&l JKU Gl LLIF

Verified Traffic Networks:
Component-based Verification of
Cyber-Physical Flow Systems

Andreas Mluller — andreas.mueller@jku.at

Stefan Mitsch - stefan.mitsch@jku.at André Platzer - aplatzer@cs.cmu.edu
Johannes Kepler University, Linz Carnegie Mellon University, Pittsburgh
Department of Cooperative Information Systems (CIS) Computer Science Department

http://cis.jku.at/ http://www.ls.cs.cmu.edu/

mailto:andreas.mueller@jku.at
mailto:stefan.mitsch@jku.at
http://cis.jku.at/
mailto:aplatzer@cs.cmu.edu
http://www.ls.cs.cmu.edu/

Overview

Introduction

Challenges

Approach

Implementation

Conclusion

Andreas Miiller — Johannes Kepler University, Linz, Austria — September 7, 2015

Introduction — Traffic Management

Traffic Management System
= Operate traffic through control actions
—Safety of critical actions is crucial

Andreas Miiller — Johannes Kepler University, Linz, Austria — September 7, 2015

Introduction — Traffic Management

Traffic Management System
= Operate traffic through control actions
—Safety of critical actions is crucial

Andreas Miiller — Johannes Kepler University, Linz, Austria — September 7, 2015

Introduction — Traffic Management

Traffic Management System W 2daptinterval
= Operate traffic through control actions S
—Safety of critical actions is crucial

Andreas Miiller — Johannes Kepler University, Linz, Austria — September 7, 2015

Introduction — Traffic Management

Traffic Management System
= Operate traffic through control actions
—Safety of critical actions is crucial

Andreas Miiller — Johannes Kepler University, Linz, Austria — September 7, 2015

Introduction — Traffic Management

Traffic Management System
= Operate traffic through control actions
—Safety of critical actions is crucial

Safety
= No traffic breakdown=load never exceeds capacity

Andreas Miiller — Johannes Kepler University, Linz, Austria — September 7, 2015

Introduction — Traffic Management

Traffic Management System
= Operate traffic through control actions
—Safety of critical actions is crucial

Safety
= No traffic breakdown=load never exceeds capacity

Id/
— _/

capacity

Andreas Miiller — Johannes Kepler University, Linz, Austria — September 7, 2015

Introduction — Traffic Management

Traffic Management System
= Operate traffic through control actions
—Safety of critical actions is crucial

Safety load < capacity
= No traffic breakdown=load never exceeds capacity

Id/
— _/

capacity

Andreas Miiller — Johannes Kepler University, Linz, Austria — September 7, 2015

Introduction — Traffic Management

Traffic Management System
= Operate traffic through control actions
—>Safety of critical actions is crucial

Safety
= No traffic breakdown=load never exceeds capacity
O

g
>

load

—

capacity

Andreas Miiller — Johannes Kepler University, Linz, Austria — September 7, 2015

Introduction — Traffic Management

Traffic Management System
= Operate traffic through control actions
—>Safety of critical actions is crucial

Safety

= No traffic breakdown=load never exceeds capacity

load

capacity

Andreas Miiller — Johannes Kepler University, Linz, Austria — September 7, 2015

Introduction — Traffic Management

Traffic Management System
= Operate traffic through control actions
—Safety of critical actions is crucial

Safety
= No traffic breakdown=load never exceeds capacity

= Property: Starting in safe state, all runs stay in safe state

Andreas Miiller — Johannes Kepler University, Linz, Austria — September 7, 2015

Introduction — Traffic Management

Traffic Management System
= Operate traffic through control actions
—>Safety of critical actions is crucial

Safety
= No traffic breakdown=load never exceeds capacity
= Property: Starting in safe state, all runs stay in safe state

Cyber-physical systems (CPS)
= Cyber and physical capabilities
= Continuous physical-part: traffic flow
= Discrete cyber-part: traffic light switching

Andreas Miiller — Johannes Kepler University, Linz, Austria — September 7, 2015

Introduction — Traffic Management

Traffic Management System
= Operate traffic through control actions
—>Safety of critical actions is crucial

Safety
= No traffic breakdown=load never exceeds capacity
= Property: Starting in safe state, all runs stay in safe state

Cyber-physical systems (CPS)
= Cyber and physical capabilities
= Continuous physical-part: traffic flow
= Discrete cyber-part: traffic light switching

tl := red/green 3_ load' = tl

Andreas Miiller — Johannes Kepler University, Linz, Austria — September 7, 2015

Introduction — Traffic Management

Traffic Management System
= Operate traffic through control actions
—>Safety of critical actions is crucial

Safety
= No traffic breakdown=load never exceeds capacity
= Property: Starting in safe state, all runs stay in safe state

Cyber-physical systems (CPS)
= Cyber and physical capabilities
= Continuous physical-part: traffic flow
= Discrete cyber-part: traffic light switching

Methods to analyze models of CPS
= Simulation and Testing (analyze some runs): good for complex phenomena
= Verification (mathematically prove correctness of all runs): simplified models

Andreas Miiller — Johannes Kepler University, Linz, Austria — September 7, 2015

Introduction — Traffic Management

Traffic Management System
= Operate traffic through control actions
—>Safety of critical actions is crucial

Safety
= No traffic breakdown=load never exceeds capacity p
= Property: Starting in safe state, all runs stay in safe state iy Gy O

Cyber-physical systems (CPS)
= Cyber and physical capabilities
= Continuous physical-part: traffic flow
= Discrete cyber-part: traffic light switching

Methods to analyze models of CPS
= Simulation and Testing (analyze some runs): good for complex phenomena
= Verification (mathematically prove correctness of all runs): simplified models

Andreas Miiller — Johannes Kepler University, Linz, Austria — September 7, 2015

Introduction — Verification

Verification
" Transform property by user-guided application of proof rules
= Starting in safe state, all runs stay in safe state

Example

e @0 - § 0 jswwes

load < cap - [if(red){load’ = in} U if(green){load’ = in — out}] load < cap

Andreas Miiller — Johannes Kepler University, Linz, Austria — September 7, 2015

Introduction — Verification

Verification
" Transform property by user-guided application of proof rules
= Starting in safe state, all runs stay in safe state

Example

(green){load’ = in — out} | load < cap

Andreas Miiller — Johannes Kepler University, Linz, Austria — September 7, 2015

Introduction — Verification

Verification
" Transform property by user-guided application of proof rules
= Starting in safe state, all runs stay in safe state

Example
e &0]EH*%'-F-I — - - B =0 |
U load < cap - [if (red){load’ = in}] load < cap load < cap - lf(green){load’ in — out}] load < cap
G [EL@ or I *@]]74}.‘1.’1»‘ ranes
load < cap - [if (red){load' = in} U if(green){load’ = in — out}] load < cap

Andreas Miiller — Johannes Kepler University, Linz, Austria — September 7, 2015

Introduction — Verification

Verification
" Transform property by user-guided application of proof rules
= Starting in safe state, all runs stay in safe state

Example

= - [&0 e e - f @ e

load < cap - [if (red){load’ = in}] load < cap load < cap — [if(green){load' = in — out}] load < cap

load < cap - [if(red){load’ = in} U if(green){load’ = in — out}] load < cap

U

Andreas Miiller — Johannes Kepler University, Linz, Austria — September 7, 2015

Introduction — Verification

Verification
" Transform property by user-guided application of proof rules
= Starting in safe state, all runs stay in safe state

Example

A —>(@a@ -- 7

load < cap Ared — [{load’ = in}] load < cap

if

SSr—v— | &0 |[Eemes e | [Q) [

load < cap - [if (red){load’ = in}] load < cap load < cap — [if(green){load' = in — out}] load < cap

load < cap - [if(red){load’ = in} U if(green){load’ = in — out}] load < cap

U

Andreas Miiller — Johannes Kepler University, Linz, Austria — September 7, 2015

Introduction — Verification

Verification
" Transform property by user-guided application of proof rules
= Starting in safe state, all runs stay in safe state

Example

[']
A —>(@a@ -- 7

load < cap Ared — [{load’ = in}] load < cap

if
=N &0 e e - f &0 |
U load < cap - [if (red){load’ = in}] load < cap load < cap - [if(green){load’ = in — out}] load < cap
e [@,.,@ or e ®]F-»m-h e
load < cap - [if (red){load' = in} U if(green){load’ = in — out}] load < cap

Andreas Miiller — Johannes Kepler University, Linz, Austria — September 7, 2015

-)

load < cap — | out}] load < cap

load < cap — |if(red){load’ = in} U if(green){load’ = in — out}] load < cap

Challenges

Real systems are large

= \erification for large systems is
challenging

Andreas Miiller — Johannes Kepler University, Linz, Austria — September 7, 2015

Challenges

Real systems are large

= \erification for large systems is
challenging

Andreas Miiller — Johannes Kepler University, Linz, Austria — September 7, 2015

Challenges

Real systems are large

= \erification for large systems is
challenging

Andreas Miiller — Johannes Kepler University, Linz, Austria — September 7, 2015

Challenges

Real systems are large

Andreas Miiller — Johannes Kepler University, Linz, Austria — September 7, 2015

Challenges

Real systems are large Any change to the model
requires full re-verification
= Re-verification only for affected parts

Andreas Miiller — Johannes Kepler University, Linz, Austria — September 7, 2015

Challenges

Real systems are large

Andreas Miiller — Johannes Kepler University, Linz, Austria — September 7, 2015

Any change to the model
requires full re-verification
= Re-verification only for affected parts

Challenges

Real systems are large

Any change to the model
requires full re-verification

Andreas Miiller — Johannes Kepler University, Linz, Austria — September 7, 2015

Challenges

Real systems are large Systems often consist of
multiple similar patterns
= Redundancy should be utilized in verification

Any change to the model
requires full re-verification

Andreas Miiller — Johannes Kepler University, Linz, Austria — September 7, 2015

Real systems are large Systems often consist of
multiple similar patterns

= Redundancy should be utilized in verification
Any change to the model

requires full re-verification

Andreas Miiller — Johannes Kepler University, Linz, Austria — September 7, 2015

Real systems are large Systems often consist of
multiple similar patterns

= Redundancy should be utilized in verification
Any change to the model

requires full re-verification

Andreas Miiller — Johannes Kepler University, Linz, Austria — September 7, 2015

Real systems are large

Any change to the model
requires full re-verification

Systems often consist of
multiple similar patterns

Andreas Miiller — Johannes Kepler University, Linz, Austria — September 7, 2015

Real systems are large

Any change to the model
requires full re-verification

Systems often consist of
multiple similar patterns

Andreas Miiller — Johannes Kepler University, Linz, Austria — September 7, 2015

Component-based modeling

Challenges

Real systems are large Component-based modeling

Any change to the model
requires full re-verification

Systems often consist of
multiple similar patterns

Andreas Miiller — Johannes Kepler University, Linz, Austria — September 7, 2015

Challenges

Real systems are |arge Component-based modeling

= Verified components do not necessarily entail
verified system

Any change to the model
requires full re-verification

’/

Systems often consist of
multiple similar patterns

Andreas Miiller — Johannes Kepler University, Linz, Austria — September 7, 2015

How do verification results about
traffic flow components transfer
to entire traffic networks?

Approach

Component-based Verification
= Verified Components and Verified Composition
= Composition comes down to arithmetic checks

Process
(1) Model component types

(2) Verify safety conditions for each type
and their composition

= No traffic breakdown

(3) Compose component instances
to form system model

=" Check arithmetic constraints

Result
" Fully verified system model

Andreas Miiller — Johannes Kepler University, Linz, Austria — September 7, 2015

Approach

Component-based Verification
= \erified Components and Verified Composition

= Composition comes down to arithmetic checks

Process -
(1) Model component types

(2) Verify safety conditions for each type
and their composition

= No traffic breakdown

(3) Compose component instances Once per network
to form system model Traffic expert

=" Check arithmetic constraints

Once per type
Verification expert

Result
" Fully verified system model

Andreas Miiller — Johannes Kepler University, Linz, Austria — September 7, 2015

Approach — Components

Generic component

= Inflows
(load, capacity, actual, max)

= Qutflows
(actual, max)

= Controller

Andreas Miiller — Johannes Kepler University, Linz, Austria — September 7, 2015

Approach — Components

Generic component Example:
" Inflows , Traffic Light
(load, capacity, actual, max)

= Qutflows
(actual, max)

= Controller

Andreas Miiller — Johannes Kepler University, Linz, Austria — September 7, 2015

Approach — Components

Generic component Example:
" Inflows _ Traffic Light
(load, capacity, actual, max)
= Qutflows ¢
(actual, max) O
= Controller

Traffic Licht Component

Inflows if (red) o Outflows
cap {load" =in} 3
- U o N
iNgep Mg, lOad if (green) o OUtyce) Outm;
V {load' = in — out} = V

Andreas Miiller — Johannes Kepler University, Linz, Austria — September 7, 2015

Approach — Components

Generic component

= Inflows
(load, capacity, actual, max)

= Qutflows
(actual, max)

= Controller

= Traffic light (one in, one out)

" Flow merge (two in, one out)) >_ :

" Flow split (one in, two out)

Component types [;]

Andreas Miiller — Johannes Kepler University, Linz, Austria — September 7, 2015

Approach — Safety Properties

Safety Property: No traffic breakdown occurs
" No load ever exceeds its capacity
" Must once be verified for each component type

Andreas Miiller — Johannes Kepler University, Linz, Austria — September 7, 2015

Approach — Safety Properties

Safety Property: No traffic breakdown occurs
" No load ever exceeds its capacity
" Must once be verified for each component type

Contracts

T—T
[;] cap = max <Trg * Lnaoer T * lmgy — Max (0, Omax * — rg)) — |hpy] (t < T — load < cap)

>— capl =T * ilpgr Acap2 = T x i20 = [hpm] (< T - (loadl < capl Aload2 < cap?2))

—< cap = max(0, T * (imax — MiN(0lmay, 02max))) = [hps] (¢t < T - load < cap)

Andreas Miiller — Johannes Kepler University, Linz, Austria — September 7, 2015

Approach — Safety Properties

Safety Property: No traffic breakdown occurs
" No load ever exceeds its capacity
" Must once be verified for each component type

Contracts

cap = max (Trg * Uvaoer L.

>— capl =T xilqe Ncap2 =T * i
—< cap = max(0, T * (imax — Min(01may, 02ma

T
)) — |hpy] (t < T — load < cap)

(loadl < capl Aload2 < cap?))

|hps] (t < T - load < cap)

Andreas Miiller — Johannes Kepler University, Linz, Austria — September 7, 2015

Approach — Composition

Compose components
= Connect Outputs to Inputs
" Flow is passed on

. < Omax

" Both components safe

—>Composition is again
a safe component

Rebuild overall network

= Compose components until
desired network is rebuilt

= Check if condition fulfilled

Andreas Miiller — Johannes Kepler University, Linz, Austria — September 7, 2015

Approach — Composition

Compose components
= Connect Outputs to Inputs
" Flow is passed on

. < Omax

" Both components safe

—>Composition is again
a safe component

Rebuild overall network

= Compose components until
desired network is rebuilt

= Check if condition fulfilled

Andreas Miiller — Johannes Kepler University, Linz, Austria — September 7, 2015

Approach — Composition

Compose components
= Connect Outputs to Inputs
" Flow is passed on

. < Omax

" Both components safe

—>Composition is again
a safe component

Rebuild overall network

= Compose components until
desired network is rebuilt

= Check if condition fulfilled

Andreas Miiller — Johannes Kepler University, Linz, Austria — September 7, 2015

Approach — Composition

Compose components
= Connect Outputs to Inputs
" Flow is passed on

. < Omax

" Both components safe

—>Composition is again
a safe component

Rebuild overall network

= Compose components until
desired network is rebuilt

= Check if condition fulfilled

Andreas Miiller — Johannes Kepler University, Linz, Austria — September 7, 2015

Approach — Composition

O max oo 0o max mmaaxx o max

Compose components
= Connect Outputs to Inputs
" Flow is passed on

Theorem: Preserve Safety
= Both components safe

— Composition is again
a safe component

—>Composition is again
a safe component

Rebuild overall network

= Compose components until
desired network is rebuilt

= Check if condition fulfilled

Andreas Miiller — Johannes Kepler University, Linz, Austria — September 7, 2015

Approach — Composition

O max o0 0 max mmaaxx o max

Compose components
= Connect Outputs to Inputs
" Flow is passed on

Theorem: Preserve Safety
" Both components safe

—Composition is again
a safe component

Rebuild overall network

= Compose components until
desired network is rebuilt

= Check if condition fulfilled
= Check if condition fulfilled

Andreas Miiller — Johannes Kepler University, Linz, Austria — September 7, 2015

Implementation — SAFE-T

]
Extensible

Component

Library -

name Abfahrt Ampel

¢ Input
cin 1
imax [1.0]
capacity [10.0]
trg 1
inflow [1.0]
¢ Cutput
cout
amax [1.0]
outflow [1.0]
components
(——

Connect components
(automatic
compatibility check)

Crverflow! (=7.0)

=2 A e
o> 10200 | laad0j=1e=10
e 1= 1= 10

o) =10 = K1)

Al

<Pt Armpess>
Jcadj=1==10

fhim

_I

o = 1o =z

BN

_I

o) = 10 = NI

a0} 0<=10

=<1

o=

=<R3

= Geracke i Rachiss> <R3 TLe>

s)=1e=10

<D Garack + Rachisss
eI} Fe= 10

={<
am = 1a =)

<<R2 |
T 0}

<R 15n
Q== 10

=4,

ST

vent List

--R2 Gerade + Rechts --

max{0)=1, omax({0)=0, omax{1)=1

load(0)=0=10
—R3 Links —

max(0)=0, omax(0)=1, omax(1)=1
load(0}=0=<10

AMeCTed q

Component Select: -

7: OVERFLOW @ *Abfahrt Ampel*
load(0)=10.0

__ Abfahrten —
imax({0)=1, imax(1}=1, omax(0)=0
load(0)=7<10, load{1)=7 <10

- Links -

Affected 1

ax{0)=0, omax{0)=1, omaxi1)=1
load(0)=0=<10

&

4 &5 6 7 @8

o 10 1 ¢

Network Graph

10

20

30 40 50 60

70

10: OVERFLOW @ 'E2-1'
load(0)=10.0, load(1)=10.0

-- L1 Gerade+Rechts -

max(0)=1, omax(0}=1, omax(1)=0

Affected 1

load(0}=0<10
—E2:2-

imax{0)=1, omax(0)=0, omax{1}=1

load(0)=0=<10
G-

imawifi=N imavi1i=N ~nmaviii=n

-

80

90 1

11,0
00

| Analyzed | Charts visible

Implementation — SAFE-T

Add Settings

¢ General - -

name Abfahrt Ampel & " omossm pscpses T
’ mmn-m a Iesac| Q= 1=101

e : 4 3 > |emstem O Amectea <
g —-R2 Gerade + Rechts —-

imax [1.0]
capacity [10.0] : max{0)=1, omax{0)=0, omax(1)=1
trg :

inflow [1.01 - ; load(0)=0=10
¢ Output — — \L ~R3 Links —

cout :
amax R o) = 1o e oty = 10 =N
outflow [1.0] i a i _
= = S n P Garache Rachiess <R3 TLe> 2D Garady + Rechiss» IR 4 load{0)=0<10
Il O} 0== 10 I 0j=1==10 lexsc{ 0} =10 lees{Oj=0==10

=] =< | <k - EOE ettt

o = 1le = ug el Affected q

max(0)=0, omax{0)}=1, omax{1)=1

<R3 =<R2 i e —Abfahrten -
ok Gpe=d imax({0)=1, imax(1}=1, omax(0}=0
¥

[_< o) =1 load{0)=7 =10, load(1)}=F <10

mualm =LtrE-
s 1x(0)=0, omax(0)=1, omax(1}=1
;_] load(0)=0=<10
10: OVERFLOW @ E2-1°

Load on I(0) 10ad(0)=10.0, load{1}=10.0

Affected
-- L1 Gerade+Rechts -

max(0)=1, omax(0}=1, omax(1)=0
load(0}=0=<10
—-E2-2 -

Crverflow! (=7.0)

imax{0)=1, omax(0)=0, omax{1}=1

Network Graph 10ad 010210

G-

11,0
00

| Analyzed | Charts visible

imawifi=N imavi1i=N ~nmaviii=n

90 1

Implementation — SAFE-T

= Yolkshaus B (1}
= Uornach-aunot BP Tankstelle > 5
= n Kreshrik Fagjani =) TTM HandelsgmoH &
SPAR = = P @ @ -
A jou | o
[o & S
3 ° S < ;
Domacher Stub'n € 1 Burgerista . 4/ 3
%}
vangelische.. = &
S £
S 2

& LIBRO
Handelsgesellschaft

& dm drogerie markt
@ Danisches Bettenlager

F’G' a @ Blumen Heidi
= Peter's Platz /Eu“-;'o/‘
€ o
= RadSport Kiesl
b
Baby Butterfly & P.MAX MaBmobel e
o = aades 2
Freista Austria Bau
Oberdsterreich
e] w4 SUBWAY
Freistadter Strale # EI‘:’|E/ Dornach
Relax Musicpub LT Burger Checker
& b3 i)
teal .
adter S Incieplay PizzaMar
°‘ad Com-bet com £ p o Compuware Austria
Shell Tan| Wettgesellschaft 1 = =
Postbriefkasten
S China-Restaurant
Shell Station dieeinrichtung - & Goldener Hof
Manzenreiter b1
' rangelisches
Mel Id h tudentenheim Linz
cDonald's Oster gi! <
g =
2% Q. mbH & Co.XG =
Mostnystrale b @ & o
K3 & tap,
S : or
AC Auto Vertrick und 5 S”WJ
Service Gesellschaft mbH Areistadter Stralte €

-

= Z * 3

3 z 2

= 2 JET Tarksielle

= Forstinger 2. G I i

o ! g U, O e Kneidinger Center

Auto Gunther ;’i 05‘;"""" GmbH ra g -
& A =
Zeppelin Osterreich ®
o \45'\'2&&

Wostnystrabe

| Analyzed |

Charts visible

Implementation — SAFE-T

Add Settings

B >-1<—]

Analysis

¢ General

= ot At
name Abfahrt Ampel fo— [om=10ow | laaeie=i0 SRS
¢ Input ; L e VI ot
18
b o) = 1.8 5 K1)

(")

omponent Select:

Event List

--R2 Gerade + Rechts --

Amectea

imax{0)=1, omax{0)=0, omax{1}=1

imax [1.0] :

capacity [10.0] ; s185u

trg 1 :

inflow (1.0]] i \L

[1.0] ot = 1|8 =K o =1 =5

Simulate Model: ég
|G

How do loads change =l

over time? *

amrl__l<j

o> 10 =18
L =]

load(0)=0=10

—R3 Links —

imax(0)=0, omax(0}=1, omax{1)=1

load(0}=0=<10

w2 Y=
s el 1

_

Load Graph
Load on I(0)

Crverflow! (=7.0)

Analyze model:
How long is it
safe?

t=7:
OVERFLOW@‘C1/

imax(0)=1, omax(0}=1, omax{1)=0

load(0)=0=10

—E2:2-

imax{0)=1, omax(0)=0, omax{1}=1

load(0)=0=10

Analyze model:
Which
components
overflows first?

| Analyzed | Charts vis E

Conclusion

Traffic Network

= X Traffic lights =7 Flow Merges
=Y Flow Splits = N Connections
Monolithic Component-based
Number of Proofs 1 3 + N Checks
(presumably large) (traffic light/split/merge)
Model Size # Variables X*6 +Y*6 + Z*7 6/6/7
LoC X*60 + Y*50 + Z*50 60/50/50
Connect... ...Components Reproof of Composite Arithmetic Check
Change... ...Component or Properties Reproof Entire Model Redo Arithmetic Checks
...Connections Reproof Entire Model Redo Arithmetic Checks
Add... ...Component Type Reproof Entire Model Reproof Component Model

Andreas Miiller — Johannes Kepler University, Linz, Austria — September 7, 2015

Conclusion

Example Network

= 5 Traffic lights =5 Flow Merges
= 5 Flow Splits = 10 Connections
Monolithic Component-based
Number of Proofs 1 3 + 10 Checks
(traffic light/split/merge)
Model Size # Variables 95 6/6/7
LoC 800 60/50/50
Connect... ...Components Reproof of Composite Arithmetic Check
Change... ...Component or Properties Reproof Entire Model Redo Arithmetic Checks
...Connections Reproof Entire Model Redo Arithmetic Checks
Add... ...Component Type Reproof Entire Model Reproof Component Model

Andreas Miiller — Johannes Kepler University, Linz, Austria — September 7, 2015

Number of Proofs

Model Size

...Component Type

Reproof Entire Model

0
Check

ic Checks
ic Checks

Reproof Component Model

&l JKU Gl LLIF

Verified Traffic Networks:
Component-based Verification of
Cyber-Physical Flow Systems

THANKS FOR YOUR ATTENTION!

Related Work

Component-based CPS modeling and verification
" Few handle discrete and continuous CPS aspects
" Formal verification is not considered
" E.g.: Damm et al. [1], Henzinger et al. [2]

Tra ffl cm Od e l S [1] Damm, W.; et al. (2010): Towards Component Based
* Plethora of models e e T
" Mostly purely continuous v T
" Verification not considered et
" E.g.: Greenshields et al. [3], Lighthill et al. [4] 5 A Meating of the Highweay Research Board. |
] _ [4] Lighthill, M. J.;et al. (1955): On Kinematic Waves. II. A
Intelligent traffic management systems brocesdings of the Royel Scicty o tondon.
" Support traffic operators e L O A o o e~
" Complementary to our approach (o) Al . et a1 (2007): Iteligent Traffc Control
" E.g.: Baumgartner et al. [5], Almejalli et al. [6] Ejf;ij;:g“_psg‘;[;ggjtggl}r'\”;jgg'{,{fgﬂ;"s of Evolutionary

Andreas Miiller — Johannes Kepler University, Linz, Austria — September 7, 2015

Future Work

Consider traffic phenomena (e.g., shock-waves)

Introduce further components

Automatically transform networks into components and compositions

Generic Component Definitions
= Currently work-in-progress

Andreas Miiller — Johannes Kepler University, Linz, Austria — September 7, 2015

Definition 1 (Flow Component): Let E be the set of all
edges. A flow component F' 1s defined as a tuple

F'= (In, Out, pax. Omax, [. ¢) where

e In C F is a finite ordered set {In;....,In,} of n input
names.
e Out C F is a finite ordered set {Outy, ..., Out,,} of m

oulpul names.

® inxx : In — RT is a function assigning a non-negative
maximum inflow to each mput in In. We lift to ordered
sets as follows 7. (In) = {ima (Ing) oo dax (Iny,) }-

® omax © Out — RT is a function assigning a non-
negative maximum outflow to each output in Out.
We lift to ordered sets as follows o0, (Out) =

e ¢:In— RT is a function assigning a maximum capacity
(1. e., maximum manageable load) to each input in In. We
lift to ordered sets ¢(In) = {c¢(Iny),...,c(In,)}.

e [: (In,RT,RT (RT)™) — RT is a function calculating
the load (1.e., capacity used) of an input depending on
the current time, the inflow 7., and all outflows o,x.

Andreas Miiller — Johannes Kepler University, Linz, Austria — September 7, 2015

Definition 3 (S{?qumﬁf’az’ Composition): Let

F?® = (In®, Out®, Opaxs (5. ¢%), for s € {1,2}

[]1 ax’? []] dX’

be flow- components w1th dlS_]OlIlt Inputs md outputs (1.e.,

IntNIn? = Out! NOut? = @) and C : Out® — In? be a
partial (1. e., not every output must be mapped when connecting
two components), injective (1. e., every input is only mapped to
one output upon connection of components) function, mapping
connected outputs and inputs between the two components. We
define @ as the domain of C (i.e.. all values = € Out® such
that C(x) 1s defined) and Z as the the image of C (i.e., all
values y € In? such that y = C(x) holds for some z € Out").

We define the sequential composition F? = F'1 e—oC E?2
of flow components F* and F? by connecting outputs of F*
to inputs of F# according to a function C, with |O| > 0, where

F? = (In Out®, i3 . f{m,lg,cg) with

In® = (In*\ Z) U In*
Out® = Out® U (Out’ \ 0)

ng = |In3| = |In1| +
ms = |Out3| — |Out

|
I'[]d}L In — R

, with

— |C| and
Out2| —|C]|

VIn, € In' . -.m,m(lnk) = imm(ln;f) and

Vln; ceIn>NIn’

- Out — RT, w1th
YOut, € Out! N Out® .
Oﬁlﬂx (Outl) — OHIHX (Olltf)’

I'[] ax

YOut; € Out?

In;) =

' ?' []l'l}L(

M IX(

Outk)

H]l}{.(

In;)

= o, . (Out;,) and

M 1}{.(

B3 (In,RY, R, (RT)™) — RT, with

VIng € In* . [° (Ing uﬁm (Ing) , o2
= /! (In i (In). 0

VIn; € In® N In?

3 In —» RT, with VIn, € In!
VIn; € In? N In?

[]'1 dx

[]'1 dx (Out))

(Out)) and

33 (In t. zmm (In;) , 0 mm (Out))

= 1% (Ing, t, 7, (Ing

) I'l] dax (Out))

. c3(Ing,) = ¢(Ing,) and

A3 (Ing) = 2(Ing) .

Andreas Miiller — Johannes Kepler University, Linz, Austria — September 7, 2015

Model 1 Traffic flow in a traffic light

il = (ctrly; plant,)”
ctrly = if (t. = T.) then 1. :=0; g0 :=(go — 1)2 fi
tact :=*; T(0 < dger < Timax);
if (I > 0) then 04t := Omax
else 0,¢ := Min(Zaet, Omax) fi;
plant; = 1" = iy — 04 - g0, ' = 1.1, =1
&t. <T- N[>0

(D)
(2)
(3)
(4)
(S)
(6)
(7)

Proposition 1 (Traffic Light Load Safety): We want the
traffic light to be load-safe in order to avoid an overflow which
would result in a traffic breakdown. A flow component with
one nput and one output is load-safe per Def. 2 if

l (Inlzt-. ! max (Inl) 3 {Omax (Outl)}) <c (11'11)

Thus, a traffic light 1s safe (/) if it is load-safe for up to a
maximum time 7.

y=(t<T =1 <c)

When started in a safe initial state ¢, the traffic light compo-
nent 7/ ensures load safety v

O —> [f [] Uy (8)
where

oy =t=0AN0<t.<T.ANT.>0ANT >0A1l=0

, I 1T —T.
Ne > Hla-X(Tc * {max - 1T Imax — Hlax 0 Omax * 5)

f\UE'inmf"\UEOnmf\go'(80—1):0 -

Andreas Miiller — Johannes Kepler University, Linz, Austria — September 7, 2015

Model 2 Traffic flow in a traffic flow merge component

tfim = (ctrlygm; plantg,)”
Ctrlyg, = road == x; 7(0 < road < 1);

ilact ;=% 7(0 < ilaer < ilmax);
12000 1= %7 7(0 < 12 < 120500);
if (11 >0V I[2>0)then 0, := Omax
else 04 := min(il,e + 72a¢ts Omax) i

plant,;, = 11" = ilye — Oaer - (1 — road), t' = 1.
12/ = i24t — Oact - Foad & 11 > 0ONI12 >0

(9)
(10)
(1)
(12)
(13)
(14)
(15)
(16)

Proposition 2 (Merge Load Safety): We want the traffic
flow merge component to be load-safe in order to avoid an
overflow which would result in a traffic breakdown. A flow
component with two inputs and one output is load safe if

[(Ing, , iy (Ing) . {Omax (Outy)}) < ¢ (In;) for i € {1,2} .

Thus, a traffic flow merge is safe (i) if it is load-safe for
up o a maximum time 7

Un= (t<T = (I1 <clANI2<e2)) .

A traffic flow merge component #fim ensures load safety s,
cf. (17), when started in a safe initial state o, (18).

Oufin — (] oy (17)
@{fm =t=0AN0<1lpx ANO < ianx A O < Omax
Acl>T il A2 >T 12 (18)

/\l]:!2:0/\0<_iroad£1

Andreas Miiller — Johannes Kepler University, Linz, Austria — September 7, 2015

Model 3 Traffic flow in a traffic flow split component

tfs = (ctrl; plant)”

ctrlgs = tac =% T(0 < daet < max);
road == x; 7(0 < road < 1);
if (I > 0) then ol := 0lnax; 024ct = 02max
else 0l,¢ := min(Zae, 01max):

024ct := MiN(Zaet, 02max) fi;
plant; = I" = dget — 0laer + (1 — road) — 024 - road,

t'=1&1>0

(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)

Proposition 3 (Split Load Safety): We want traffic flow
split components to be load-safe in order to avoid an overflow
which would result in a traffic breakdown. A flow component
with one input and two outputs is load-safe per Def. 2 if

E(Il‘ll t, ?fm'ax II’ll {Omax Outl) Omax (Outg)}) < C(Il‘ll)

Thus, a traffic flow split component is safe 1y if it is load-safe
for up to a maximum time 7.

;fs_(t<T_}t’<C)

When started in a safe initial state ¢, the traffic flow split
component fs ensures load safety /4

Oufs — [1S]tlygs (27)
where
Gy =t =0AT > 0AN0 <ty N0 < 0l pax A0 < 024
A ¢ > max (OTT + (Zmax — min (0. onax)))
ANl=0AN0<road <1 .

Andreas Miiller — Johannes Kepler University, Linz, Austria — September 7, 2015

