to relate

⊔
f(Y) and

f(
⊔
Y), we first note that Y cannot contain an infinite ascending chain but

can only contain a finite ascending chain:

a1 v a2 v a3 v ... v an
Now by monotonicity of f we know

f(a1) v f(a2) v f(a3) v ... v f(an)

Thus, ⊔
{f(a1), . . . , f(an)} = f(an) = f(

⊔
{a1, . . . , an})

The same argument holds for all ascending chains in Y . The ends of all
those finite ascending chains have least upper bounds, because L is a lat-
tice. Because L is Noetherian, even those extensions can only give finite
ascending chains.

The only trouble is that the function f we are using in the algorithm
to form a fixed point is not just one of the transfer functions f`, which we
know to be monotone. The overall function f is really

f(Z)(`) :=
⊔
{f`′(Z(`′)) : (`′, `) ∈ F} t

{
ι if ` ∈ E
⊥ if ` 6∈ E

f(Z) :=
{(
`,
⊔
{f`′(Z(`′)) : (`′, `) ∈ F}

)
: ` ∈ E ∪ F

}

t {(`, ι) : ` ∈ E} t {(`,⊥) : ` ∈ F \ E}

Now this function is more complicated because it has the nodes ` and `′

as extra arguments, so the domain is a slightly different one and things
become more complicated. Nevertheless, the principles above still apply
and we can see that f is monotone, because the result only increases at
every point if the input increases.

Why does the worklist algorithm terminate? That’s easy to see if the
semi-lattice L is finite, because there can only be finitely many monotone
changes to the sets then. What if the property space L is infinite? Well the
algorithm still terminates, because A◦[`] increases at its assignment, and it
can only increase to a finite ascending chain, not an infinite one, because L
is Noetherian.

LECTURE NOTES NOVEMBER 30, 2010

L26.10

Monotone Frameworks
&

Abstract Interpretation

8 Abstract Interpretation

Abstract interpretation generalizes the theory of monotone frameworks
and dataflow analysis to a general principle of analyzing programs by defin-
ing an abstract semantics for it [CC77, CC79, WM95]. In order to show the
principle of abstract interpretation, without having to dig too much into the
details, we consider an example where we abstractly interpret a program
but still keep using monotone frameworks.

Suppose we want to check the property whether a variable x may be
0, which is a principle that can be useful for null pointer exception tests.
As domain L for this we just choose the Boolean lattice {true, , false}. The
operator

⊔
is just logical disjunction (∨). The flow relation is the forward

control flow. Initialization is false, say. Transfer functions at the nodes
make sense to choose from the constant functions true, false and the iden-
tity function id.

x:=1

x:=1 x:=0 y:=0

y:=1

By fixed-point iteration on the above example we find that x = 1 is possible
after the program terminates. For a must analysis, instead, we would get
that x = 1 is not necessary.

For multiple variables, we can choose a cartesian product {true, false}n
of the Boolean lattice and use projections to coordinates as further transfer
functions for copying the value for y over to x at a move x := y.

Another example is an abstract interpretation that performs general
analysis for constant propagation. The property space has the form {x =
⊥, x =?}∪{x = v : v ∈ Z}, where⊥means is the bottom of the semilattice
for undefined, x =? means that x has nondeterministic values and x = v
for a number v means that we can be certain that x will always have value
v at this program point. Let’s look at an example. We initialize with no
information (⊥) at all points, except the program init block, where we start
with a nondeterministic initial value i =?:

LECTURE NOTES NOVEMBER 30, 2010

Monotone Frameworks
&
Abstract Interpretation L26.11

{ i =? , j =? ,k=?}
i = 5 ; j = 0 ; k = 0 ;
{ i =⊥ , j =⊥ , k=⊥}
while (j <= i) {
{ i =⊥ , j =⊥ , k=⊥}
i = i + 2 ; k = k + j ; j = j + 1
{ i =⊥ , j =⊥ , k=⊥}
i = i − 2
{ i =⊥ , j =⊥ , k=⊥}

}
{ i =⊥ , j =⊥ , k=⊥}

Now we can execute the first line in the abstract semantics and then enter
the loop in the abstract semantics and execute the loop body once

{ i =? , j =? ,k=?}
i = 5 ; j = 0 ; k = 0 ;
{ i =5 , j =0 ,k=0}
while (j <= i) {
{ i =5 , j =0 ,k=0}
i = i + 2 ; k = k + j ; j = j + 1
{ i =7 , j =1 ,k=0}
i = i − 2
{ i =5 , j =1 ,k=0}

}
{ i =⊥ , j =⊥ , k=⊥}

With those abstract values, we will repeat the loop, but we have to merge
the previous information {i=5,j=0,k=0}with the current information {i=5,j=1,k=0}
and find a joint representation in the property space lattice by the

⊔
opera-

tor, giving {i=5,j=?,k=0}. Then we execute the loop body

{ i =? , j =? ,k=?}
i = 5 ; j = 0 ; k = 0 ;
{ i =5 , j =0 ,k=0}
while (j <= i) {
{ i =5 , j =? ,k=0}
i = i + 2 ; k = k + j ; j = j + 1
{ i =7 , j =? ,k=?}
i = i − 2
{ i =5 , j =? ,k=?}

}

LECTURE NOTES NOVEMBER 30, 2010

L26.12

Monotone Frameworks
&

Abstract Interpretation

{ i =⊥ , j =⊥ , k=⊥}
Again, merging the property values by the

⊔
operator and executing the

loop body gives

{ i =? , j =? ,k=?}
i = 5 ; j = 0 ; k = 0 ;
{ i =5 , j =0 ,k=0}
while (j <= i) {
{ i =5 , j =? ,k=?}
i = i + 2 ; k = k + j ; j = j + 1
{ i =7 , j =? ,k=?}
i = i − 2
{ i =5 , j =? ,k=?}

}
{ i =5 , j =? ,k=?}

Here the property value at the loop entry didn’t change, so we can propa-
gate to the loop exit and the analysis terminates. Now we know, as good as
our abstract semantics could represent, what values the variables can have
at the various program points.

References

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: A
unified lattice model for static analysis of programs by construc-
tion or approximation of fixpoints. In POPL, pages 238–252,
1977.

[CC79] Patrick Cousot and Radhia Cousot. Systematic design of pro-
gram analysis frameworks. In POPL, pages 269–282, 1979.

[NNH99] F. Nielson, H. R. Nielson, and C. L. Hankin. Principles of Program
Analysis. Springer, 1999.

[WM95] Reinhard Wilhelm and Dieter Maurer. Compiler Design. Addison-
Wesley, 1995.

LECTURE NOTES NOVEMBER 30, 2010

	Introduction
	Forward May Dataflow Analysis
	Forward Must Dataflow Analysis
	Backward May Dataflow Analysis
	Backward Must Dataflow Analysis
	Monotone Frameworks
	Solving Monotone Framework Equations as Least Fixed Points
	Abstract Interpretation

