
Lecture Notes on
Context-Free Grammars

15-411: Compiler Design
Frank Pfenning∗

Lecture 7
September 14, 2010

1 Introduction

Grammars and parsing have a long history in linguistics. Computer science
built on the accumulated knowledge when starting to design programming
languages and compilers. There are, however, some important differences
which can be attributed to two main factors. One is that programming lan-
guages are designed, while human languages evolve, so grammars serve as
a means of specification (in the case of programming languages), while they
serve as a means of description (in the case of human languages). The other
is the difference in the use of grammars and parsing. In programming lan-
guages the meaning of a program should be unambiguously determined
so it will execute in a predictable way. Clearly, this then also applies to the
result of parsing a well-formed expression: it should be unique. In natural
language we are condemned to live with its inherent ambiguities, as can be
seen from famous examples such as “Time flies like an arrow”.

In this lecture we review an important class of grammars, called context-
free grammars (Chomsky-2 in the Chomsky hierarchy [Cho59]) and the as-
sociated problem of parsing. They end up to be too awkward for direct
use in a compiler, mostly due to the problem of ambiguity, but also due to
potential inefficiency of parsing. Alternative presentations of the material
in this lecture can be found in the textbook [App98, Chapter 3] and in a
seminal paper by Shieber et al. [SSP95]. In the next lecture we will consider

∗With edits by André Platzer

LECTURE NOTES SEPTEMBER 14, 2010

L7.2 Context-Free Grammars

more restricted forms of grammars, whose definition, however, is much
less natural.

2 Context-Free Grammars

Grammars are designed to describe languages, where in our context a lan-
guage is just a set of strings. Abstractly, we think of strings as a sequence
of so-called terminal symbols. Inside a compiler, these terminal symbols are
most likely lexical tokens, produced from a bare character string by lexical
analysis that already groups substrings into tokens of appropriate type and
skips over whitespace.

A context-free grammar consists of a set of productions of the formX −→
γ, where X is a non-terminal symbol and γ is a potentially mixed sequence
of terminal and non-terminal symbols. It is also sometimes convenient to
distinguish a start symbol traditionally named S, for sentence. We will use
the word string to refer to any sequence of terminal and non-terminal sym-
bols. We denote strings by α, β, γ, non-terminals are generally denoted
by X,Y, Z and terminals by a,b,c

For example, the following grammar generates all strings consisting of
matching parentheses.

S −→
S −→ [S]
S −→ S S

The first rule looks somewhat strange, because the right-hand side is the
empty string. To make this more readable, we usually write the empty
string as ε.

A derivation of a sentence w from start symbol S is a sequence S =
α0 −→ α1 −→ αn = w, where w consists only of terminal symbols. In
each step we choose exactly one occurrence of a non-terminal X in αi and
one production X −→ γ and replace this occurrence of X in αi by γ.

We usually label the productions in the grammar so that we can refer to
them by name. In the example above we might write

[emp] S −→
[pars] S −→ [S]
[dup] S −→ S S

Then the following is a derivation of the string [[][]], where each transi-

LECTURE NOTES SEPTEMBER 14, 2010

Context-Free Grammars L7.3

tion is labeled with the production that has been applied.

S −→ [S] [pars]
−→ [SS] [dup]
−→ [[S]S] [pars]
−→ [[]S] [emp]
−→ [[][S]] [pars]
−→ [[][]] [emp]

We have labeled each derivation step with the corresponding grammar pro-
duction that was used.

Derivations are clearly not unique, because when there is more than one
non-terminal we can replace it in any order in the string. In order to avoid
this kind of harmless ambiguity in rule order, we like to construct a parse
tree in which the nodes represents the non-terminals in a string, with the
root being S. In the example above we obtain the following tree:

pars

dup

pars pars

emp emp

While the tree removes some ambiguity, it turns out the sample gram-
mar is ambiguous in another way. In fact, there are infinitely many parse
trees of every string in the language. This can be seen by considering the
cycle

S −→ SS −→ S

where the first step is dup and the second is emp, applied either to the first
or second occurrence of S. We can get arbitrarily long parse trees for the
same string with this.

LECTURE NOTES SEPTEMBER 14, 2010

L7.4 Context-Free Grammars

Whether a grammar is ambiguous in the sense that there are sentences
permitting multiple different parse trees is an important question for the
use of grammars for the specification of programming languages. The ba-
sic problem is that it becomes ambiguous in which grammatical function a
specific terminal occurs in the source program. This could lead to misinter-
pretations. We will see an example shortly.

3 Parse Trees are Deduction Trees

We now present a formal definition of when a terminal string w matches a
string γ. We write:

[r]X −→ γ production r maps non-terminal X to string γ
w : γ terminal string w matches string γ

The second judgment is defined by the following four simple rules.
Here we use string concatenation, denoted by juxtaposing to strings. Note
that the empty string ε satisfies γ ε = ε γ = γ and that concatenation is
associative (mathematically speaking, strings form a monoid).

ε : ε
P1

w1 : γ1 w2 : γ2

w1w2 : γ1 γ2
P2

a : a
P3

[r]X −→ γ
w : γ

w : X
P4(r)

We have labeled the fourth rule by the name of the grammar produc-
tion, while the others remain unlabeled. This allows us to omit the actual
grammar rule from the premises since it can be looked up in the grammar
by its name. Then the earlier derivation of [[][]] becomes the following
deduction.

[: [
P3

[: [
P3

ε : ε
P1

ε : S
P4(emp)

] :]
P3

[] : [S]
P 2
2

[] : S
P4(pars)

...
[] : S

[][] : S S
P2

[][] : S
P4(dup)

] :]
P3

[[][]] : [S]
P 2
2

[[][]] : S
P4(pars)

LECTURE NOTES SEPTEMBER 14, 2010

Context-Free Grammars L7.5

The one omitted subdeduction (marked
...) is identical to its sibling on

the left. We observe that the labels have the same structure as the parse
tree, except that it is written upside-down. Parse trees are therefore just
deduction trees.

4 CYK Parsing

The rules above that formally define when a terminal string matches an
arbitrary string can be used to immediately give an algorithm for parsing.

Assume we are given a grammar with start symbol S and a terminal
string w0. Start with a databased of assertions ε : ε and a : a for any
terminal symbol occurring in w. Now arbitrarily apply the given rules in
the following way: if the premises of the rules can be matched against the
database, and the conclusion w : γ is such that w is a substring of w0 and
γ is a string occurring in the grammar, then add w : γ to the database.
The side conditions are used to focus the parsing process to the facts that
may matter during the parsing (i.e., that talk about the actual input string
w being parsed and that fit to the actual grammatical productions).

We repeat this process until we reach saturation: any further application
of any rule leads to conclusion are already in the database. We stop at this
point and check if we see w0 : S in the database. If yes, we succeed; if not
we fail.

This process must always terminate, since there are only a fixed number
of substrings of the grammar, and only a fixed number of substrings of the
query string w0. In fact, only O(n2) terms can ever be derived if the gram-
mar is fixed and n = |w|. Using a meta-complexity result by Ganzinger
and McAllester [GM02] we can obtain the complexity of this algorithm as
the maximum of the size of the saturated database (which is O(n2)) and
the number of so-called prefix firings of the rule. We count this by bounding
the number of ways the premises of each rule can be instantiated, when
working from left to right. The crucial rule is

w1 : γ1 w2 : γ2
w1w2 : γ1 γ2

P2

There areO(n2) substrings, so there areO(n2) ways to match the first premise
against the database. Since w1w2 is also constrained to be a substring of
w0, there are only O(n) ways to instantiate the second premise, since the
left end of w2 in the input string is determined, but not its right end. This
yields a complexity of O(n3).

LECTURE NOTES SEPTEMBER 14, 2010

L7.6 Context-Free Grammars

The algorithm we have just presented is an abstract form of the Cocke-
Younger-Kasami (CYK) parsing algorithm invented in the 1960s. It as-
sumes the grammar is in a normal form, and represents substring by their
indices in the input rather than directly as strings. However, its general
running time is still O(n3).

As an example, we apply this algorithm using an n-ary concatenation
rule as a short-hand. We try to parse [[][]] with our grammar of match-
ing parentheses. We start with three facts that derive from rules P1 and P3.
When working forward it is important to keep in mind that we only infer
facts w : γ where w is a substring of w0 = [[][]] and γ is a substring of
the grammar.

1 [: [
2] :]
3 ε : ε

4 ε : S P4(emp) 3
5 [] : [S] P 2

2 1, 4, 2
6 [] : S P4(pars) 5
7 [][] : S S P2 6, 6
8 [][] : S P4(dup) 7
9 [[][]] : [S] P 2

2 1, 8, 4
10 [[][]] : S P4(pars) 9

A few more redundant facts might have been generated, such as [] : S S,
but otherwise parsing is remarkably focused in this case. From the justifi-
cations in the right-hand column is it easy to generate the same parse tree
we saw earlier.

5 Recursive Descent Parsing

For use in a programming language parser, the cubic complexity of the
CYK algorithm is unfortunately unacceptable. It is also not so easy to
discover potential ambiguities in a grammar or give good error messages
when parsing fails. What we would like it an algorithm that scans the in-
put left-to-right (because that’s usually how we design our languages!) and
works in one pass through the input.

Unfortunately, some languages that have context-free grammars cannot
be specified in the form of a grammar satisfying the above specification.
So now we turn the problem around: considering the kind of parsing al-
gorithms we would like to have, can we define classes of grammars that
can be parsed with this kind of algorithm? The other property we would

LECTURE NOTES SEPTEMBER 14, 2010

Context-Free Grammars L7.7

like is that we can look at a grammar and decide if it is ambiguous in the
sense that there are some strings admitting more than one parse tree. Such
grammars should be rejected as specifications for programming languages.
Fortunately, the goal of efficient parsing and the goal of detecting ambigu-
ity in a grammar work hand-in-hand: generally speaking, unambiguous
grammars are easier to parse.

We now rewrite our rules for parsing to work exclusively from left-
to-right instead of being symmetric. This means we do not use general
concatenation of strings that are split arbitrarily. Instead, we just consider
the left-most terminal or left-most non-terminal. We just prepend a single
non-terminal to the beginning of a string. This left non-terminal is then
the only part where we allow expansion by a production. We also have
to change the nature of the rule for non-terminals so it can handle a non-
terminal at the left end of the string.

ε : ε
R1

w : γ

aw : a γ
R2

[r]X −→ β
w : β γ

w : X γ
R3(r)

Rule R2 compares the first terminal a of the actual input string aw with
the first terminal a of the currently parsed expression aγ. For grammar
production [r]X → β, rule R3(r) generates or expands the righthand side
β for the left-most non-terminal X in the currently parsed expression Xγ.
Rule R3(r) uses the grammar production forward to produce the result β.
Of course, ultimately, the parse derivation will only be successful if the
compare rule R2 can also match the ultimately generated terminals in the
input and the generated parse expression.

At this point the rules are entirely linear (each rule has zero or one
premises, note that we count the static grammar productions [r]X → β
as part of the rule R3(r) here) and decompose the string left-to-right (we
only proceed by stripping away a terminal symbol a).

Rather than blindly using these rules from the premises to the conclu-
sions (which wouldn’t be analyzing the string from left to right), couldn’t
we use them the other way around from the desired conclusions to the
premisses? After all, we know what we are trying to get at. Recall that
we are starting with a given goal, namely to derive w0 : S, if possible, or
explicitly fail otherwise. Now could we use the rules in a goal-directed
way? The first two rules certainly do not present a problem. Using the
compare rules R1 and R2 from conclusions to premisses just successively
simplifies the strings by consuming the first token (or ε). But the expansion

LECTURE NOTES SEPTEMBER 14, 2010

L7.8 Context-Free Grammars

rule R3 presents a problem, since we may not be able to determine which
production we should use if there are multiple productions for a given non-
terminal X .

The difficulty then lies in the third rule: how can we decide which pro-
duction to use? Guessing which expansion β of X will enable us to parse
w as βγ could be quite difficult. Yet, we can turn the question around: for
which grammars can we always decide which grammar expansion r to use
for R3(r)?

We return to an example to explore this question. We use a simple gram-
mar for an expression language similar one to the one used in Lab 1. We
use id and num to stand for identifier and number tokens produced by the
lexer.

[assign] S −→ id = E ; S
[return] S −→ return E

[plus] E −→ E + E
[times] E −→ E * E
[ident] E −→ id
[number] E −→ num
[parens] E −→ (E)

As an example string, consider x = 3; return x;. After lexing, x and
3 are replace by tokens id("x") and num(3), which we write just as id and
num , for short.

If we always guess right, we would construct the following deduction
from the bottom to the top. That is, we start with the last line, either determine
or guess which rule to apply to get the previous line, etc. until we reach ε : ε
(successful parse) or get stuck (syntax error, or wrong guess).

ε : ε
; : ;

id ; : id ;
id ; : E ; [ident]

return id ; : return E ;
return id ; : S [return]

; return id ; : ; S
num ; return id ; : num ; S
num ; return id ; : E ; S [number]

= num ; return id ; : = E ; S
id = num ; return id ; : id = E ; S
id = num ; return id ; : S [assign]

LECTURE NOTES SEPTEMBER 14, 2010

Context-Free Grammars L7.9

This parser (assuming all the guesses are made correctly) evidently tra-
verses the input string from left to right. It also produces a left-most deriva-
tion, which we can read off from this deduction by reading the right-hand
side from the bottom to top.

We have labeled the inference that potentially involved a choice with
the chosen name of the chosen grammar production. If we restrict our-
selves to look only at the first token in the input string on the left, which
ones could we have predicted correctly?

In the last line (the first guess we have to make) we are trying to parse an
S and the first input token is id . There is only one production that would
allow this, namely [assign]. So we do not have to guess but just choose
deterministically based on the first token id .

In the fourth-to-last line (our second potential choice point), the first
token is num and we are trying to parse an E. It is tempting to say that this
must be the production [number]. But this is wrong! For example, the string
num + id also starts with token num , but we must use production [plus]
to parse it correctly. This is bad news, because we cannot decide which
production rule to use based on the first token.

In fact, no input token can disambiguate expression productions for us
here. The problem is that the rules [plus] and [times] are left-recursive, that
is, the right-hand side of the production starts with the non-terminal on
the left-hand side. But this non-terminal could produce a lot of different
strings. We can never decide by a finite token look-ahead which rule to
choose, because any token which can start an expression E could arise via
the [plus] and [times] productions. We cannot decide if we will need the
[plus] or [times] production just based on the first token before we have fully
understood what the first E is. Yet E could have unbounded length.

In the next lecture we develop some techniques for analyzing the gram-
mar to determine if we can parse its language by searching for a deduc-
tion without backtracking, if we are permitted some lookahead to make
the right choice. This will also be the key for parser generation, the process
of compiling a grammar specification to a specialized efficient parser.

References

[App98] Andrew W. Appel. Modern Compiler Implementation in ML. Cam-
bridge University Press, Cambridge, England, 1998.

[Cho59] Noam Chomsky. On certain formal properties of grammars. In-
formation and Control, 2(2):137–167, 1959.

LECTURE NOTES SEPTEMBER 14, 2010

L7.10 Context-Free Grammars

[GM02] Harald Ganzinger and David A. McAllester. Logical algorithms.
In P.Stuckey, editor, Proceedings of the 18th International Conference
on Logic Programming, pages 209–223, Copenhagen, Denmark,
July 2002. Springer-Verlag LNCS 2401.

[SSP95] Stuart M. Shieber, Yves Schabes, and Fernando C. N. Pereira. Prin-
ciples and implementation of deductive parsing. J. Log. Program.,
24(1&2):3–36, 1995.

LECTURE NOTES SEPTEMBER 14, 2010

	Introduction
	Context-Free Grammars
	Parse Trees are Deduction Trees
	CYK Parsing
	Recursive Descent Parsing

