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1 Introduction

In this lecture we discuss the process of instruction selection, which typ-
cially turns some form of intermediate code into a pseudo-assembly lan-
guage in which we assume to have infinitely many registers called “temps”.
We next apply register allocation to the result to assign machine registers
and stack slots to the temps before emitting the actual assembly code. Ad-
ditional material regarding instruction selection can be found in the text-
book [App98, Chapter 9].

2 A Simple Source Language

We use a very simple source language where a program is just a sequence
of assignments terminated by a return statement. The right-hand side of
each assignment is a simple arithmetic expression. Later in the course we
describe how the input text is parsed and translated into some intermediate
form. Here we assume we have arrived at an intermediate representation
where expressions are still in the form of trees and we have to generate in-
structions in pseudo-assembly. We call this form IR Trees (for “Intermediate
Representation Trees”).

We describe the possible IR trees in a kind of pseudo-grammar, which
should not be read as a description of the concrete syntax, but the recursive
structure of the data.
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L2.2 Instruction Selection

Programs ~s ::= s1, . . . , sn sequence of statements

Statements s ::= t = e assignment
| return e return, always last

Expressions e ::= c integer constant
| t temp (variable)
| e1 ⊕ e2 binary operation

Binops ⊕ ::= + | − | ∗ | / | . . .

3 Abstract Assembly Code

For our very simple source, we use an equally simple target. Our target
language has fixed registers and also arbitrary temps, which it shares with
the IR trees.

Programs ~i ::= i1, . . . , in

Instructions i ::= d← s
| d← s1 ⊕ s2

Operands d, s ::= r register
| c immediate (integer constant)
| t temp (variable)

We use d to denote operands of instructions that are destinations of op-
erations and s for sources of operations. There are some restrictions. In
particular, immediate operands cannot be destinations. More restrictions
arise when memory references are introduced. For example, it may not be
possible for more than one operand to be a memory reference.

4 Maximal Munch

The simplest algorithm for instruction selection proceeds top-down, travers-
ing the input tree and recursively converting subtrees to instruction se-
quences. For this to work properly, we either need to pass down or return a
way to refer to the result computed by an instruction sequence. We define
two functions (which are computed together):

ě a sequence of instructions implementing e “write down code”
ê operand which refers to the value computed by e “get value up”
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Instruction Selection L2.3

e ě ê

c · c

t · t

e1 ⊕ e2 ě1, ě2, t← ê1 ⊕ ê2 t (t new)

If our target language has more specialized instructions we can easily
extend this translation by matching against more specialized patterns and
matching against them first. For example: if we want to implement multi-
plication by the constant 2 with a left shift, we would add one or two pat-
terns for that. We also add a pattern that implements multiplication by the
constant 7 with a shift and subtract. These optimizations are called strength
reduction, because they reduce the strength of the operators, which can
save time, sometimes even at the expense of extra instructions.

e ě ê

c · c

t · t

2 ∗ e ě, t← ê� 1 t (t new)
e ∗ 2 ě, t← ê� 1 t (t new)
7 ∗ e ě, t← ê� 3, t← t− ê t (t new)
e ∗ 7 ě, t← ê� 3, t← t− ê t (t new)

e1 ⊕ e2 ě1, ě2, t← ê1 ⊕ ê2 t (t new)

Since ∗ is a binary operation, the patterns for e now need to be matched
in order so as to avoid ambiguity and to obtain the intended more efficient
implementation. If we always match the deepest pattern first at the root of
the expression, this algorithm is called maximal munch.

Now the translation of statements is straightforward. We write š for the
sequence of instructions implementing statement s. We assume that there
is a special return register rret so that a return instruction is translated to a
move into the return register.

s š

t = e ě, t← ê

return e ě, rret ← ê

Now a sequence of statements constituting a program is just translated
by appending the sequences of instructions resulting from their transla-
tions. Maximal munch is easy to implement (especially in a language with
pattern matching) and gives acceptable results in practice.
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L2.4 Instruction Selection

5 Optimal Instruction Selection

If we have a good cost model for instructions, we can often find better trans-
lations if we apply dynamic programming techniques to construct instruc-
tion sequences of minimal cost, from the bottom of the tree upwards. In
fact, one can show that we get “optimal” instruction selection in this way if
we start with tree expressions.

On modern architectures it is very difficult to come up with realistic
cost models for the time of individual instructions. Moreover, these costs
are not additive due to features of modern processors such as pipelining,
out-of-order execution, branch predication, hyperthreading, etc. Therefore,
optimal instruction selection is more relevant when we optimize code size,
because then the size of instructions is not only unambiguous but also ad-
ditive. Since we do not consider code-size optimizations in this course, we
will not further discuss optimal instruction selection.

6 x86-64 Considerations

Assembly code on the x86 or x86-64 architectures is not as simple as the
assumptions we have made here, even if we are only trying to compile
straight-line code. One difference is that the x86 family of processors has
two-address instructions, where one operand will function as a source as
well as destination of an instruction, rather than three-address instructions
as we have assumed above. Another is that some operations are tied to spe-
cific registers, such as integer division, modulus, and some shift operations.
We briefly show how to address such idiosyncracies.

To implement a three-address instruction we replace it by a move and a
two-address instruction. For example:

3-address form 2-address form x86-64 assembly
d← s1 + s2 d← s1 MOVL s1, d

d← d + s2 ADDL s2, d

Here we use the GNU assembly language conventions where the destina-
tion of an operation comes last, rather than the Intel assembly language
format where it comes first.

In order to deal with operations tied to particular registers we have to
make similar transformations. It is important to keep the live range of these
registers short, so they interfere with other registers as little as possible, as
explained in Lecture 3 on register allocation. As an example, we consider
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Instruction Selection L2.5

integer division. On the left is the simple three-address form. In the middle
is a reasonable approximation in two-address form. On the right is the
actual x86 assembly.

3-address form 2-address form (approx.) x86-64 assembly
d← s1 / s2 %eax← s1 MOVL s1,%eax

CLTD

%eax← %eax / s2 IDIVL s2
%edx← %eax % s2
d← %eax MOVL %eax, d

Here, CLTD sign-extends %eax into %edx. In the Intel Instruction Set Refer-
ence, this instruction is called CDQ. This is one of relatively few places where
the Intel and GNU assembler names of instructions differ. The IDIVL s2 in-
struction divides the 64-bit number represented by [%edx,%eax] by s2, stor-
ing the quotient in %eax and the remainder in %edx. Note that the IDIVL

instruction will raise a division by zero exception when s2 is 0, or if there is
an overflow (if we divide the smallest 32 bit integer by −1).
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