
CHANGE AND DELAY CONTRACTS

FOR HYBRID SYSTEM

COMPONENT VERIFICATION

Andreas Müller – andreas.mueller@jku.at

Werner Retschitzegger – werner.retschitzegger@jku.at

Wieland Schwinger – wieland.schwinger@jku.at

Johannes Kepler University, Linz

Department of Cooperative Information Systems

http://cis.jku.at/

Stefan Mitsch – smitsch@cs.cmu.edu

André Platzer - aplatzer@cs.cmu.edu

Carnegie Mellon University, Pittsburgh

Computer Science Department

http://www.ls.cs.cmu.edu

1

OVERVIEW

 Background

 Cyber-Physical Systems

 Component-based Verification

 Component-based Verification

 Components

 Contracts

 Composition

 Evaluation

 Implementation

 Experiments

4/21/2017 2Andreas Müller

OVERVIEW

 Background

 Cyber-Physical Systems

 Component-based Verification

 Component-based Verification

 Components

 Contracts

 Composition

 Evaluation

 Implementation

 Experiments

4/21/2017 3Andreas Müller

Andreas Müller 44/21/2017

Cyber-physical systems (CPS)

 Cyber and physical capabilities

BACKGROUND – CYBER-PHYSICAL SYSTEMS

Andreas Müller 44/21/2017

 Cyber-physical systems (CPS)

 Cyber and physical capabilities

BACKGROUND – CYBER-PHYSICAL SYSTEMS

Cyber-Physical System

Robot moves around

Andreas Müller 44/21/2017

 Cyber-physical systems (CPS)

 Cyber and physical capabilities

 Continuous physical-part, e.g., movement

BACKGROUND – CYBER-PHYSICAL SYSTEMS

Cyber-Physical System

Robot moves around

Andreas Müller 44/21/2017

Cyber-physical systems (CPS)

 Cyber and physical capabilities

 Continuous physical-part, e.g., movement

 Discrete cyber-part, e.g., steering

BACKGROUND – CYBER-PHYSICAL SYSTEMS

Cyber-Physical System

Robot moves around

Andreas Müller 44/21/2017

 Cyber-physical systems (CPS)

 Cyber and physical capabilities

 Continuous physical-part, e.g., movement

 Discrete cyber-part, e.g., steering

 Complex cyber-physical systems are typically

composed of multiple interacting subsystems

BACKGROUND – CYBER-PHYSICAL SYSTEMS

Cyber-Physical System

Robot and obstacle move around

Andreas Müller 44/21/2017

 Cyber-physical systems (CPS)

 Cyber and physical capabilities

 Continuous physical-part, e.g., movement

 Discrete cyber-part, e.g., steering

 Complex cyber-physical systems are typically

composed of multiple interacting subsystems

 Often safety-critical!

BACKGROUND – CYBER-PHYSICAL SYSTEMS

Cyber-Physical System

Robot and obstacle move around

Andreas Müller 44/21/2017

 Cyber-physical systems (CPS)

 Cyber and physical capabilities

 Continuous physical-part, e.g., movement

 Discrete cyber-part, e.g., steering

 Complex cyber-physical systems are typically

composed of multiple interacting subsystems

 Often safety-critical!

BACKGROUND – CYBER-PHYSICAL SYSTEMS

Cyber-Physical System

Robot and obstacle move around

Andreas Müller 44/21/2017

 Cyber-physical systems (CPS)

 Cyber and physical capabilities

 Continuous physical-part, e.g., movement

 Discrete cyber-part, e.g., steering

 Complex cyber-physical systems are typically

composed of multiple interacting subsystems

 Often safety-critical!

 Model and analyze CPS: Hybrid system models

BACKGROUND – CYBER-PHYSICAL SYSTEMS

Cyber-Physical System

Robot and obstacle move around

Andreas Müller 44/21/2017

 Cyber-physical systems (CPS)

 Cyber and physical capabilities

 Continuous physical-part, e.g., movement

 Discrete cyber-part, e.g., steering

 Complex cyber-physical systems are typically

composed of multiple interacting subsystems

 Often safety-critical!

 Model and analyze CPS: Hybrid system models

 Hybrid programs: program notation for CPS

 Safety Property: Φ → 𝛼 Ψ
 System contract: Starting in Φ, each run of hybrid program 𝛼 leads to a safe state Ψ

 Verified using hybrid systems theorem prover – KeYmaera X

 Analysis is challenging for large monolithic models

Idea: Component-based approach to hybrid system safety verification

BACKGROUND – CYBER-PHYSICAL SYSTEMS

Cyber-Physical System

Robot and obstacle move around

Andreas Müller 44/21/2017

 Cyber-physical systems (CPS)

 Cyber and physical capabilities

 Continuous physical-part, e.g., movement

 Discrete cyber-part, e.g., steering

 Complex cyber-physical systems are typically

composed of multiple interacting subsystems

 Often safety-critical!

 Model and analyze CPS: Hybrid system models

 Hybrid programs: program notation for CPS

 Safety Property: Φ → 𝛼 Ψ
 System contract: Starting in Φ, each run of hybrid program 𝛼 leads to a safe state Ψ

 Verified using hybrid systems theorem prover – KeYmaera X

 Analysis is challenging for large monolithic models

Idea: Component-based approach to hybrid system safety verification

BACKGROUND – CYBER-PHYSICAL SYSTEMS

Cyber-Physical System

Robot moves, avoiding collisions with moving obstacle

Andreas Müller 44/21/2017

 Cyber-physical systems (CPS)

 Cyber and physical capabilities

 Continuous physical-part, e.g., movement

 Discrete cyber-part, e.g., steering

 Complex cyber-physical systems are typically

composed of multiple interacting subsystems

 Often safety-critical!

 Model and analyze CPS: Hybrid system models

 Hybrid programs: program notation for CPS

 Safety Property: Φ → 𝛼 Ψ
 System contract: Starting in Φ, each run of hybrid program 𝛼 leads to a safe state Ψ

 Verified using hybrid systems theorem prover – KeYmaera X

 Analysis is challenging for large monolithic models

Idea: Component-based approach to hybrid system safety verification

BACKGROUND – CYBER-PHYSICAL SYSTEMS

Move, but stay

close to

last position

Move, but stay

away from

obstacle’s last position
Position

Obstacle ComponentRobot Component

BACKGROUND – COMPONENT-BASED VERIFICATION

4/21/2017 Andreas Müller 5

System

(Component A ∥ Component B)

Internal

Behavior

Monolithic

BACKGROUND – COMPONENT-BASED VERIFICATION

4/21/2017 Andreas Müller 5

System

(Component A ∥ Component B)

System Contract

(Contract A ∧ Contract B)
External

Behavior

Internal

Behavior

Monolithic

BACKGROUND – COMPONENT-BASED VERIFICATION

4/21/2017 Andreas Müller 5

System

(Component A ∥ Component B)

System Proof

System Contract

(Contract A ∧ Contract B)
External

Behavior

Internal

Behavior

Formal

Verification

Monolithic

BACKGROUND – COMPONENT-BASED VERIFICATION

4/21/2017 Andreas Müller 5

System

(Component A ∥ Component B)

System Proof

System Contract

(Contract A ∧ Contract B)
External

Behavior

Internal

Behavior

Formal

Verification

Monolithic Component-based

BACKGROUND – COMPONENT-BASED VERIFICATION

4/21/2017 Andreas Müller 5

System

(Component A ∥ Component B)

System Proof

System Contract

(Contract A ∧ Contract B)

Component A Component B

External

Behavior

Internal

Behavior

Formal

Verification

Monolithic Component-based

BACKGROUND – COMPONENT-BASED VERIFICATION

4/21/2017 Andreas Müller 5

System

(Component A ∥ Component B)

System Proof

System Contract

(Contract A ∧ Contract B)

Component A

Contract A

Component B

Contract B
External

Behavior

Internal

Behavior

Formal

Verification

Monolithic Component-based

BACKGROUND – COMPONENT-BASED VERIFICATION

4/21/2017 Andreas Müller 5

System

(Component A ∥ Component B)

System Proof

System Contract

(Contract A ∧ Contract B)

Component A

Proof A

Contract A

Component B

Contract B

Proof B

External

Behavior

Internal

Behavior

Formal

Verification

Monolithic Component-based

BACKGROUND – COMPONENT-BASED VERIFICATION

4/21/2017 Andreas Müller 5

System

(Component A ∥ Component B)

System Proof

System Contract

(Contract A ∧ Contract B)

Component A

Proof A

Contract A

Component B

Contract B

Proof B

∥
System

External

Behavior

Internal

Behavior

Formal

Verification

Monolithic Component-based

BACKGROUND – COMPONENT-BASED VERIFICATION

4/21/2017 Andreas Müller 5

System

(Component A ∥ Component B)

System Proof

System Contract

(Contract A ∧ Contract B)

Component A

Proof A

Contract A

Component B

Contract B

Proof B

∧

∥

System Contract

System

External

Behavior

Internal

Behavior

Formal

Verification

Monolithic Component-based

BACKGROUND – COMPONENT-BASED VERIFICATION

4/21/2017 Andreas Müller 5

System

(Component A ∥ Component B)

System Proof

System Contract

(Contract A ∧ Contract B)

Component A

Proof A

Contract A

Component B

Contract B

Proof B

∧

∥

System Contract

System

?

External

Behavior

Internal

Behavior

Formal

Verification

Monolithic Component-based

BACKGROUND – COMPONENT-BASED VERIFICATION

4/21/2017 Andreas Müller 5

System

(Component A ∥ Component B)

System Proof

System Contract

(Contract A ∧ Contract B)

Component A

Proof A

Contract A

Component B

Contract B

Proof B

∧

∥

System Contract

System

?

External

Behavior

Internal

Behavior

Formal

Verification

Monolithic Component-based

OVERVIEW

 Background

 Cyber-Physical Systems

 Component-based Verification

 Component-based Verification

 Components

 Contracts

 Composition

 Evaluation

 Implementation

 Experiments

4/21/2017 6Andreas Müller

COMPONENT-BASED VERIFICATION –

COMPONENTS

4/21/2017 7Andreas Müller

COMPONENT-BASED VERIFICATION –

COMPONENTS

4/21/2017 7Andreas Müller

 Components arise naturally

 Different parts with different responsibilities

COMPONENT-BASED VERIFICATION –

COMPONENTS

 Consist of discrete control part and a

continuous plant part

 describe component behavior

4/21/2017 7Andreas Müller

 Components arise naturally

 Different parts with different responsibilities

COMPONENT-BASED VERIFICATION –

COMPONENTS

 Consist of discrete control part and a

continuous plant part

 describe component behavior

 control ≈ if 𝑺𝑨𝑭𝑬 𝑠𝑝𝑒𝑒𝑑 ≔ 𝒔𝒑𝑨𝒅𝒗

else 𝑠𝑝𝑒𝑒𝑑 ≔ 0

 plant ≈ 𝑝𝑜𝑠′ 𝑡 = 𝑠𝑝𝑒𝑒𝑑

5/3/2017 30Andreas Müller

 Components arise naturally

 Different parts with different responsibilities

COMPONENT-BASED VERIFICATION –

COMPONENTS

 Consist of discrete control part and a

continuous plant part

 describe component behavior

 Read input values

 allows component interaction

 control ≈ if 𝑺𝑨𝑭𝑬 𝑠𝑝𝑒𝑒𝑑 ≔ 𝒔𝒑𝑨𝒅𝒗

else 𝑠𝑝𝑒𝑒𝑑 ≔ 0

 plant ≈ 𝑝𝑜𝑠′ 𝑡 = 𝑠𝑝𝑒𝑒𝑑

5/3/2017 31Andreas Müller

 Components arise naturally

 Different parts with different responsibilities

COMPONENT-BASED VERIFICATION –

COMPONENTS

 Consist of discrete control part and a

continuous plant part

 describe component behavior

 Read input values

 allows component interaction

 control ≈ if 𝑺𝑨𝑭𝑬 𝑠𝑝𝑒𝑒𝑑 ≔ 𝒔𝒑𝑨𝒅𝒗

else 𝑠𝑝𝑒𝑒𝑑 ≔ 0

 plant ≈ 𝑝𝑜𝑠′ 𝑡 = 𝑠𝑝𝑒𝑒𝑑

 in ≈ 𝑠𝑝𝐴𝑑𝑣 ≔ 𝑖𝑛1
𝑜𝑏𝑠𝑃𝑜𝑠 ≔ 𝑖𝑛2

5/3/2017 32Andreas Müller

 Components arise naturally

 Different parts with different responsibilities

COMPONENT-BASED VERIFICATION –

COMPONENTS

 Consist of discrete control part and a

continuous plant part

 describe component behavior

 Read input values

 allows component interaction

 Repeatedly execute resulting program

 control ≈ if 𝑺𝑨𝑭𝑬 𝑠𝑝𝑒𝑒𝑑 ≔ 𝒔𝒑𝑨𝒅𝒗

else 𝑠𝑝𝑒𝑒𝑑 ≔ 0

 plant ≈ 𝑝𝑜𝑠′ 𝑡 = 𝑠𝑝𝑒𝑒𝑑

 in ≈ 𝑠𝑝𝐴𝑑𝑣 ≔ 𝑖𝑛1
𝑜𝑏𝑠𝑃𝑜𝑠 ≔ 𝑖𝑛2

5/3/2017 33Andreas Müller

 Components arise naturally

 Different parts with different responsibilities

COMPONENT-BASED VERIFICATION –

COMPONENTS

 Consist of discrete control part and a

continuous plant part

 describe component behavior

 Read input values

 allows component interaction

 Repeatedly execute resulting program

 control ≈ if 𝑺𝑨𝑭𝑬 𝑠𝑝𝑒𝑒𝑑 ≔ 𝒔𝒑𝑨𝒅𝒗

else 𝑠𝑝𝑒𝑒𝑑 ≔ 0

 plant ≈ 𝑝𝑜𝑠′ 𝑡 = 𝑠𝑝𝑒𝑒𝑑

 in ≈ 𝑠𝑝𝐴𝑑𝑣 ≔ 𝑖𝑛1
𝑜𝑏𝑠𝑃𝑜𝑠 ≔ 𝑖𝑛2

program ≈ 𝒄𝒕𝒓𝒍 ; 𝒑𝒍𝒂𝒏𝒕 ; 𝒊𝒏 ∗

5/3/2017 34Andreas Müller

 Components arise naturally

 Different parts with different responsibilities

COMPONENT-BASED VERIFICATION –

CONTRACTS

4/21/2017 8Andreas Müller

COMPONENT-BASED VERIFICATION –

CONTRACTS

 Initial condition

4/21/2017 8Andreas Müller

COMPONENT-BASED VERIFICATION –

CONTRACTS

 Initial condition

 Choose validity ranges for global

constants

4/21/2017 8Andreas Müller

COMPONENT-BASED VERIFICATION –

CONTRACTS

 Initial condition

 Choose validity ranges for global

constants

 initial ≈

 Globally constant parameters, e.g.,

𝑠𝑝𝑒𝑒𝑑𝑚𝑎𝑥 > 0

5/3/2017 38Andreas Müller

COMPONENT-BASED VERIFICATION –

CONTRACTS

 Initial condition

 Choose validity ranges for global

constants

 Additional assumptions regarding initial

state

 initial ≈

 Globally constant parameters, e.g.,

𝑠𝑝𝑒𝑒𝑑𝑚𝑎𝑥 > 0

5/3/2017 39Andreas Müller

COMPONENT-BASED VERIFICATION –

CONTRACTS

 Initial condition

 Choose validity ranges for global

constants

 Additional assumptions regarding initial

state

 initial ≈

 Globally constant parameters, e.g.,

𝑠𝑝𝑒𝑒𝑑𝑚𝑎𝑥 > 0

 Assumptions, e.g.,

𝑠𝑝𝑒𝑒𝑑 = 0

5/3/2017 40Andreas Müller

COMPONENT-BASED VERIFICATION –

CONTRACTS

 Initial condition

 Choose validity ranges for global

constants

 Additional assumptions regarding initial

state

 Safety condition

 Describes safety property and (optional)

guarantees for values produced on

ports

 initial ≈

 Globally constant parameters, e.g.,

𝑠𝑝𝑒𝑒𝑑𝑚𝑎𝑥 > 0

 Assumptions, e.g.,

𝑠𝑝𝑒𝑒𝑑 = 0

5/3/2017 41Andreas Müller

COMPONENT-BASED VERIFICATION –

CONTRACTS

 Initial condition

 Choose validity ranges for global

constants

 Additional assumptions regarding initial

state

 Safety condition

 Describes safety property and (optional)

guarantees for values produced on

ports

 initial ≈

 Globally constant parameters, e.g.,

𝑠𝑝𝑒𝑒𝑑𝑚𝑎𝑥 > 0

 Assumptions, e.g.,

𝑠𝑝𝑒𝑒𝑑 = 0

 post ≈

 Guarantees, e.g.,

𝑠𝑝𝑒𝑒𝑑 > 0 → 𝑟𝑜𝑏𝑃𝑜𝑠 ≠ 𝑜𝑏𝑠𝑃𝑜𝑠

5/3/2017 42Andreas Müller

COMPONENT-BASED VERIFICATION –

CONTRACTS

 Initial condition

 Choose validity ranges for global

constants

 Additional assumptions regarding initial

state

 Safety condition

 Describes safety property and (optional)

guarantees for values produced on

ports

 initial ≈

 Globally constant parameters, e.g.,

𝑠𝑝𝑒𝑒𝑑𝑚𝑎𝑥 > 0

 Assumptions, e.g.,

𝑠𝑝𝑒𝑒𝑑 = 0

 post ≈

 Guarantees, e.g.,

𝑠𝑝𝑒𝑒𝑑 > 0 → 𝑟𝑜𝑏𝑃𝑜𝑠 ≠ 𝑜𝑏𝑠𝑃𝑜𝑠

contract ≈ 𝒊𝒏𝒊𝒕𝒊𝒂𝒍 → program 𝒑𝒐𝒔𝒕

5/3/2017 43Andreas Müller

COMPONENT-BASED VERIFICATION –

COMPOSITION (1)

4/21/2017 9Andreas Müller

COMPONENT-BASED VERIFICATION –

COMPOSITION (1)

 Parallel Composition

4/21/2017 9Andreas Müller

COMPONENT-BASED VERIFICATION –

COMPOSITION (1)

 Parallel Composition

 Compose plant part
 Time passes simultaneously

  Plants must be executed in parallel

4/21/2017 9Andreas Müller

COMPONENT-BASED VERIFICATION –

COMPOSITION (1)

 Parallel Composition

 Compose plant part
 Time passes simultaneously

  Plants must be executed in parallel

 e.g., Robot and Obstacle

 Compose plant part
 Robot and obstacle move at the same time

4/21/2017 9Andreas Müller

COMPONENT-BASED VERIFICATION –

COMPOSITION (1)

 Parallel Composition

 Compose plant part
 Time passes simultaneously

  Plants must be executed in parallel

 Compose control part
 Assumption: Control takes no time

 Execution order is crucial, but unknown

 e.g., Robot and Obstacle

 Compose plant part
 Robot and obstacle move at the same time

4/21/2017 9Andreas Müller

COMPONENT-BASED VERIFICATION –

COMPOSITION (1)

 Parallel Composition

 Compose plant part
 Time passes simultaneously

  Plants must be executed in parallel

 Compose control part
 Assumption: Control takes no time

 Execution order is crucial, but unknown

 e.g., Robot and Obstacle

 Compose plant part
 Robot and obstacle move at the same time

 Compose control part
 Robot chooses speed and direction

 Obstacle chooses speed and direction

4/21/2017 9Andreas Müller

COMPONENT-BASED VERIFICATION –

COMPOSITION (1)

 Parallel Composition

 Compose plant part
 Time passes simultaneously

  Plants must be executed in parallel

 Compose control part
 Assumption: Control takes no time

 Execution order is crucial, but unknown

  Non-deterministically chosen sequence

of control parts

 e.g., Robot and Obstacle

 Compose plant part
 Robot and obstacle move at the same time

 Compose control part
 Robot chooses speed and direction

 Obstacle chooses speed and direction

4/21/2017 9Andreas Müller

COMPONENT-BASED VERIFICATION –

COMPOSITION (1)

 Parallel Composition

 Compose plant part
 Time passes simultaneously

  Plants must be executed in parallel

 Compose control part
 Assumption: Control takes no time

 Execution order is crucial, but unknown

  Non-deterministically chosen sequence

of control parts

 e.g., Robot and Obstacle

 Compose plant part
 Robot and obstacle move at the same time

 Compose control part
 Robot chooses speed and direction

 Obstacle chooses speed and direction

 Robot, Obstacle OR Obstacle, Robot

4/21/2017 9Andreas Müller

COMPONENT-BASED VERIFICATION –

COMPOSITION (1)

 Parallel Composition

 Compose plant part
 Time passes simultaneously

  Plants must be executed in parallel

 Compose control part
 Assumption: Control takes no time

 Execution order is crucial, but unknown

  Non-deterministically chosen sequence

of control parts

 Alternative: Expert system (select most-

reasonable control sequence)

 e.g., Robot and Obstacle

 Compose plant part
 Robot and obstacle move at the same time

 Compose control part
 Robot chooses speed and direction

 Obstacle chooses speed and direction

 Robot, Obstacle OR Obstacle, Robot

4/21/2017 9Andreas Müller

COMPONENT-BASED VERIFICATION –

COMPOSITION (1)

 Parallel Composition

 Compose plant part
 Time passes simultaneously

  Plants must be executed in parallel

 Compose control part
 Assumption: Control takes no time

 Execution order is crucial, but unknown

  Non-deterministically chosen sequence

of control parts

 Alternative: Expert system (select most-

reasonable control sequence)

 e.g., Robot and Obstacle

 Compose plant part
 Robot and obstacle move at the same time

 Compose control part
 Robot chooses speed and direction

 Obstacle chooses speed and direction

 Robot, Obstacle OR Obstacle, Robot

 Expert: Robot always chooses first

 Robot, Obstacle

4/21/2017 9Andreas Müller

COMPONENT-BASED VERIFICATION –

COMPOSITION (1)

 Parallel Composition

 Compose plant part
 Time passes simultaneously

  Plants must be executed in parallel

 Compose control part
 Assumption: Control takes no time

 Execution order is crucial, but unknown

  Non-deterministically chosen sequence

of control parts

 Alternative: Expert system (select most-

reasonable control sequence)

 Compatible Communication: Only

compatible ports can be connected

 e.g., Robot and Obstacle

 Compose plant part
 Robot and obstacle move at the same time

 Compose control part
 Robot chooses speed and direction

 Obstacle chooses speed and direction

 Robot, Obstacle OR Obstacle, Robot

 Expert: Robot always chooses first

 Robot, Obstacle

4/21/2017 9Andreas Müller

COMPONENT-BASED VERIFICATION –

COMPOSITION (1)

 Parallel Composition

 Compose plant part
 Time passes simultaneously

  Plants must be executed in parallel

 Compose control part
 Assumption: Control takes no time

 Execution order is crucial, but unknown

  Non-deterministically chosen sequence

of control parts

 Alternative: Expert system (select most-

reasonable control sequence)

 Compatible Communication: Only

compatible ports can be connected

 e.g., Robot and Obstacle

 Compose plant part
 Robot and obstacle move at the same time

 Compose control part
 Robot chooses speed and direction

 Obstacle chooses speed and direction

 Robot, Obstacle OR Obstacle, Robot

 Expert: Robot always chooses first

 Robot, Obstacle

 Compatible Communication
 Robot expects position of obstacle close to

previous position

4/21/2017 9Andreas Müller

COMPONENT-BASED VERIFICATION –

COMPOSITION (2)

 Composite program

𝑝𝑟𝑜𝑔3 ≈ 𝑐𝑡𝑟𝑙1; 𝑐𝑡𝑟𝑙2 ∪ 𝑐𝑡𝑟𝑙2; 𝑐𝑡𝑟𝑙1 ; 𝑝𝑙𝑎𝑛𝑡1 ∥ 𝑝𝑙𝑎𝑛𝑡2 ; 𝑖𝑛1; 𝑖𝑛2; 𝑖𝑛𝑜𝑝𝑒𝑛 ∗

 Composite contract

𝑐𝑜𝑛𝑡3 ≈ 𝑖𝑛𝑖𝑡1 ∧ 𝑖𝑛𝑖𝑡2 → 𝑝𝑟𝑜𝑔3 𝑝𝑜𝑠𝑡1 ∧ 𝑝𝑜𝑠𝑡2

 Theorem

 Composite program of two compatible

components obeys composite contract

 User provides Proof A and Proof B

 Theorem derives System Proof

 Safety verification results about contracts

for components transfer to composites!

4/21/2017

COMPONENT-BASED VERIFICATION –

COMPOSITION (2)

 Composite program

𝑝𝑟𝑜𝑔3 ≈ 𝑐𝑡𝑟𝑙1; 𝑐𝑡𝑟𝑙2 ∪ 𝑐𝑡𝑟𝑙2; 𝑐𝑡𝑟𝑙1 ; 𝑝𝑙𝑎𝑛𝑡1 ∥ 𝑝𝑙𝑎𝑛𝑡2 ; 𝑖𝑛1; 𝑖𝑛2; 𝑖𝑛𝑜𝑝𝑒𝑛 ∗

 Composite contract

𝑐𝑜𝑛𝑡3 ≈ 𝑖𝑛𝑖𝑡1 ∧ 𝑖𝑛𝑖𝑡2 → 𝑝𝑟𝑜𝑔3 𝑝𝑜𝑠𝑡1 ∧ 𝑝𝑜𝑠𝑡2

 Theorem

 Composite program of two compatible

components obeys composite contract

 User provides Proof A and Proof B

 Theorem derives System Proof

 Safety verification results about contracts

for components transfer to composites!

4/21/2017

Component A

Proof A

Contract A

Component B

Contract B

Proof B

∧

∥

System Contract

System

?

COMPONENT-BASED VERIFICATION –

COMPOSITION (2)

 Composite program

𝑝𝑟𝑜𝑔3 ≈ 𝑐𝑡𝑟𝑙1; 𝑐𝑡𝑟𝑙2 ∪ 𝑐𝑡𝑟𝑙2; 𝑐𝑡𝑟𝑙1 ; 𝑝𝑙𝑎𝑛𝑡1 ∥ 𝑝𝑙𝑎𝑛𝑡2 ; 𝑖𝑛1; 𝑖𝑛2; 𝑖𝑛𝑜𝑝𝑒𝑛 ∗

 Composite contract

𝑐𝑜𝑛𝑡3 ≈ 𝑖𝑛𝑖𝑡1 ∧ 𝑖𝑛𝑖𝑡2 → 𝑝𝑟𝑜𝑔3 𝑝𝑜𝑠𝑡1 ∧ 𝑝𝑜𝑠𝑡2

 Theorem

 Composite program of two compatible

components obeys composite contract

 User provides Proof A and Proof B

 Theorem derives System Proof

 Safety verification results about contracts

for components transfer to composites!

4/21/2017

Component A

Proof A

Contract A

Component B

Contract B

Proof B

∧

∥

System Contract

System

Theorem

OVERVIEW

 Background

 Cyber-Physical Systems

 Component-based Verification

 Component-based Verification

 Components

 Contracts

 Composition

 Evaluation

 Implementation

 Experiments

4/21/2017 11Andreas Müller

EVALUATION – IMPLEMENTATION

 KeYmaera X

 Provides built-in proof rules to transform models

 Tactic: combination of proof rules that transforms model to something known

4/21/2017 12Andreas Müller

EVALUATION – IMPLEMENTATION

 KeYmaera X

 Provides built-in proof rules to transform models

 Tactic: combination of proof rules that transforms model to something known

 Implementation of theorem as additional proof rule?

4/21/2017 12Andreas Müller

EVALUATION – IMPLEMENTATION

 KeYmaera X

 Provides built-in proof rules to transform models

 Tactic: combination of proof rules that transforms model to something known

 Implementation of theorem as additional proof rule?

4/21/2017 12Andreas Müller

EVALUATION – IMPLEMENTATION

 KeYmaera X

 Provides built-in proof rules to transform models

 Tactic: combination of proof rules that transforms model to something known

 Implementation of theorem as additional proof rule?

 Derive tactic that verifies system based on component tactics

 No safety critical changes necessary

4/21/2017 12Andreas Müller

EVALUATION – IMPLEMENTATION

 KeYmaera X

 Provides built-in proof rules to transform models

 Tactic: combination of proof rules that transforms model to something known

 Implementation of theorem as additional proof rule?

 Derive tactic that verifies system based on component tactics

 No safety critical changes necessary

4/21/2017 12Andreas Müller

EVALUATION – IMPLEMENTATION

 KeYmaera X

 Provides built-in proof rules to transform models

 Tactic: combination of proof rules that transforms model to something known

 Implementation of theorem as additional proof rule?

 Derive tactic that verifies system based on component tactics

 No safety critical changes necessary

4/21/2017 12Andreas Müller

 Input

 Components, i.e., control and plant

 Contract, i.e., pre- and post condition

 Tactic to proof that components obey

respective contracts

 Output

 Composite program

 Composite contract

 Tactic to proof that composite program

obeys composite contract

EVALUATION – IMPLEMENTATION

 KeYmaera X

 Provides built-in proof rules to transform models

 Tactic: combination of proof rules that transforms model to something known

 Implementation of theorem as additional proof rule?

 Derive tactic that verifies system based on component tactics

 No safety critical changes necessary

Safe Component + Safe Component = Safe System

4/21/2017 12Andreas Müller

 Input

 Components, i.e., control and plant

 Contract, i.e., pre- and post condition

 Tactic to proof that components obey

respective contracts

 Output

 Composite program

 Composite contract

 Tactic to proof that composite program

obeys composite contract

EVALUATION – EXPERIMENTS

 Existing Case Studies

 Robot Collision Avoidance – Robix

 European Train Control System – ETCS

 Adaptive Cruise Control – LLC

 Robot Collision Avoidance – RC

 Verified monolithic and component-based

EVALUATION – EXPERIMENTS

 Existing Case Studies

 Robot Collision Avoidance – Robix

 European Train Control System – ETCS

 Adaptive Cruise Control – LLC

 Robot Collision Avoidance – RC

 Verified monolithic and component-based

Non-

linear

Manual steps Duration [s]

Comp Mono Comp Mono

ETCS 0 0 873 15306

Robix x 31 96 718 902

LLC 50 131 753 568

RC 0 0 189 1934

EVALUATION – EXPERIMENTS

 Existing Case Studies

 Robot Collision Avoidance – Robix

 European Train Control System – ETCS

 Adaptive Cruise Control – LLC

 Robot Collision Avoidance – RC

 Verified monolithic and component-based

 Summary

 Reduction of verification time

(especially for automated

proofs)

 Reduction of proof effort

Non-

linear

Manual steps Duration [s]

Comp Mono Comp Mono

ETCS 0 0 873 15306

Robix x 31 96 718 902

LLC 50 131 753 568

RC 0 0 189 1934

Safe Component + Safe Component

=

Safe System

CHANGE AND DELAY CONTRACTS

FOR HYBRID SYSTEM

COMPONENT VERIFICATION

Andreas Müller – andreas.mueller@jku.at

Werner Retschitzegger – werner.retschitzegger@jku.at

Wieland Schwinger – wieland.schwinger@jku.at

Johannes Kepler University, Linz

Department of Cooperative Information Systems

http://cis.jku.at/

Stefan Mitsch – smitsch@cs.cmu.edu

André Platzer - aplatzer@cs.cmu.edu

Carnegie Mellon University, Pittsburgh

Computer Science Department

http://www.ls.cs.cmu.edu

14

