Change and Delay Contracts
for Hybrid System Component Verification*

Andreas Miiller!, Stefan Mitsch?, Werner Retschitzegger!', Wieland
Schwinger!, and André Platzer?

! Department of Cooperative Information Systems
Johannes Kepler University, Altenbergerstr. 69, 4040 Linz, Austria
{andreas.mueller,wieland.schwinger,werner.retschitzegger}@jku.at
2 Computer Science Department
Carnegie Mellon University, Pittsburgh PA 15213, USA
{smitsch,aplatzer}@cs.cmu.edu

Abstract. In this paper, we present reasoning techniques for a compo-
nent-based modeling and verification approach for hybrid systems com-
prising discrete dynamics as well as continuous dynamics, in which the
components have local responsibilities. Our approach supports compo-
nent contracts (i.e., input assumptions and output guarantees of inter-
faces) that are more general than previous component-based hybrid sys-
tems verification techniques in the following ways: We introduce change
contracts, which characterize how current values exchanged between com-
ponents along ports relate to previous values. We also introduce de-
lay contracts, which describe the change relative to the time that has
passed since the last value was exchanged. Together, these contracts can
take into account what has changed between two components in a given
amount of time since the last exchange of information. Most crucially,
we prove that the safety of compatible components implies safety of the
composite. The proof steps of the theorem are also implemented as a
tactic in KeYmaera X, allowing automatic generation of a KeYmaera X
proof for the composite system from proofs of the concrete components.

Keywords: component-based development, hybrid systems, formal verification

1 Introduction

Cyber-physical systems (CPS) feature discrete dynamics (e. g., autopilots in air-
planes, controllers in self-driving cars) as well as continuous dynamics (e.g.,
motion of airplanes or cars) and are increasingly used in safety-critical areas.
Models of such CPS (i. e., hybrid system models, e.g., hybrid automata [8], hy-
brid programs [23]) are used to capture properties of these CPS as a basis to

* This material is based on research sponsored by DARPA under agreement DARPA
FA8750-12-2-0291, and by the Austrian Science Fund (FWF) P28187-N31.

© Springer-Verlag GmbH Germany 2017
M. Huisman and J. Rubin (Eds.): FASE, LNCS 10202, pp. 1-18, 2017.
DOI: 10.1007/978-3-662-54494-5_8

http://dx.doi.org/10.1007/978-3-662-54494-5_8

analyze their behavior and ensure safe operation with formal verification meth-
ods. However, as the complexity of these systems increases, monolithic models
and analysis techniques become unnecessarily challenging.

Since complex systems are typically composed of multiple subsystems and
interact with other systems in their environment, it stands to reason to apply
component-based modeling and split the analysis into isolated questions about
subsystems and their interaction. However, approaches supporting component-
based wverification of hybrid system models are rare and differ strongly in the
supported class of problems (cf. Section. Component-based techniques for hy-
brid (I/O) automata are based on assume-guarantee reasoning (AGR) [3I69]
and focus on reachability analysis. Complementarily, hybrid systems theorem
proving provides proofs, which are naturally compositional [22] (improves mod-
ularity) and support nonlinear dynamics, but so far limit components [I5/16]
to contracts over constant ranges (e. g., speed of a robot is non-negative and at
most 10). Such contracts require substantial static independence of components,
which does not fit to dynamic interactions frequently found in CPS. For exam-
ple, one might show that a robot in the kitchen will not collide with obstacles in
the physically separated back yard, but nothing can be said about what happens
when both occupy the same parts of the space at different times to be safe. We,
thus, extend CPS contracts [I5/16] to consider change of values and timing.

In this paper, we introduce a component-based modeling and verification ap-
proach, which improves over previous approaches in the following critical ways.
We introduce change contracts to specify the change of a variable between two
states (e.g., current speed is at most twice the previous speed). We further
add delay contracts to capture the time delay between the states (e.g., current
speed is at most previous speed increased by accelerating for some time ¢). To-
gether, change and delay contracts make the hybrid (continuous-time) behavior
of a component available as a discrete-time measurement abstraction in other
components. That way, the joint hybrid behavior of a system of components
simplifies to analyzing each component separately for safety and for satisfying
its contracts (together with checks of compatibility and local side conditions).
The isolated hybrid behavior of a component in question is, thus, analyzed with
respect to simpler discrete-time abstractions of all other components in the sys-
tem. We prove that this makes safety proofs about components transfer to the
joint hybrid behavior of the composed system built from these compatible com-
ponents. Moreover, we automate constructing the safety proof of the joint hybrid
behavior from component proofs with a proof tactic in KeYmaera X [7]. This
enables a small-core implementation [4] of the theory we develop here.

2 Preliminaries: Differential Dynamic Logic

For specifying and verifying correctness statements about hybrid systems, we
use differential dynamic logic (dC) [I9)21], which supports hybrid programs as a
program notation for hybrid systems, according to the following EBNF grammar:

az=aq;f|aUf|a* |z:=0|z:=x]|(z)=61,....,2,, =0, & H)|7H

For details on the formal semantics of hybrid programs see [I9J21]. The sequential
composition «; 8 expresses that g starts after « finishes. The non-deterministic
choice a U 8 follows either a or 5. The non-deterministic repetition operator o*
repeats « zero or more times. Discrete assignment x := 6 instantaneously assigns
the value of the term 6 to the variable z, while x := x assigns an arbitrary value
to x. The ODE (2’ = 6 & H) describes a continuous evolution of z (2’ denotes
derivation with respect to time) within the evolution domain H. The test ?H
checks that a condition expressed by property H holds, and aborts if it does not.
A typical pattern z := *x;7a < x < b, which involves assignment and tests, is
to limit the assignment of arbitrary values to known bounds. Other control flow
statements can be expressed with these primitives [19].

To specify safety properties about hybrid programs, d provides modal op-
erator [a]. When ¢ is a d£ formula describing a state and « is a hybrid program,
then the d formula [o]¢ expresses that all states reachable by « satisfy ¢. The set
of dC formulas relevant in this paper is generated by the following EBNF gram-
mar (where ~ € {<,<,=,>,>} and 01, 65 are arithmetic expressions in +, —, -, /
over the reals):

pu=01~02 | 20| dAY[OVY [P Y [P Y| Vag|Txg|[a]d

Proof for properties containing non-deterministic repetitions often use in-
variants, representing a property that holds before and after each repetition.
Even though there is no unified approach for invariant generation, if a safety
property including a non-deterministic repetition is valid, an invariant exists.

We use V to denote a set of variables. F'V(.) is used as an operator on terms,
formulas and hybrid programs returning the free variables, whereas BV(.) is an
operator returning the bound variablesﬂ Similarly, V(.) = FV(.)UBV(.) returns
all variables occurring in terms, formulas and hybrid programs. We use d in
definitions and formulas to denote the set of all dC formulas. We use “—" to
define functions. f = (a — b) means that the (partial) function f maps argument
a to result b and is solely defined for a.

3 Hybrid Components with Change and Delay Contracts

In this section, we extend components (defined as hybrid programs) and their in-
terfaces [16] with time and delay concepts. Interfaces identify assumptions about
component inputs and guarantees about component outputs. We define what it
means for a component to comply with its contract by a dC formula expressing
safe behavior and compliance with its interface. And we define the compatibility
of component connections rigorously as dC formulas as well. The main result of
this paper is a proof showing that the safety properties of components trans-
fer to a composed system, given proofs of contract compliance, compatibility
and satisfaction of local side conditions. Users only provide a specification of

3 Bound variables of a hybrid program are all those that may potentially be written
to, while free variables are all those that may potentially be read [25].

Remote Control .. | Robot .. | Obstacle
ctrlye=d=x?|d—d-|<D [d~d ctrl, = (?Safe; s, == d) U (? ~Safe; s, = 0) Po ™ Pol crl, =5, =% 20<5,<$
plant,.. = skip plant, =p, =5, &t -t~ <¢ plant, =p, =s,
Cpyc = skip cp, = skip cp, = skip

Fig. 1: Components for a collision avoidance system with remote control

components, interfaces, and how the components are connected, and show proof
obligations about component contract compliance, compatibility and local side
conditions; system safety follows automatically.

To illustrate the concepts, we use a running example of a tele-operated robot
with collision avoidance inspired by [TOIT3], see Fig. a robot reads speed ad-
vice d at least every ¢ time units from a remote control (RC), but automatically
overrides the advice to avoid collisions with an obstacle that moves with an ar-
bitrary but bounded speed 0 < s, < S (e. g., a moving person). Two consecutive
speed advisories from the RC should be at most D apart (|[d —d~| < D). The
RC issues speed advice to the robot, but has no physical part. The obstacle
chooses a new non-negative speed but at most S and moves according to the
ODE p], = s,. The robot measures the obstacle’s position. If the distance is safe,
the robot chooses the speed suggested by the RC; otherwise, the robot stops.

The RC satisfies a change contract (two consecutive speed advisories are not
too far apart), while the obstacle and the robot satisfy delay contracts (their
positions change according to speed and how much time passed). Formal defini-
tions of these three components, their interfaces, and the respective contracts,
will be introduced step-by-step along the definitions in subsequent sections. A
comprehensive explanation of the running example can be found in [I7].

3.1 Specification: Components and Interfaces

Change components and interfaces specify what a component assumes about the
change of each of its inputs, and what it guarantees about the change on its out-
puts. To make such conditions expressible, every component will use additional
variables to store both the current and the previous value communicated along
a port. These so-called A-ports can be used to model jumps in discrete control,
and for measurement of physical behavior if the rate of change is irrelevant.

Components may consist of a discrete control part and a continuous plant,
cf. Def.[[] Def.[T] does not prescribe how control and plant are composed; the
composition to a hybrid program is specified later in Def.[]} We allow compo-
nents to be hierarchically composed from sub-components, so components list
the internally connected ports of sub-components.

Definition 1 (Component). A component C = (ctrl, plant, cp) is defined as
— ctrl is the discrete part without differential equations,
— plant is a differential equation (z) = 61,...,2), = 0,&H) forn € N,
— cp are deterministic assignments connecting ports of sub-components, and
— V(C;) £ V(ctrl) UV (plant) U V(cp), correspondingly for BV (C;)

If a component is atomic, i. e., not composed from sub-components, the port
connections c¢p are empty (skip statement of no effect). The variables of a com-
ponent are the sum of all used variables. We aim at components that can be
analyzed in isolation and that communicate solely through ports. Global shared
constants (read-only and thus not used for communication purposes) are included
for convenience to share common knowledge for all components in a single place.

Definition 2 (Variable Restrictions). A system of components Ci, ..., C, is
well-defined if
— global variables V&Pl qre read-only and shared by all components:
Vglobal) BV() @
—Vi#j.V(C)NV(C;) C Veebal sych that no variable of other components
can be read or written.

Consider the robot collision avoidance system. Its global variables are the
maximum obstacle speed S and the maximum difference D between two speed
advisories, i. e., V9obal = {8 D1 They can neither be bound in control nor plant,
cf. Def.]2} The RC component’s controller picks a new demanded speed d that
is not too far from the previous demanded speed d~. Since it is not composed
from sub-components the cp,. part is skip in Fig.m The obstacle’s controller
chooses any speed s, that does not exceed the maximum speed S. The plant
ODE p!, = s, describes how the position of the obstacle changes according to its
speed. Since the obstacle is an atomic component, cp, is skip, cf. Fig.

An interface defines how a component may interact with other components
through its ports, what assumptions the component makes about its inputs, and
what guarantees it provides for its outputs, see Def.[3]

Definition 3 (Admlssible Interface). An admissible interface I* for a com-
ponent C'is a tuple I (Vi“ in_jrout out /A /- pre) with
— Vin CV(C) and Vot C V(C) are dzsyomt sets of input- and output variables,

— V"N BV(C) =0, i. e., input variables may not be bound in the component,

— i VIn 5 dL s a function specifying exactly one formula per input variable
(i. e., input port), representing input requirements and assumptions,

— out ; yout s dr specifies output guarantees for output ports,

- Yo eV : V(r(w)) C (V(O)\ (VRuVver)) u{v} such that input for-
mulas are local to their port,

— VA =VATUVA CV(C) is a set of A-port variables of unconnected public
VAT C ViUVt and connected private VA, with VAN (VIR U Vo) =g,
so VAT NVA =,

- V= CV(CO) with V- N BV(C) = 0 is a read-only set of variables storing
the previous values of A-ports, disjoint from other interface variables V'~ N
(Vin U Jout VA) — [2)7

— pre : VA = V™ s a bijective function, assigning one variable to each A-
port to store its previous value.

The definition is accordingly for vector-valued ports that share multiple vari-
ables along a single port, provided that each variable is part of exactly one

vectorial port. This leads to multi-ports, which transfer the values of multiple
variables, but have a single joint output guarantee/input assumption over the
variables in the multi-port vector. Input assumptions are local to their port, i.e.,
no input formula can mention other input variables (which lets us reshuffle port
ordering) nor any output variables (which prevents cyclic port definitions). Not
all ports of a component need to be connected to other components; unconnected
ports simply remain input/output ports of the resulting composite system.

Considering our example, the RC interface ITAC from contains one output
port d in V°% where the robot can retrieve the demanded speed. The RC guar-
antees that the new demanded speed d will not deviate too far from the previous
speed d—, so |d — d~| < D. Since the current and the previous demanded speed
are related, d is a A-port in V2 with its previous value d~ in V'~ per pre.

n=({}, 0. {d},(d~|d—d | < D), {d} . {d},(d—~d7)) (1)
~ ~ M~ ——
Vin qin Y out rout vAa |V pre

3.2 Specification: Time and Delay

In a monolithic hybrid program with a combined plant for all components,
time passes synchronously for all components and their ODEs evolve for the
same amount of time. When split into separate components, the ODEs are split
into separate plants too, thereby losing the connection of evolving for identical
amounts of time. From the viewpoint of a single component, other plants reduce
to discrete abstractions through input assumptions on A-ports. These input as-
sumptions are phrased in terms of worst-case behavior (e. g., from the viewpoint
of the robot, the obstacle may jump at most distance S between measurements
because it lost a precise model). The robot’s ODE, however, still runs for some
arbitrary time, which makes the measurements and the continuous behavior of
the robot drift (i.e., robot and obstacle appear to move for different durations).
To address this issue, we introduce delay as a way of ensuring that the changes
are consistent with the time that passes in a component.

To unify the timing for all components of a system, we introduce a globally
synchronized time ¢ and a global variable ¢~ to store the time before each run
of plant. Both are special global variables, which cannot be bound by the user,
but only on designated locations specified through the contract, cf. Def.[d]

Definition 4 (Time). Let C;, i € N be any number of components with vari-
ables according to Def.[3. When working with delay contracts, we assume

— the global system time ¢ changes with constant rate t' =1,

— t~ is the initial plant time at the start of the current plant run,

— {t,t7} N BV (C;) =0, thus clocks t,t~ are not written by a component.

Let us continue our running example with the obstacle’s interface, which
has one output port (providing the current obstacle position) that uses the in-
troduced global time in its output property to restrict the obstacle’s position

relative to its previous position and maximum speed, i.e.,

12 = ({0 0o (oo = lpo —w | <5 (1= 1)), o). {05, (0o = 7).
NGNS \,A./ Y —_———
Vin rin V/ out rout 1% - pre

3.3 Proof Obligations: Change and Delay Contract

Contract compliance ties together components and interfaces by showing that a
component guarantees the output changes that its interface specifies under the
input assumptions made in the interface. Contract compliance further shows a
local safety property, which describes the component’s desired safe states. For
example, a safety property of a robot might require that the robot will not
drive too close to the last measured position of the obstacle. Together with the
obstacle’s output guarantee of not moving too far from its previous position,
the local safety property implies a system-wide safety property (e.g., robot and
obstacle will not collide), since we know that a measurement previously reflected
the real position. Contract compliance can be verified using KeYmaera X [7].

In order to make guarantees about the behavior of a composed system we use
the synchronized system time ¢ to measure the delay (¢t — t~) between controller
runs in delay contract compliance proof obligations, cf. Def.[5

Definition 5 (Contract Compliance). Let C be a component with its ad-
missible interface I° (cf. Def.@. Let formula ¢ describe initial states of C' and
formula ¢5¥¢ the safe states, both over the component variables V(C). The out-
put guarantees I1°"° = A, o ™" (v) extend safety to ¢ A IT°*. Change
contract compliance CC(C, IA) of C with A s defined as the dC formula:

d

cee,) =

&

¢ — [(A; ctrl; plant; in; cp)] (wsafe A IT™)

and delay contract compliance DC(C, I?) is defined as the dC formula:

def

DC(C,?) E t=1"Np — [(A;ctrl; ¢ :==¢; (¢ = 1, plant) ; in; cp)*](wsafe AII™)
where in & (v :=x; ?win(v)) forallv e vVin |
are (vectorial) assignments to input ports satisfying input assumptions 7" (v)

and A are (vectorial) assignments storing previous values of A-port variables:
de,

A pre(v) :=v for allv € VA .

The order of the assignments in both in and A is irrelevant because the
assignments are over disjoint variables and 7™ (v) are local to their port, cf.
Def.[3] The function pre can be used throughout the component to read the
initial value of a A-port. Since pre(v) € V= for all v € V4, Def. and Def.
require that the resulting initial variable is not bound anywhere outside A.

This notion of contracts crucially changes compared to [16] with respect to
where ports are read and how change is modeled: reading from input ports at

the beginning of a component’s loop body (i. e., before the controller runs) as in
[16] may seem intuitive, but it would require severe restrictions to a component’s
plant in order to make inputs and plant agree on duration. Instead, we prepare
the next loop iteration at the end of the loop body (i.e., after plant), so that
actual plant duration can be considered for computing the next input values.

Example: Change Contract We continue the collision avoidance system with
a change contract according to Def. for the RC from Fig. The difference
between speed advisories should be non-negative, whereas the output port’s pre-
vious value d~ is bootstrapped from the current demanded speed d to guarantee
contract compliance even without component execution, since non-deterministic
repetitions can execute 0 times, so ¢, = D > 0Ad = d~. The RC guarantees

that consecutive speed advisories are at most D apart, see ITS" (¢3¢ = T).

Ore = [(d7 i =d;d:=%;7 ‘d — d_’ < D; skip; skip; skip)”] (‘d — d_’ < D)
~~ M~~~ —,.-—
Are ctrly. plant,. ing CPre ey
(2)

We verified the RC contract using KeYmaera X and thus know that the
component is safe and complies with its interface. Compared to contracts with
fixed ranges as in approaches [316], we do not have to assume a global limit
for demanded speeds d, but consider the previous advice d~ as a reference value
when calculating the next speed advice.

Example: Delay Contract Change in obstacle position depends on speed and
on how much time passed. Hence, we follow Def.[5] to specify the obstacle delay
contract (3)). For simplicity, assume that maximum speed S is non-negative and
the obstacle stopped initially. As before, the previous position p, is bootstrapped
from the current position p,, so ¢, =5 > 0Ap, = p; A s, = 0. We model an
adversarial obstacle, which does not care about safety. Thus, the output property
only guarantees that positions change at most by S- (¢t — ¢~), which is a discrete
abstraction of the obstacle’s physical movement. Such an abstraction can be
found by solving the plant ODE or from differential invariants [24]. Again, we
verified the obstacle’s contract compliance using KeYmaera X.
A, ctrl, plant,
—_—— —
t=1t"ANdo = [(p) :=po;50:=%;7(0< 5, < S9);t™ :=t;{t' =1,p, = s, };
skip; skip)*](|po —p(j| <S- (t — tf))
——

N, cp, IIout

3.4 Proof Obligations: Compatible Parallel Composition

From components with verified contract compliance, we now compose systems
and provide safety guarantees about them, without redoing system proofs. For

this, Def.[f] introduces a quasi-parallel composition, where the discrete ctrl parts
of the components are executed sequentially in any order, while the continu-
ous plant parts run in parallel. The connected ports cp of all components are
composed sequentially in any order, since the order of independent determinis-
tic assignments (i.e., assignments having disjoint free and bound variables) is
irrelevant. Such a definition is natural in dZ, since time only passes during con-
tinuous evolution in hybrid programs, while the discrete actions of a program
do not consume time and thus happen instantaneously at a single real point in
time, but in a specific order. The actual execution order of independent com-
ponents in a real system is unknown, which we model with a non-deterministic
choice between all possible controller execution orders. Values can be exchanged
between components using A-ports; all other variables are internal to a single
component, except global variables, which can be read everywhere, but never
bound, and system time ¢,¢~, which can be read everywhere, but only bound
at specific locations fixed by the delay contract, cf. Def.[5} A-ports store their
previous values in the composite component, regardless if connected or not. For
all connected ports, Def.[f] replaces the non-deterministic assignments to open
inputs (cf. n) with a deterministic assignment from the connected port (cf. ¢p).
This represents an instantaneous and lossless interaction between components.

Definition 6 (Parallel Composition). Let C; = (ctrl;,plant;,cp;) denote
components with their corresponding admissible interfaces

IZ-A = (V;i“ﬂr;“, Viout,ﬂf“t,ViA, Vf,prel-) forie{l,...,n} ,

(3

sharing only V&2l and global times such that V(C;) NV (Cy) C Velebaly {¢ ¢~}
for i £ j. Let further

X <U1§j§n Vji“) — (U1§i§n Viout) , provided X (v) ¢ VU | for allv e V)"

be a partial (i. e., not every input must be mapped), injective (i. e., every output
is only mapped to at most one input) function, connecting some inputs to some
outputs, with domain I* = {z € V® | X(x) is defined} and image O = {y €

Veout | y = X(z) for some x € VI"}. The composition of n components and their
def

interfaces (C, I°) = ((Ch, .. |[(Ch, If))x according to X is defined as:
— controllers are executed in non-deterministic order of all the n! possible per-
mutations of {1,...,n},
ctrl = (ctrly;ctrly; . . . ctrl,) U (ctrly; ctrly; . . . ctrly,)
U...U(ctrl,;...;ctrly; ctrly)

— plants are executed in parallel, with evolution domain H = /\i€{17...,n} H;
plant = mgl)/ = 9%1)7 . ,mgk)/ = HYC), e ,xg)/ = 953), . ,xglm)' = 95:") & H

component Cy component Cp

— port assignments are extended with connections for some {v;,...,v.} = I*

def
CDP = CP1;CPg; - - -} CPy ¥ = X (v5); .. ;00 =X (vy)

components’ cp connected inputs

. _ def _ .
— previous values V7~ = Ulgign V.~ are merged; connected ports become private

v (U1<i<n Vim) UZ¥ U OF; unconnected ports remain public VA+ =

(Urciza VA)\ @ U OY),
— pre; are combined such that pre(v) = pre;(v) if v € VA for alli € {1,...,n},

— unconnected inputs V" = (U,c;c, Vi") \ I and unconnected outputs

yout — (U1§ign V;Out) \OX are merged and their requirements preserved

7 (v) = 7 (v) if v € VIP\ IV for alli e {1,...,n}
7 (v) = 7 (v) if v € VU OF for alli € {1,...,n} .

The order of port assignments is irrelevant because all sets of variables are
disjoint and a port can only be either an input port or output port, cf. Def.[T]
and Def.[3] and thus the assignments share no variables. This also entails that
the merged pre, 7 and 7°“* are well-defined since VZ»A, Vin respectively V%,
are disjoint between components by Def.[2}

The user provides component specifications (C;, IiA) and a mapping function
X, defining which output is connected to which input. The composed system
of parallel components can be derived automatically from Def.[6] It follows that
the set of variables of the composite component V(C) is the union of all in-
volved components’ variable sets V(C;), i.e., V(C) = J;<;<, V(C;). The set of
global variables V9% contains all global variables in the system (i.e., in all
components) and thus, its contents do not change. Since V2 = |J,.,.,, V;?, this
definition implies that internally connected A-ports V4 of sub-components, as
well as the previous values VAT for all open A-ports are still stored. As a re-
sult, the current and previous values of A-ports can still be used internally in
the composite, even when the ports are no longer exposed through the external
interface of the composed system.

Returning to our running example of Fig. the component Cgy, in and
interface ISAyS in result from parallel composition of the RC, the robot, and
the obstacle. The robot controller follows the speed advice received on input
port d if the robot is at a safe distance from the obstacle position measured with
input port p,; otherwise it stops. The robot plant changes the robot’s position
according to its speed, where the controller executes at least every € time-units.
The robot’s input ports are connected to the RC’s and obstacle’s output portsEI

Csys = ((ctrlye; ctrly; ctrl, U ctrl,; . .), (plant,., plant), Po := Po; d:= d) (4)

ctrlsys plantsyS CPsys
A P — = A 5= _
L= (0, 0, 0, 0 . {podpo.d} {p;.d",5;,d7}, (o> by, .)) (5)
~—
Von rin Y out qrout Vv A V- pre

* For the detailed robot component C, and interface 12, see [17].

During composition, the tests guarding the input ports of an interface are
replaced with a deterministic assignment modeling the port connection of the
components, which is only safe if the respective output guarantees and input
assumptions match. Hence, in addition to contract compliance, users have to
show compatibility of components as defined in Def.[7]

Definition 7 (Compatible Composite). A composite of n components with
interfaces ((Cy, ... I(Cy, If))x is a compatible composite iff dC formula

CPO(2) Z (pre(X(v)) = pre(v)) — [v:= X (0)](7 (X (v)) = 7" (v))

J

is valid over (vectorial) equalities and assignments for input ports v € I N
Vin from I? conmected to X(v) € OF N vent from IjA. We call CPO(IA) the
compatibility proof obligation for the interfaces IZ-A and say the interfaces]iA are
compatible (with respect to X) if CPO(IA) is valid for all i.

Components are compatible if the output properties imply the input prop-
erties of connected ports. Compatibility guarantees that handing an output
port’s value over to the connected input port ensures that the input port’s
input assumption 7" holds, which is no longer checked explicitly by a test, so
79" (X (v)) — 7" (v). To achieve local compatibility checks for pairs of connected
ports, instead of global checks over entire component models, we restrict output
guarantees, respectively input assumptions to the associated output ports, re-
spectively input ports (cf. Def.. In our example, the robot and the obstacle,
respectively the RC are compatible, as witnessed by proofs of C’PO(ITAC) and

CPO(19), cf. [17].

3.5 Transferring Local Component Safety to System Safety

After verifying contract compliance and compatibility proof obligations, The-
orem[I] below ensures that the safety properties in component contracts imply
safety of the composed system. Thus, to ensure a safety property of the mono-
lithic system, we no longer need a (probably huge) monolithic proof, but can
apply Theoreml(]] (proof available in [I7]).

Theorem 1 (Composition Retains Contracts). Let Cy and Cy be compo-
nents with admissible interfaces IlA and IQA that are delay contract compliant
(cf. Def.@ and compatible with respect to X (cf. Def.@. Initially, assume

def

" = Nyerx X(v) = v to bootstrap connected ports. Then, if the side condi-
tion @ holds (p; is the loop invariant used to prove the component’s contract)
= @i — [A][ctrl;][t™ :=t][(t' = 1, plant,)| [TP" (6)

for all components C;, the parallel composition (C,I*) = ((Cl,llA)H(Cg, IQA))
then satisfies the contract with in, cp, ctrl, and plant according to Def,@:

= (t =t APp1 AN A (bp) = [(A;ctrl;t™ :=t; (¢ = 1, plant);
iIl; Cp)*] (,l][}?afe A Hi)Ut A ,w;afe A H;)ut)

X

(7)

The composite contract’s precondition ¢” ensures that the values of con-
nected ports are consistent initially. Side condition @ shows that a component
already produces the correct output from just its ctrl and plant; preparing the
port inputs for the next loop iteration does not change the current output.

The side condition @ is trivially true for components without output ports,
since I19"* = true. For atomic components without input ports, the proof of
@ automatically follows from the contract proof, since in; cp is empty. Because
of the precondition ¢P and because cp is executed after every execution of the
main loop (cf. Def., we know that the values of connected input and output
ports coincide in the safety property, as one would expect. Thus, for instance,
if the local safety property of a single component mentions an input port (e. g.,
z/zfafe = |pr — Po| > 0), we can replace the input port with the original value
as provided by the output port for the composite safety property (e.g., ¥*¥¢ =
Ipr — Po| > 0 = |p, — po| > 0). Theoreml[l] easily extends to n components (cf.
proof sketch in [I7]) and also holds for change contracts. A change port cannot
be attached to a delay port and vice versa.

Going back to our example, the overall system property of our collision avoid-
ance system follows from Theorem[l] given the local safety property of the robot,
the change contract compliance of the RC, the delay contract compliance of the
obstacle, and the compatibility of the connections. Since we verified all com-
ponent contracts as well as the compatibility proof obligations and since the
components with output ports are atomic and have no input ports (i. e., the side
condition holds), safety of the collision avoidance system follows.

Automation. We implemented the proof steps of Theorem[l] as a KeYmaera X
tactic, which automatically reduces a system safety proof to separate proofs
about components®. This gave us the best of the two worlds: the flexibility
of reasoning with components that our Theorem[I] provides, together with the
soundness guarantees we inherit from KeYmaera X, which derives proofs by uni-
form substitution from axioms [25]. This is to be contrasted with the significant
soundness-critical changes we would have to do if we were to add Theorem[T] as a
built-in rule into the KeYmaera X prover core. Uniform substitution guarantees,
e.g., that the subtle conditions on how and where input and output variables
can be read or written in components are checked correctly.

4 Case Studies

To evaluate our approac}ﬂ we use the running example of a remote-controlled
robot (RC robot) and revisit prior case studies on the European Train Control
System (i.e., ETCS) [26], two-component robot collision avoidance (i.e., Ro-
bix) [13], and adaptive cruise control (i.e., LLC) [10]. In ETCS, a radio-block
controller (RBC) communicates speed limits to a train, i.e., it requires the train

5 Implementation and full models available online at
http://www.cs.cmu.edu/~smitsch/resource/fasel?

http://www.cs.cmu.edu/~smitsch/resource/fase17

Table 1: Experimental results for case studies

Contract Automation Duration [s]
)
T 2ok
EERCRE Mono- Mono-
RC Robot v v v Y v 32101 56 189 1934
ETCS [26) v v v v Y v 127608 179 873 15306
Robix [13] v v (3l) v v (96) 469117 132 718 902
LLC [0 v v (50) v (131) 135351 267 753 568

to have at most speed d after some point m. The RBC multi-port change contract
relates distances m, m~ and demanded speeds d, d~ in input assumptions/output
guarantees of the form d > 0 A (d’)2 —d? < 2b(m —m™) A state = drive, thus
avoiding physically impossible maneuvers.

In Robiz, a robot measures the position of a moving obstacle with a maximum
speed S. The obstacle guarantees to not move further than S - (¢t —¢~) in either
axis between measurements, using a delay contract.

In LLC, a follower car measures both speed v; and position x; of a leader
car, with maximum acceleration A and braking capabilities B. Hence, we use a
multi-port delay contract with properties of the form 2-(x;—x;") > vj+v; -tA0 <
uA—=B-t<wv —v <A-ttying together speed change and position progress.

Table[l] summarizes the experimental results of the component-based ap-
proach in comparison to monolithic models in terms of duration and degree
of proof automation. The column Contract describes the kind of contract used
in the case study (i.e., multiport, delay contract or change contract), as well
as whether or not the models use non-linear differential equations. The column
Automation indicates fully automated proofs with checkmarks; it indicates the
number of built-in tactics composed to form a proof script when user input is
required. The column Duration compares the proof duration, using Z3 [14] as
a back-end decision procedure to discharge arithmetic. The column Swum sums
up the proof durations for the components (columns Cy and C5) and Theorem
(column Th. 1, i.e., checking compatibility, condition @ and the execution of
our composition proof). Checking the composition proof is fully automated, fol-
lowing the proof steps of TheoremlT]

All measurements were conducted on an Intel i7-6700HQ CPU@2.6 GHz with
16GB memory. In summary, the results indicate that our approach verification
leads to performance improvements and smaller user-provided proof scripts.

5 Related Work

We group related work into hybrid automata, hybrid process algebras, and hybrid
programs.

Hybrid Automata and Assume-Guarantee Reasoning. Hybrid automata [I] can
be composed in parallel. However, the associated verification procedure (i.e.,
verify that a formula holds throughout all runs of the automaton) is not compo-
sitional, but requires verification of the exponential product automaton [I]. Thus,
for a hybrid automaton it is not sufficient to establish a property about its parts
in order to establish a property about the automaton. We, instead, decompose
verification into local proofs and get system safety automatically. Hybrid 1/O
automata [I1] extend hybrid automata with a notion of external behavior. The
associated implementation relation (i.e., if automaton A implements automaton
B, properties verified for B also hold for A) is respected by their composition
operation in the sense that if A; implements As, then the composition of A; and
B implements the composition of As and B. Hybrid (I/O) automata are mainly
verified using reachability analysis. Therefore, techniques to prevent state-space
explosion are needed, like assume-guarantee reasoning (AGR, e. g., [3I619]), which
was developed to decompose a verification task into subtasks. In [6], timed tran-
sition systems are used to approximate a component’s behavior by discretization.
These abstractions are then used in place of the more complicated automata to
verify refinement properties. The implementation of their approach is limited to
linear hybrid automata. In analogy, we discretize plants to delay contracts; how-
ever, in our approach, contracts completely replace components and do not need
to retain simplified transition systems. A similar AGR rule is presented in [9],
where the approximation drops continuous behaviors of single components en-
tirely. As a result, the approach only works when the continuous behavior is
irrelevant to the verified property, which rarely happens in CPS. Our change
and delay contracts still preserve knowledge about continuous behavior. The
AGR approach of [3] uses contracts consisting of input assumptions and out-
put guarantees to verify properties about single components: a component is an
abstraction of another component if it has a stricter contract. The approach is
restricted to constant intervals, i.e., static global contracts as in [16].

In [5], a component-based design framework for controllers of hybrid systems
with linear dynamics based on hybrid automata is presented. It focuses on check-
ing interconnections of components: alarms propagated by an out-port must be
handled by the connected in-ports. We, too, check component compatibility, but
for contracts, and focus on transferring proofs from components to the system
level. We provide parallel composition, while [5] uses sequential composition.
The compositional verification approach in [2] bases on linear hybrid automata
using invariants to over-approximate component behavior and interactions. How-
ever, interactions between components are restricted to synchronization. (i.e.,
no variable state can be transferred between components).

In summary, aforementioned approaches are limited to linear dynamics [5]
or even linear hybrid automata [2], use global contracts [3], focus on sequential
composition [5] or rely on reachability analysis, over-approximation and model
checking [3/6[9]. We, in contrast, focus on theorem proving in dL, using change
and delay contracts and handle non-linear dynamics and parallel composition.
Most crucially, we focus on transfer of safety properties from components to

composites, while related approaches are focused on property transfer between
different levels of abstraction [3I6/9].

Hybrid process algebras are compositional modeling formalisms for the de-
scription of behavior and interaction of processes, based on algebraic equations.
Examples are Hybrid x [27], HyPA [I§] or the #-Calculus [28]. Although the
modeling is compositional, for verification purposes the models are again ana-
lyzed using simulation or reachability analysis in a non-compositional fashion
(e.g., Hybrid x using PHAVer [30], HyPA using HyTech [12], #-Calculus using
SPHIN [29]), while we focus on exploiting compositionality in the proof.
Hybrid Programs. Quantified hybrid programs enable a compositional verifica-
tion of hybrid systems with an arbitrary number of components [20], if they all
have the same structure (e.g., many cars, or many robots). They were used to
split monolithic hybrid program models into smaller parts to show that adaptive
cruise control prevents collisions for an arbitrary number of cars on a highway
[10]. We focus on different components. Similarly, the approach in [T5] presents
a component-based approach limited to traffic flow and global contracts.

Our approach extends [I6], which was restricted to contracts over constant
ranges. Such global contracts are well-suited for certain use cases, where the
change of a port’s value does not matter for safety, such as the traffic flow
models of [15]. However, for systems such as the remote-controlled robot obstacle
avoidance from our running example (cf. Section7 which require knowledge
about the change of certain values, global contracts only work for considerably
more conservative models (e.g., robot and obstacle must stay in fixed globally
known regions, since the obstacle’s last position is unknown). Contracts with
change and delay allow more liberal component interaction.

6 Conclusion and Future Work

Component-based modeling and verification for hybrid systems splits monolithic
system verification into proofs about components with local responsibilities. It
reduces verification effort compared to proving monolithic models, while change
and delay contracts preserve crucial properties about component behavior to
allow liberal component interaction.

Change contracts relate a port’s previous value to its current value (i.e.,
the change since the last port transmission), while delay contracts additionally
relate to the delay between measurements. Properties of components, described
by component contracts and verified using KeYmaera X, transfer to composed
systems of multiple compatible components without re-verification of the entire
system. We have shown the applicability of our approach on a running example
and three existing case studies, which furthermore demonstrated the potential
reduction of verification effort. We implemented our approach as a KeYmaera X
tactic, which automatically verifies composite systems based on components with
verified contracts without increasing the trusted prover core.

For future work, we plan to (i) introduce further composition operations (e. g.,
error-prone transmission), and (ii) provide support for system decomposition by
discovery of output properties (i.e., find abstraction for port behavior).

References

1. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.H.: Hybrid automata: An algo-
rithmic approach to the specification and verification of hybrid systems. In: Gross-
man, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) Hybrid Systems. LNCS, vol.
736, pp. 209-229. Springer (1993)

2. Astefanoaei, L., Bensalem, S., Bozga, M.: A compositional approach to the veri-
fication of hybrid systems. In: Abrahdm, E., Bonsangue, M., Johnsen, B.E. (eds.)
Theory and Practice of Formal Methods, vol. 9660, pp. 88-103. Springer (2016)

3. Benvenuti, L., Bresolin, D., Collins, P., Ferrari, A., Geretti, L., Villa, T.: Assume-
guarantee verification of nonlinear hybrid systems withAriadne. International Jour-
nal of Robust and Nonlinear Control 24(4), 699-724 (2014)

4. Bohrer, B., Rahli, V., Vukotic, 1., Vélp, M., Platzer, A.: Formally verified differential
dynamic logic. In: Bertot, Y., Vafeiadis, V. (eds.) Proceedings of the 6th ACM
SIGPLAN Conference on Certified Programs and Proofs. pp. 208-221. ACM (2017)

5. Damm, W., Dierks, H., Oehlerking, J., Pnueli, A.: Towards component based design
of hybrid systems: Safety and stability. In: Manna, Z., Peled, D.A. (eds.) Time
for Verification, Essays in Memory of Amir Pnueli, LNCS, vol. 6200, pp. 96-143.
Springer (2010)

6. Frehse, G., Zhi Han, Krogh, B.: Assume-guarantee reasoning for hybrid I/0O-
automata by over-approximation of continuous interaction. In: 43rd IEEE Con-
ference on Decision and Control, CDC. vol. 1, pp. 479-484 (2004)

7. Fulton, N., Mitsch, S., Quesel, J.D., Vélp, M., Platzer, A.: KeYmaera X: An ax-
iomatic tactical theorem prover for hybrid systems. In: Felty, A.P., Middeldorp, A.
(eds.) 25th International Conference on Automated Deduction, Proceedings. LNCS,
vol. 9195, pp. 527-538. Springer (2015)

8. Henzinger, T.A.: The theory of hybrid automata. In: Proceedings, 11th Annual
IEEE Symposium on Logic in Computer Science. pp. 278-292. IEEE Computer
Society (1996)

9. Henzinger, T.A., Minea, M., Prabhu, V.S.: Assume-guarantee reasoning for hierar-
chical hybrid systems. In: Di Benedetto, Maria Domenica, Sangiovanni-Vincentelli,
A.L. (eds.) Hybrid Systems: Computation and Control, 4th International Workshop,
Proceedings. LNCS, vol. 2034, pp. 275-290. Springer (2001)

10. Loos, S.M., Platzer, A., Nistor, L.: Adaptive cruise control: Hybrid, distributed,
and now formally verified. In: Butler, M.J., Schulte, W. (eds.) 17th International
Symposium on Formal Methods. LNCS, vol. 6664, pp. 42-56. Springer (2011)

11. Lynch, N.A., Segala, R., Vaandrager, F.W.: Hybrid I/O automata. Inf. Comput.
185(1), 105-157 (2003)

12. Man, K.L., Reniers, M.A., Cuijpers, P.J.L.: Case studies in the hybrid process
algebra Hypa. International Journal of Software Engineering and Knowledge Engi-
neering 15(2), 299-306 (2005)

13. Mitsch, S., Ghorbal, K., Platzer, A.: On provably safe obstacle avoidance for au-
tonomous robotic ground vehicles. In: Newman, P., Fox, D., Hsu, D. (eds.) Robotics:
Science and Systems IX (2013)

14. Moura, L.M.d., Bjgrner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) Tools and Algorithms for the Construction and Analysis of Systems,
14th International Conference, Proceedings. LNCS, vol. 4963, pp. 337-340. Springer

2008

15.(Mi'111)er, A., Mitsch, S., Platzer, A.: Verified traffic networks: Component-based
verification of cyber-physical flow systems. In: 18th International Conference on
Intelligent Transportation Systems. pp. 757-764 (2015)

16. Miiller, A., Mitsch, S., Retschitzegger, W., Schwinger, W., Platzer, A.: A
component-based approach to hybrid systems safety verification. In: Abrahém, E.,
Huisman, M. (eds.) Integrated Formal Methods - 12th International Conference,
Proceedings. LNCS, vol. 9681, pp. 441-456. Springer (2016)

17. Miiller, A., Mitsch, S., Retschitzegger, W., Schwinger, W., Platzer, A.: Change and
delay contracts for hybrid system component verification. Tech. Rep. CMU-CS-17-
100, Carnegie Mellon (2017)

18. Pieter J. L. Cuijpers, Reniers, M.A.: Hybrid process algebra. J. Log. Algebr. Pro-
gram. 62(2), 191-245 (2005)

19. Platzer, A.: Differential-algebraic dynamic logic for differential-algebraic programs.
J. Log. Comput. 20(1), 309-352 (2010)

20. Platzer, A.: Quantified differential dynamic logic for distributed hybrid systems. In:
Dawar, A., Veith, H. (eds.) Computer Science Logic 24th International Workshop,
19th Annual Conference of the EACSL Proceedings. LNCS; vol. 6247, pp. 469-483.
Springer (2010)

21. Platzer, A.: A complete axiomatization of quantified differential dynamic logic for
distributed hybrid systems. Logical Methods in Computer Science 8(4) (2012)

22. Platzer, A.: The complete proof theory of hybrid systems. In: Proceedings of the
27th Annual ITEEE Symposium on Logic in Computer Science. pp. 541-550. IEEE
Computer Society (2012)

23. Platzer, A.: Logics of dynamical systems science. In: Proceedings of the 27th An-
nual IEEE Symposium on Logic in Computer Science. pp. 13-24. IEEE Computer
Society (2012)

24. Platzer, A.: The structure of differential invariants and differential cut elimination.
Logical Methods in Computer Science 8(4), 1-38 (2012)

25. Platzer, A.: A complete uniform substitution calculus for differential dynamic logic.
J. Autom. Reas. pp. 1-47 (2016)

26. Platzer, A., Quesel, J.D.: European train control system: A case study in formal
verification. In: Breitman, K.K., Cavalcanti, A. (eds.) Formal Methods and Software
Engineering. LNCS, vol. 5885, pp. 246-265. Springer (2009)

27. Ramon R. H. Schiffelers, D. A. van Beek, Man, K.L., Reniers, M.A., Rooda, J.E.:
Formal semantics of Hybrid Chi. In: Larsen, K.G., Niebert, P. (eds.) Formal Model-
ing and Analysis of Timed Systems: 1st International Workshop. LNCS, vol. 2791,
pp. 151-165. Springer (2003)

28. Rounds, W.C., Song, H.: The phi-calculus: A language for distributed control of
reconfigurable embedded systems. In: Maler, O., Pnueli, A. (eds.) 6th International
Workshop on Hybrid Systems: Computation and Control. LNCS, vol. 2623, pp.
435-449. Springer (2003)

29. Song, H., Compton, K.J., Rounds, W.C.: SPHIN: A model checker for reconfig-
urable hybrid systems based on SPIN. Electr. Notes Theor. Comput. Sci. 145, 167—
183 (2006)

30. Xinyu, C., Huiqun, Y., Xin, X.: Verification of Hybrid Chi model for cyber-physical
systems using PHAVer. In: Barolli, L., You, I., Xhafa, F., Leu, F.Y., Chen, H.C.
(eds.) 7th International Conference on Innovative Mobile and Internet Services in
Ubiquitous Computing. pp. 122-128. IEEE Computer Society (2013)

	Change and Delay Contractsfor Hybrid System Component Verification

