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 Robot Collision Avoidance – Robix

 European Train Control System – ETCS 

 Adaptive Cruise Control – LLC

 Robot Collision Avoidance – RC 

 Verified monolithic and component-based

 Summary

 Reduction of verification time 

(especially for automated 

proofs)

 Reduction of proof effort

Non-

linear

Manual steps Duration [s]

Comp Mono Comp Mono

ETCS 0 0 873 15306

Robix x 31 96 718 902

LLC 50 131 753 568

RC 0 0 189 1934

Safe Component + Safe Component 

= 

Safe System
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