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Abstract. Synthesizing controllers that enforce both safety and actu-
ator constraints is a central challenge in the design of cyber-physical
systems. While zonotope-based reachability methods deliver impressive
scalability, only parts of these methods have been formalized. Conse-
quently, no practical tool provides a fully verified end-to-end pipeline,
leaving an assurance gap for safety-critical systems. Deductive verifica-
tion with the hybrid system prover KeYmaera X could, in principle,
resolve this assurance gap, but the high-dimensional set representations
required for reachability analysis overwhelm its reasoning based on quan-
tifier elimination. To close this gap, we develop a verification pipeline that
combines scalability with formal rigor by computing control-invariant
sets using high-performance reachability algorithms and verifying them
using novel logical proof rules. Computationally intensive zonotope con-
tainment tasks are offloaded to efficient numerical backends, which return
compact witnesses that KeYmaera X can validate rapidly. We show the
practical utility of our approach through representative case studies.

Keywords: deductive verification, reachability analysis, zonotopes, robust con-
trol invariant sets, differential dynamic logic

1 Introduction

Autonomous vehicles, aircraft, and other cyber-physical systems increasingly
demand advanced control algorithms while never violating stringent safety spec-
ifications. Control-envelope synthesis has become a central problem at the in-
tersection of formal verification and control theory [8,30]. Rather than synthe-
sizing a single monolithic controller, in control-envelope synthesis, the goal is to
compute a set of control inputs whose execution traces satisfy a formal safety
specification. As a result, control envelopes enable decoupling safety from per-
formance: the precomputed control envelope guarantees that every admissible
input meets the specification, while at runtime an optimization routine can freely
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sample concrete control signals with respect to a secondary performance objec-
tive. A promising recent line of work [47] frames control envelope synthesis as
the computation of the maximal robust control invariant sets (RCI) [10,45,41]—
the set of states from which at each sampling instant, there exists a control
action that keeps the system in it — thereby guaranteeing safety by construc-
tion. Building on this insight, the authors rely on efficient over-approximations
of reachable sets as the main computational workhorse. The efficiency of their
computations is achieved by symbolic set representations, e.g., zonotopes [4],
support functions [2,54], or ellipsoids, that are either closed or can be tightly
over-approximated under Minkowski addition and affine transformations, real-
izing an efficient computation of the reachable set [3]. However, despite their
scalability, this reachability-based approach raises two concerns in safety-critical
fields:

1. Floating-point uncertainty: Current reachability tools perform every oper-
ation with finite precision, so the end result does not have any end-to-end
guarantee that rounding errors have not led to a violation of the safety spec-
ification.

2. Formally unverified implementations: The highly-tuned numerical kernels
are optimized for speed, not transparency. Proving the correctness of their
implementations is prohibitively expensive.

Mission-critical control systems — like aircraft, autonomous robots, or self-
driving cars — would benefit greatly from numerical pipelines that provide
end-to-end correctness guarantees. One way to obtain such rigorous guarantees
is to use a theorem prover like KeYmaera X [22] that implements differential
dynamics logic (dL) [38,39], a specialized logic designed for specification and
deductive verification of cyber-physical systems. Unlike numerical reachability
tools [5,18,21], which aim to provide fast but conservative over-approximations
of reachable sets, a theorem prover like KeYmaera X works with a symbolic
proof calculus whose goal is to construct fully machine-checkable proofs that a
control system satisfies its specification.

The key difficulty in combining techniques lies in the fundamental difference
of formalisms of dL and classical reachability analysis. In reachability analy-
sis, one works with highly specialized set representations that admit efficient
”push-button” computations, but at the price of modelling restrictions. In dL,
specifications are expressed as fully general semi-analytic formulas, resulting
in a much richer specification language. However, verification in this expressive
framework typically demands substantial interactive proof effort for complicated
systems. As a result, tasks that are easy on one side, such as scalable numer-
ical over-approximations, can be arduous on the other, such as manual proof
construction, and vice versa. Indeed, the theorem-proving and the reachabil-
ity analysis research fields have been developed largely in parallel, with little
cross-pollination.

Thus, our goal with this paper is to build a bridge between the two research
fields. Specifically, we formalize the control-envelope synthesis approach using
RCIs in dL. By doing so, we enable end-to-end correctness guarantees for an
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envelope computed by an independent numerical reachability tool. This inte-
gration of numerical reachability and deductive verification achieves something
neither approach could accomplish alone: efficient numerical computation paired
with fully rigorous, machine-checked correctness. During formalization, we en-
countered the following challenges:

1. Linking safety specifications to RCIs. Although RCIs are commonly used as
terminal constraints in model predictive control [12,49], no formal dL proof
has yet shown that an RCI necessarily satisfies a given safety specification.

2. Treatment of continuous dynamics. The algorithms utilized by reachability
tools are inherently delicate due to their numerical nature, therefore difficult
to implement directly in dL. Whilst the completeness of dL [40] essentially
guarantees that all true numerical properties can be deductively proven in
principle, more efficient methods are desired for practical problems.

3. Scalable verification of set containment. Rigorous proofs of set containment
— a central step in reachability analysis methods — involve large arithmetic
formulas that are often intractable to verify without specialized methods.
KeYmaera X uses a general decision procedure for real-arithmetic formulas,
which does not scale to large verification problems.

Our Contribution is to build a formal link between reachability analysis and
deductive verification by introducing a dL-based verification pipeline for control-
envelopes addressing all three challenges. Specifically, we provide a syntactic
derivation showing that if a control envelope is a robust control invariant set,
then it automatically satisfies the dL specification. In addition, we leverage Tay-
lor Models in dL, which is general enough to validate the invariant sets syn-
thesized by numerical methods while also having rigorous error bounds that
are deductively proven in dL. Finally, to overcome the scalability bottleneck in
set containment proofs, we focus on zonotopic control envelopes and extend a
known witness theorem for zonotope containment. This enables fast floating-
point search for a candidate witness followed by a lightweight certification in
KeYmaera X without relying on the slow, general-purpose decision procedure.

2 Preliminaries

This section first recalls the control envelope synthesis problem and then distills
the basic principles of differential dynamic logic that support our verification
approach. Let X0 ⊆ Rn denote the set of initial states, X ⊆ Rn the set of
admissible states and U ⊆ Rm the set of admissible control inputs. For a sampling
period ∆t > 0 the sampled-data system is given by the ordinary differential
equation (ODE)

x′(t) = f(x(t), u⌊t/∆t⌋), x0 ∈ X0, (1)

where the control input is zero-order-hold: for each integer k ≥ 0 we sample
at tk = k∆t a feedback law µ : Rn → Rm generates uk := µ(x(tk)), which is
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held constant on [tk, tk+1]. In the classical control, problem we seek to find one
concrete feedback law µ : Rn → Rm such that every control input is admissible,

µ(x(k∆t)) ∈ U , (2)

and every trajectory of the closed-loop system remains in the admissible set of
states,

x(t) ∈ X (3)

for all t ≥ 0. The control envelope problem lifts this problem from finding a
single control law to a family of laws. Concretely, we seek to construct a relation
E ⊆ Rn × Rm between states and control inputs such that every feedback law
whose sampled control inputs stay within the envelope, automatically satisfy the
admissibility and safety specifications.

In reachability analysis, one over-approximates ODE trajectories by a set-
valued abstraction, a perspective that yields efficient computational properties.
This viewpoint naturally leads to the following notion of reachable sets.

Definition 1 (Reachable set). Let ∆t > 0 be the sampling period and let
E ⊆ Rn × Rm be a control envelope: Ex := {u ∈ Rm | (x, u) ∈ E} denotes the
set of control outputs at x ∈ Rn. Given an initial set X0, the reachable set at
time t ∈ [0, ∆t] is the set of states

R
(
t,X0, E) :=

{
x ∈ Rn | ∃x0 ∈ X0∃u ∈ Ex0

: x = x0 +

∫ t

0

f(x(s), u)ds

}
.

The reachable set over the time interval [0, t] is the union of reachable sets, i.e.,

R
(
[0, t] ,X0, E) =

⋃
s∈[0,t]

R
(
s,X0, E).

The difficulty with reachable-set computations is that we can only evaluate
them over finite time horizons. How can we verify that a proposed control en-
velope E satisfies the safety property (3) for all t ≥ 0? The key is to use an
inductive argument: leverage finite-horizon reachable-set computations to estab-
lish an invariant that guarantees safety over an infinite time horizon. This leads
us to the definition of robust control invariants.

Definition 2 (Robust control invariant set [47]). A set S ⊂ Rn is called
a robust control invariant set if there exists a control envelope E ⊂ Rn × Rm

such that

1. One-step invariance: R
(
∆t,S, E) ⊆ S,

2. One-step safety: R
(
[0, ∆t] ,S, E) ⊆ X ,

3. Control-admissibility: ∀x0 ∈ S : Ex0
⊆ U .

The central claim is that the existence of a robust control invariant S and
its associated control envelope E , implies the safety property (3) for all t ≥ 0.
We prove this claim formally in Sec. 3.
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2.1 Differential Dynamic Logic

To formally verify a control envelope, we must first introduce differential dynamic
logic: its hybrid-program modeling language, its formula specification language,
and the proof calculus that enables deductive verification. For a more detailed
introduction the reader is referred to the literature [38,39].

Hybrid Programs. The language of hybrid programs is generated by the following
grammar, where x is a variable, e is a dL term, Q is a formula of first-order real
arithmetic:

α, β ::= x := e | x := ∗ | x′ = f(x) & Q | ?P | α;β | α ∪ β | α∗.

Continuous dynamics are modeled by x′ = f(x) & Q evolving in the domain Q.
Discrete dynamics are modeled by assignments x := e, which instantaneously
assign the term e to x and tests ?Q, which check whether the formula Q is
true in the current state. The nondeterministic assignment x := ∗ assigns an
arbitrary value to x. Throughout this paper we always use such assignments in
conjunction with a test ?Z(x), to model non-deterministic assignment restricted
to a formula Z(x). To combine the discrete and continuous fragments, there
are three program combinators: sequential composition α;β, which first runs α
then β; nondeterministic choice α ∪ β, which runs either α or β; and finally
nondeterministic repetitions α∗, which repeats α an arbitrary number of times.

Formulas. The formulas of dL are defined by the following grammar where e, g
are terms, P,Q are formulas, x is a variable, and α is a hybrid program:

P,Q ::= e ≤ g | ¬P | P ∧Q | P → Q | ∀xP | [α]P.

A dL formula combines first-order arithmetic with model operators that refers to
program behavior. Atomic formulas are inequalities e ≤ g between real-valued
terms. These atomic formulas are composed with Boolean connectives such as
¬, ∧ and →, together with the first-order quantifier ∀. Connectives such as ∨
and the quantifier ∃ are definable from these primitives. The only distinctive
construct is the box modality [α]P , which asserts that after every execution of
the hybrid program α the post-condition P holds.

2.2 Deductive Verification

Formula verification in dL is carried out within a sequent-calculus framework
built on sound axioms and inference rules. We write Γ ⊢ ∆ if the formula ∆ is
provable from the assumption Γ in the dL proof calculus. The calculus includes
propositional rules such as

Γ, P ⊢ Q,∆
→R

Γ ⊢ P → Q,∆

Γ ⊢ P,∆ Γ ⊢ Q,∆
∧R

Γ ⊢ P ∧Q,∆

The →R rule decomposes the implication P → Q by adding P in the list of
assumptions, while the ∧R rule splits the conjunctive formula P ∧ Q into two
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separate proof goals. Similarly, there are rules that decompose every other logical
construct. These inference rules are applied bottom-up, but provability is read
top-down: if the premises at the top of each rule are provable, then the conclusion
is provable as well.

Box modalities of hybrid program are treated with an axiomatic proof cal-
culus that strips away the program structure step by step, leaving simpler proof
goals. A few representative axioms illustrate this:

[α;β]P ↔ [α][β]P [ ; ]

[α ∪ β]P ↔ [α]P ∧ [β]P [∪]

The [ ; ] axiom unfolds the sequential composition into successive modalities,
while the [∪] axiom reduces the nondeterministic choice α ∪ β to a conjunction
over two branches.

Deductionx

⊢ Q1(x) . . . ⊢ Qn(x)

...
Γ ⊢ [α][β]φ

[ ; ]
Γ ⊢ [α;β]φ

→R ⊢ Γ → [α;β]φ

By combining the inference rules
with the axioms, we can derive new
theorems, and every step of the re-
sulting derivation can be mechan-
ically verified by a proof checker.
Transformation steps on logical con-
nectives and box modalities are ap-
plied until the renaming goal is
purely arithmetic. Then, we can in-
voke a trusted decision procedure,
such as quantifier elimination [19]. In the example, we first apply the propo-
sitional rule →R, then the [ ; ] axiom. After a few further transformation steps
we reach purely arithmetic formulas Q1(x), . . . , Qn(x), at which point we hand
the proof obligations to the trusted decision procedure, finishing the proof.

3 Control Envelope Verification Framework

In this section, we first formalize the control envelope synthesis problem from
Sec. 2 in dL. To do so, we first model sampled-data systems (1) as a hybrid
program. We can then state the safety property (3) formally in dL. Once these
components are formalized, we present several key theorems which, taken to-
gether, yield a deductive proof of the safety property. This allows us to take a
control envelope produced numerically and rigorously verify its adherence to the
specification.

3.1 Control Envelope Synthesis Problem in dL

We adopt the following conventions: for a function symbol h, let ∂th denote
syntactic partial derivative with respect to t, and we use ∇x to denote the
syntactic partial gradient with respect to x. We use ∥ · ∥∞ to denote the infinity
norm of Rn. In Sec. 2, we used a calligraphic font to denote semantic sets, e.g. E
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for the control envelope, S for the robust control invariant set, X0 for the set of
initial states, X for the safety set and U for the control constraint set. Hereafter,
we write the corresponding uppercase predicates, e.g. E(x, u), S(x, u), X0(x),
X(x) and U(u), to denote their syntactic formula counterparts in dL.

We now formulate sampled-data systems. Let x be the state vector, u the
control input, and E(x, u) a control envelope formula, and ∆t > 0 the sampling
period. We define the initialization, controller and plant components as follows:

init ≡ u := ∗; ?∃xE(x, u),

ctrl ≡ (?t = ∆t;u := ∗; ?E(x, u); t := 0 ) ∪ (?t ̸= ∆t),

plant ≡ {x′ = f(x, u), t′ = 1 & t ≤ ∆t}.

The controller nondeterministically chooses between two branches. If the current
time t has not yet reached the sampling period ∆t, it does nothing. Once the
sampling instant is reached, a new control action is chosen nondeterministically
from within the control envelope E based on the current state x. Note that
this controller is an abstraction of any concrete implementation. By isolating
only the aspects relevant to safety verification, we simplify reasoning in dL. Any
actual controller would, of course, adhere to additional performance criteria.
The plant is modeled by the differential equation x′ = f(x, u), t′ = 1 subject to
the constraint t ≤ ∆t to ensure a duration of evolution of at most ∆t. In dL,
differential equations are non-deterministic: the continuous evolution may stop
at any state that still satisfies the constraint t ≤ ∆t. The dL sampled-data system
for one sampling period is

sys ≡ ctrl; plant .

The corresponding dL closed-loop system is the nondeterministic repetition of
this program sys∗. Thus, the dL control envelope synthesis problem is to deter-
mine an envelope predicate E(x, u) such that the control-admissibility formula

∃xE(x, u) → U(u), (4)

and the closed-loop safety formula

X0(x) ∧ t = 0 → [init; sys∗]X(x) (5)

are valid, i.e., true in all states. These two formulas are the formalized counter-
parts to (2) and (3).

3.2 Deductive Verification of Control Envelopes

Having posed the control envelope synthesis problem in dL, we can take an
envelope computed by an unverified numerical tool, formalize its specification
in dL, and certify its correctness through an independent verification process.
When carrying out deductive verification, several key considerations arise: The
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control-admissibility formula (4) is purely a first-order statement over the re-
als, so it can be proved without invoking any of dL’s hybrid system axioms. In
contrast, the system-safety formula (5) is more challenging: it combines discrete
and continuous dynamics, a nondeterministic repetition, and may contain a high-
dimensional control envelope. To tackle this challenge for generic sampled-data
system, we present a systematic verification strategy. Specifically, we present a
sequence of theorems that, when composed, yield a rigorous proof of the desired
safety property. The following five theorems outline the high-level structure of
our argument:

1. Theorem 3.1: Relates closed-loop safety (5) to the invariance and safety
properties of robust control invariant sets.

2. Theorem 3.2: Connects finite-horizon box modalities for continuous systems
to Taylor models.

3. Theorem 3.3: A special case of Theorem 3.2 that establishes the RCI invari-
ance condition for zonotopic control envelopes.

4. Theorem 3.4: A special case of Theorem 3.2 used to establish the RCI safety
condition for zonotopic control envelopes.

5. Theorem 3.5: Connects the zonotope-containment problem to an efficiently
implementable witness-checking problem.

Detailed derivations and proofs of soundness for these theorems are provided in
[28].

The first theorem shows that, in dL, the invariance and safety property of
robust control invariants imply the closed-loop safety property (5):

Theorem 3.1. The following is a derived proof rule of dL:

E(x, u), t = 0 ⊢ [plant]X(x)

E(x, u), t = 0 ⊢ [plant](t = ∆t → ∃uE(x, u))

X0(x), t = 0 ⊢ [init; sys∗]X(x)

Informally, the bottom premise states that whenever an initial control-state
pair satisfies E(x, u), then, after one continuous evolution lasting ∆t, we can
choose a new control action to remain in E(x, u). The top premise encodes the
safety property: if the start in E(x, u), then we always remain in the safety
constraint X(x) after running the plant. The safety property is enforced con-
tinuously; not just at the sampling points. Taken together, these two properties
entail the safety of the closed-loop system for an arbitrary number of execution
steps. The premises are much easier to discharge, because they only involve or-
dinary differential equations. The two main challenges in proving the premises
in Theorem 3.1 are

1. constructing rigorous reachable set over-approximations,
2. efficiently discharging the resulting proof obligations, which involve large

arithmetic formulas.

We address the first challenge by introducing generalized Taylor models and
showing how they can be derived in dL. Before introducing Taylor models, we
briefly review the necessary background Picard iteration and interval arithmetic.
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Picard iteration Picard iteration is a classical technique that successively con-
structs polynomial approximations to the solutions of ordinary differential equa-
tions. They can be carried out to arbitrarily high order, resulting approximations
of whatever precision is required. Let h be a function symbol and let λ be a vari-
able vector such that ∥λ∥∞ ≤ 1. Further, let x′ = f(x) be an ODE system with
parameter-dependet initial value x0 = h(λ). The sequence of Picard iterates
(pk)k≥0 is recursively defined by

p0(t, λ) := h(λ), pk+1(t, λ) := h(λ) +

∫ t

0

f(pk(s, λ))ds, k ≥ 0.

Interval arithmetic. A foundational concept we are making use of to discharge
arithmetic proof obligations is interval arithmetic [37]. We write IQn to denote
the set of rational intervals in the n-dimensional vector space Qn. We write
I = [I, I] ∈ IQn, where I ∈ Qn and I ∈ Qn are the lower and upper bound
respectively. In order to simplify, notation we write

mid(I) :=
I+ I

2
,

rad(I) := I− I,

for an intervals mid-point and radius. For a variable x and concrete dL term e,
we write [e]

I
x to denote its interval evaluation with respect to the interval I.

Taylor models. Equipped with interval arithmetic and Picard polynomial ap-
proximations, we are now ready to define Taylor models in dL [11].

Definition 3 (Taylor models). Let p(t, λ) be a concrete dL term and I(t) a
dL interval. Then a dL Taylor model is a tuple (p, I) whose associated formula
is

TMp,I

(
x, λ, t

)
≡ I(t) ≤ x− p(t, λ) ≤ I(t).

For its derivative formula, we write

∂tTMp,I

(
x, λ, t

)
≡ ∂tI(t) < f(x)− ∂tp(t, λ) < ∂tI(t).

Theorem 3.2. Let (p, I) be a Taylor model. Let h be a function symbol and
X0(x) ≡ ∃λ (x = h(λ) ∧ ∥λ∥∞ ≤ 1). The following is a sound derived proof rule
of dL:

∃λ∃t(TMp,I

(
x, λ, t

)
∧ 0 ≤ t ≤ ∆t ∧ ∥λ∥∞ ≤ 1) ⊢ P (x)

X0(x) ⊢ ∃λ
(
TMp,I

(
x, λ, 0

)
∧ ∥λ∥∞ ≤ 1

)
TMp,I

(
x, λ, t

)
, 0 ≤ t ≤ ∆t, ∥λ∥∞ ≤ 1 ⊢ ∂tTMp,I

(
x, λ, t

)
X0(x), t = 0 ⊢ [x′ = f(x), t′ = 1 & t ≤ ∆t]P (x)
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Zonotope reachable set We now focus our attention on the zonotope case and set
out to prove premise 1 of Theorem 3.1. Our strategy is to successively rewrite the
proof goal until it is an instance of zonotope containment. Once in that form, a
lightweight numerical solver can supply a witness that one zonotope is contained
in the other.

Definition 4 (Zonotope). Let G be an n × p generator dL matrix, c an n
center dL vector, and let λ be a p dL vector. The zonotope formula associated
with ⟨c, G⟩ is given by

⟨c, G⟩(x) ≡ ∃λ
(
x = c+Gλ ∧ ∥λ∥∞ ≤ 1

)
.

In order to simplify arithmetic reasoning, our goal is to linearize the Picard
iterates. This helps us to over-approximate the reachable set at the time instance
∆t by a zonotope. We have the following theorem:

Lemma 3.1 (Linear interval abstraction). Let p(x) be a concrete dL poly-
nomial in x. Then, for the interval I ∈ IQn and the interval remainder

R =
[
p(x)− p(0)−∇xp(0)

⊤x
]I
x

the following formula is a sound axiom of dL:

I ≤ x ≤ I → ∃ξ(p(x) = p(0) +∇xp(0)
⊤x+mid(R) +

1

2
rad(R)ξ ∧ ∥ξ∥∞ ≤ 1).

Theorem 3.3 (Zonotope reachable set for discrete time instance). Let
(p, I) be a Taylor model of the ODE system x′ = f(x) & t ≤ ∆t. Let

R =
[
p(t, λ)− p(t, 0)−∇λp(t, 0)

⊤λ
][0,∆t]×[−1,1]n

(t,λ)

be the remainder of its linear interval abstraction. Finally, we define the dL
center vector and generator matrix

b := p(∆t, 0) + mid(I(∆t)) + mid(R),

H := [∇λp(∆t, 0),
1

2
rad(I(∆t)),

1

2
rad(R)].

Then, the following is a sound derived proof rule of dL:

⟨b, H⟩(x, u) ⊢ ⟨cx, Gx⟩(x, u)
⟨c, G⟩(x, u) ⊢ ∃λ

(
TMp,I

(
x, u, λ, 0

)
∧ ∥λ∥∞ ≤ 1

)
TMp,I

(
x, u, λ, t

)
, 0 ≤ t ≤ ∆t, ∥λ∥∞ ≤ 1 ⊢ ∂tTMp,I

(
x, u, λ, t

)
⟨c, G⟩(x, u), t = 0 ⊢ [plant] (t = ∆t → ∃u ⟨c, G⟩(x, u))

We now turn our attention to second premise in Theorem 3.1. Unlike the first
premise, which involves a single sampling instant, this condition must hold for
every t ∈ [0, ∆t]. In other words, we must enclose the entire time-tube of states
captured by R

(
[0, ∆t] ,X0, E). We tackle this problem by constructing a single

zonotope that encloses the reachable set at every time instant t ∈ [0, ∆t].
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Theorem 3.4 (Zonotope reachable set for time intervals). Let (p, I) be a
Taylor model for the ODE system x′ = f(x) & t ≤ ∆t. We define the remainder
polynomial

r(t, λ, ξ) := p(t, λ) + mid(I(t)) +
1

2
rad(I(t))⊤ξ − p(0, 0)−mid(I(0))

− ∂tp(0, 0) t− ∂t mid(I(t))
∣∣
t=0

t−∇λp(0, 0)
⊤λ− 1

2 rad(I(0))⊤ξ.

To bound its range over the domain J := [0, ∆t]×[−1, 1]n×[−1, 1]n, we introduce
the error interval

R := [ r(t, λ, ξ) ]
J
(t,λ,ξ) .

Finally, we define the dL center vector and generator matrix

b := p(0, 0) + mid(I(0)) + mid(R),

H := [∂tp(0, 0) + ∂t mid(I(t))|t=0, ∇λp(0, 0),
1

2
rad(I(0)),

1

2
rad(R)].

Then, the following is a sound derived proof rule of dL:

⟨b, H⟩(x) ⊢ X(x)

⟨c, G⟩(x, u) ⊢ ∃λ
(
TMp,I

(
x, u, λ, 0

)
∧ ∥λ∥∞ ≤ 1

)
TMp,I

(
x, u, λ, t

)
, 0 ≤ t ≤ ∆t, ∥λ∥∞ ≤ 1 ⊢ ∂tTMp,I

(
x, u, λ, t

)
⟨c, G⟩(x, u), t = 0 ⊢ [plant]X(x)

Witness checks for arithmetic goals. Recall that our earlier theorems translate
the reachability problem into a single question of zonotope containment. In prac-
tice, the zonotopes that bound control envelopes usually involve on the order of
ten to twenty generators. Consequently, the resulting formulas can become quite
large. A straightforward quantifier-elimination procedure is not a good fit for this
problem, because its computational costs are prohibitive. A common approach
in reachability analysis is to invoke a witness theorem [46, Cor. 4]: for zonotopes
⟨c, G⟩(x), ⟨b, H⟩(x) the containment

∀x
(
⟨c, G⟩(x) → ⟨b, H⟩(x)

)
holds whenever one can find a matrix Γ and vector β that satisfy

HΓ = G, b− c = Hβ, ∥(Γ, β)∥∞ ≤ 1. (6)

These linear formulas define a witness (Γ, β), which can be computed with an
efficient linear program. To obtain a rigorous proof, we must produce an exact
witness. That means solving the linear program with exact rational arithmetic
— an operation that is orders of magnitude slower than solving with floating-
point numbers. Instead of insisting on exact equality, we weaken the witness
condition slightly, allowing for small perturbations. These relaxed conditions
can be solved efficiently in floating-point arithmetic with a numerical linear
programming solver and then rationalized with the residual margin ensuring the
conditions still hold.
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Theorem 3.5 (Zonotope containment). The following is a derived proof
rule of dL:

⊢ HH+ = I
⊢ b− c = Hβ

⊢ ∥HΓ −G∥∞ ≤ ε

⊢ ∥(Γ, β)∥∞ ≤ 1− ε ∥H+∥∞
⟨c, G⟩(x) ⊢ ⟨b, H⟩(x)

Equipped with Theorem 3.1 to Theorem 3.5, we have all the necessary in-
gredients to carry out an end-to-end verification of a concrete system.

4 Evaluation

In this section, we compute the control envelopes of two examples and demon-
strate how to verify them using the theorem from Sec. 3. The key challenge here
is to handle the different representations that are used in reachability tools and
the theorem prover KeYmaera X.

To compute RCI sets for sampled-data systems, we use the approach by
Schäfer et al. [47]. The authors represent both the RCI and over-approximations
of the reachable sets as zontopes. Using the witness conditions (6), the one-
step invariance, the one-step safety and control-admissibility in Def. 2 are for-
mulated as constraints in an optimization problem returning an RCI set with
maximum volume. In order to verify the envelope in dL’s formalism, we need a
post-processing step: we rationalize center vector and generator matrix of the
output zonotopes4. Then, we compute a provably correct dL Taylor model us-
ing the approach implemented in KeYmaera X5. Finally, we verify the zonotope
containment.

4.1 Double Integrator

The dynamics of the double integrator are governed by the following differential
equations [25, Sec. V.A]:

x′
1 = x2 + w1,

x′
2 =

1

m
u+ w2,

where the system states are the position x1 and the velocity x2 of the point-
mass, the system input is the force u = F , and the weight of the point-mass
is m = 1kg. The state constraints are |x1| ≤ 1m and |x2| ≤ 1m/s, the input

4 A suitable operator is implemented in the MATLAB function rat, see https://de.
mathworks.com/help/matlab/ref/rat.html.

5 https://github.com/LS-Lab/KeYmaeraX-release/blob/master/keymaerax-core/

src/main/scala/org/keymaerax/btactics/TaylorModel.scala

https://de.mathworks.com/help/matlab/ref/rat.html
https://de.mathworks.com/help/matlab/ref/rat.html
https://github.com/LS-Lab/KeYmaeraX-release/blob/master/keymaerax-core/src/main/scala/org/keymaerax/btactics/TaylorModel.scala
https://github.com/LS-Lab/KeYmaeraX-release/blob/master/keymaerax-core/src/main/scala/org/keymaerax/btactics/TaylorModel.scala
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constraint is |u| ≤ 1N, and the set of disturbances is w1 ∈ [−0.1, 0.1]m/s and
w2 ∈ [−0.1, 0.1]m/s2. The sampling time is ∆t = 0.1 s. In dL, we use a slightly
enlarged initial condition given by the formula

X0(x, u) ≡ ∃λ
(
x1 =

11

10
λ1 ∧ x2 =

11

10
λ2 ∧ u =

11

10
λ3 ∧ ∥λ∥∞ ≤ 1

)
.

By Picard iteration we obtain the following polynomial approximation

px1(t, λ) = λ1 + tλ2 +
t2

2
λ3,

px2
(t, λ) = λ2 + tλ3,

pu(t, λ) = λ3.

With interval arithmetic we then obtain the following provable error bounds:

Ix1
(t) = −101020 · 10−11t Ix1(t) = 101020 · 10−11t,

Ix2
(t) = −10−6t Ix2

(t) = 10−6t,

Iu(t) = −10−6t Iu(t) = 10−6t.

Together, the polynomial p and the error interval I(t) yield the Taylor model
(p, I) on [0, ∆t]. We numerically compute an RCI set and, using the Taylor
model, check the premises of Theorem 3.3 and Theorem 3.4 (See Fig. 1a). Note
that, although we visually verify containment here, a formal proof can be derived
directly by applying Theorem 3.5.

4.2 Controlled Jet Engine

Next, we consider the Moore-Greitzer model of a jet engine [33,40] whose dy-
namics are governed by

x′
1 = −x2 −

3

2
x2
1 −

1

2
x3
1 + w,

x′
2 = u,

(7)

where the system states are the mass flow x1 and the pressure rise x2. The state
constraints are |x1| ≤ 0.2 and |x2| ≤ 0.2, the input constraint is |u| ≤ 0.3, and
the set of disturbances is w ∈ [−0.025, 0.0.025]. Measurements are taken with
a sampling time of ∆t = 0.1 time units. Computing the associated dL Taylor
model with conservative initial conditions

X0(x, u) ≡ ∃λ
(
x1 =

3

10
λ1 ∧ x2 =

3

10
λ2 ∧ u =

3

10
λ3 ∧ ∥λ∥∞ ≤ 1

)
yields the following provable polynomial approximation

px1
(t, λ) = λ1 − tλ2 +

3t

2
λ2
1 −

t2

2
λ3 −

3t2

2
λ1λ2 −

t

2
λ3
1,

px2(t, λ) = λ2 + tλ3,

pu(t, λ) = λ3,
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with error bounds

Ix1
(t) = −28605705206 · 10−11t Ix1

(t) = 27585076206 · 10−11t,

Ix2
(t) = −10−6t Ix2(t) = 10−6t,

Iu(t) = −10−6t Iu(t) = 10−6t.

Again, using the Taylor model (p, I), we can compute the zonotopes form The-
orem 3.3 and Theorem 3.4 (See Fig. 1b).

(a) Double integrator (b) Jet engine

Fig. 1: Comparison of the numerically computed robust control-invariant set
(blue), its Taylor-model reachability over-approximation after one sampling pe-
riod (red), and the safety region (gray).

5 Related Work

Reachability analysis. Reachability analysis itself can be categorized into several
techniques: simulation-based techniques [24], Hamilton-Jacobi techniques [16],
and set propagation techniques [3]. The disadvantage of simulation-based tech-
niques and Hamilton-Jacobi techniques is that they scale exponentially in the
number of continuous state variables, while many set propagation techniques
scale polynomially [3]. Because the main purpose of including reachability anal-
ysis into theorem proving is to deduce properties of complex dynamics with
potentially many continuous state variables, we will focus on set propagation
techniques. This technique is also currently predominantly used in the Interna-
tional Competition on Verifying Continuous and Hybrid Systems [6,23]. Further
advantages of set-based reachability analysis are that it can be fully automated
[55,54] and easily interpreted due to its resemblance with the numerical simula-
tion of systems.
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Computing Invariant Sets Using Reachability Analysis Computing invariant sets
has a rich history in control theory due to their many applications: they serve as
terminal regions in model predictive control [44] or are employed as part of super-
visory safety-filters in, e.g., learning-based control [36,53]. Since we aim at reduc-
ing conservatism, we focus on the computation of the largest invariant set, also
known as the maximal invariant set. The maximal invariant set can be obtained
using the standard set recursion introduced in [10,45]. However, this procedure
usually fails to terminate in finite time and the computational complexity of the
required set operations restricts the applicability to low-dimensional systems.

The latter also holds for algorithms for approximating the maximal invariant
set by gridding the sate space [14,15]. Thus, most approaches in the literature
formulate an optimization problem to compute a possibly large invariant set.

The most popular set representations of the invariant set are ellipsoids [17,35]
and polytopes [41,27,20,9]. Due to their low representation complexity, algo-
rithms using ellipsoids as the set representation scale better to higher-dimensional
systems at the cost of more conservative results. On the other hand, polytopic
invariant sets enable more flexibility and, thus, larger invariant sets while sacri-
ficing computational efficiency.

Level sets are an even more flexible representation of invariant sets that can
be computed using Hamilton-Jacobi reachability analysis [58,57] and control-
barrier functions [7,43,56]. To circumvent the exponential complexity of solving
the associated partial differential equation numerically (Hamilton-Jacobi reach-
ability analysis) or synthesizing the barrier certificate from simulations [7], the
computation of an invariant set can be relaxed into a (sequence of) semidef-
inite program(s) using sum-of-squares programming. However, an invariance-
enforcing controller must be designed prior to computing the invariant set [58,57]
or the approach suffers from poor scalability due to the large number of variables
of the semi-definite program [32,1].

The approaches reviewed above typically either consider discrete-time sys-
tems, e.g., [20,35] and, thus, do not check constraint satisfaction in between
sampling times, or enforce invariance for the continous-time dynamical system,
e.g., [7,9], which is unnecessarily conservative. As an alternative, invariant sets
for sampled-data systems have been characterized in [42]: sampled-data systems
are continuous-time systems that are controlled by a digital controller; simi-
lary, measurements are only taken at discrete points in time [36]. Crucially, the
system can leave the invariant set in between sampling times, which reduces
conservatism. This notion of invariance has been employed in [26] to introduce
so-called safe sets of linear systems. Since this approach represents the invariant
set as a zonotope, invariant sets of high-dimensional systems can be computed ef-
ficiently. This concept has been extended to ellipsoidal sets in [34] and nonlinear
systems in [48,47].

Deductive verification of control problems Differential dynamic logic (dL) has
been successfully applied in several control domains, including air traffic control,
train control, and ground robots to formally prove safety properties [13,29,31]. It
has also been employed for the deductive verification of control system stability
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[52,51]. The control-system meta-model has been extended to incorporate the
environment, with a focus on identifying conditions that prevent proofs of safety
from being invalidated by modeling errors [50]. In contrast, our work focuses
on a simplified controller-plant model and formalizes in dL the verification of
synthesized controllers by reducing closed-loop analysis to continuous-time safety
and discrete-time invariance.

The problem of control-envelope synthesis has been studied in the context
of dL before [8,30]. Both of these works approach the problem from a logical
perspective and do not leverage existing techniques and tools developed in the
field of reachability analysis field. By comparison, our work integrates these two
viewpoints by combining established numerical methods.

6 Conclusion

In this paper, we established a link between two traditionally separate research
fields: reachability analysis and theorem proving. We showed how zonotope-based
reachable-set computations can be encoded in the dL formalism and how a con-
trol envelope can be formally verified. Although the differing levels of represen-
tation between these tools posed nontrivial technical challenges, our case studies
demonstrate that these obstacles can be overcome. By combining the compu-
tational efficiency of reachability analysis with the deductive rigor of theorem
proving, we achieve a verification workflow that is both scalable and formally
sound. This work represents only the first step toward a more unified formal-
methods ecosystem. In future work, we plan to explore how reachability methods
can be even more tightly integrated, reducing the boundaries between research
fields.
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28. Hellwig, J., Schäfer, L., Qian, L., Platzer, A., Althoff, M.: From Zonotopes to
Proof Certificates: A Formal Pipeline for Safe Control Envelopes (Sep 2025). doi:
10.48550/arXiv.2509.20301

29. Jeannin, J.B., Ghorbal, K., Kouskoulas, Y., Gardner, R., Schmidt, A., Zawadzki,
E., Platzer, A.: Formal verification of ACAS X, an industrial airborne collision
avoidance system. In: 2015 International Conference on Embedded Software (EM-
SOFT). pp. 127–136 (Oct 2015). doi: 10.1109/EMSOFT.2015.7318268

30. Kabra, A., Laurent, J., Mitsch, S., Platzer, A.: CESAR: Control Envelope Syn-
thesis via Angelic Refinements. In: Finkbeiner, B., Kovács, L. (eds.) Tools and
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42. Raković, S., Fontes, F., Kolmanovsky, I.: Reachability and invariance for lin-
ear sampled–data systems. IFAC-PapersOnLine 50(1), 3057–3062 (2017). doi:
10.1016/j.ifacol.2017.08.675

43. Rauscher, M., Kimmel, M., Hirche, S.: Constrained robot control using control
barrier functions. In: IEEE/RSJ International Conference on Intelligent Robots
and Systems. pp. 279–285 (2016). doi: 10.1109/IROS.2016.7759067

44. Rawlings, J.B., Mayne, D.Q., Diehl, M.M.: Model Predictive Control: Theory,
Computation, and Design. Nob Hill Publishing, LLC (2022)

45. Rungger, M., Tabuada, P.: Computing robust controlled invariant sets of linear
systems. IEEE Transactions on Automatic Control 62(7), 3665–3670 (2017). doi:
10.1109/TAC.2017.2672859

46. Sadraddini, S., Tedrake, R.: Linear Encodings for Polytope Containment Problems.
In: 2019 IEEE 58th Conference on Decision and Control (CDC). pp. 4367–4372
(Dec 2019). doi: 10.1109/CDC40024.2019.9029363
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