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Motivation, real world applications
Survey of real world methods

New procedure:
@ Grobner bases for the Real Nullstellensatz
@ decides quantifier-free real arithmetic

Empirical evaluation:
@ Comparison of various decision procedures for real arithmetic

Conclusion
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Verification in the KeYmaera system:

@ Hybrid systems
@ Mathematical algorithms in real or floating-point arithmetic

@ Geometric problems

T

RBC

e

T

far ST neg

SB  cor

MA

3/18



806

% KeYmaera -- Prover

o

File View Proof Options Toaols

|[;, Run Simplif\r| | |% Goal Back| ** Reuse

About

-

=]

Proof Search Strategy rRuIes r DLOptions |

Proof r Goals r User Constraint

Proof

Proof Tree o
5] Invariant Initially Valid

=] Body Preserves Invariant
B [l Case 1

v.00>=0&(t5.0=0&ep
S 0< 0

[«]

[ I [ [+]

viA2e=2%h* (n-z),

{z'=v,v =3, t' =1, v>=0& t == egp}

\JvaAd2e=2%hb%*(n-z)

Proved.
Statistics:
Nodes:50
Branches: 6

E@ 3- @ Proof closed (O
|[-Inner Node @

AT I

[ »

[+]

[4]

Kﬁ)’ Strategy: Applied 49 rules (13.9 sed, closed 6 goals, 0 remaining

4/18



Regular program Specification
(e.g., hybrid system) (pre/post-conditions)
Formula in

dynamic logic

S ¢ Handling of
elq”f” differential
calculus equations

Verification conditions
in real arithmetic
(=I ¢I <' s)

v

Decision procedures
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1930 First quantifier elimination procedure by Tarski
(Non-elementary)

1965 Buchberger introduces Grébner bases
1973 Real Nullstellensatz and Positivstellensatz by Stengle

1975 Cylindrical algebraic decomposition (CAD) by Collins
(Doubly exponential)

1983 Cohen-Hérmander elimination procedure

2003 Parrilo introduces semidefinite programming for the Posi-
tivstellensatz
(Later refined by Harrison)

2005 Tiwari’s polynomial simplex method
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Inequalities and disequations can be eliminated:
f£g = 3z.(f—-9)z=1
f>g = 3z.f-g=2°
f>g9 = 3z.(f—g)z22 =1

\

Verification conditions Systems of
(=, # <, <) equations (=)
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Goal: prove unsatisfiability of:

/\l‘,‘zo
i

v

Verification conditions Systems of
(=, # <, <) equations (=)
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Witnesses for unsatisfiability:

(Zs,-t,-) =1 =\t =0 unsatisfiable
i i

How to determine coefficients s;?

\

Verification conditions Systems of
(=, # <, <) equations (=)
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Witnesses for unsatisfiability:

(ZS,-t,-) =1 =\t =0 unsatisfiable
i i

How to determine coefficients s;?

Need some more notation:

@ Ideal generated by {ty,...,t,} C Q[X1,..., Xp]:

(ti,....th) = {Zsiti|31,--
i

\

Verification conditions Systems of
(=, # <, <) equations (=)

LS e, X))

—» 1€ (t, .. th)?
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Grébner bases to solve the ideal membership problem:
@ Monomial ordering <: admissible total well-founded ordering on

monomials

@ Reduction of a polynomial sw.r.t. B= {t;,...,t}:

S = S+ ut

> S+ U t,’1 + Ugt,'2

—
~— redgs

@ Bis called Grobner basis if redg s = 0 for all s € (B)

\

Verification conditions
(=, #, <, )

Systems of
equations (=)

—» 1€ (t, .. th)?
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Grébner bases to solve the ideal membership problem:
@ Monomial ordering <: admissible total well-founded ordering on

monomials

@ Reduction of a polynomial sw.r.t. B= {t,...

@ Bis called Grobner basis if redg s = 0 for all s € (B)

\

S = S+ ut
> S+U1tj1-|-U2t,'2

—
~— redgs

Verification conditions
(=, #, <, )

Systems of
equations (=)

7tn}:

Grobner
bases B

—» red 1 =07
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Method is sound and complete over complex numbers:

—Ix € C": \ti(x) =0 iff 1€ (ty,... 1)
i

= Method cannot be complete over reals:

eg. x*+1=0 s unsatisfiable
but (x2+1) does not contain a unit

We present an extension that is complete over the reals
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-Ix € R": A\ ti(x) =0 iff

I

331,...,Sk€R[X‘|,...,Xm]:

14824+ +s2e(ly,...,t)

v

Verification conditions
(=I $I <V S)

Systems of
equations (=)

Grobner
bases B

—» red 1 =07
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-Ix € R": A\ ti(x) =0 iff
i

381,...,Sk€R[X‘|,...,Xm]:
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Systems of
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Pick sum of
squares s
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-Ix € R": A\ ti(x) =0 iff

I

381,...,Sk€R[X‘|,...,Xm]:

14824+ +s2e(ly,...,t)

How to pick sum of squares s2 + - - - + s2?

v

Verification conditions
(=I $I <V S)

Systems of
equations (=)

Grobner
bases B

red(1+s)=07?
A

Pick sum of
squares s

/;;Fed’.l{()?
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Observation: [Parrilo, 2003]
Sums of squares can be represented as scalar products

)5 )0)

E.g.

2x2 —2xy +y? = x> 4 (x — y)?

v

Verification conditions
(=, # <, )

Systems of
equations (=)

Grobner
bases B
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Pick sum of
squares s

/;;Fed’l{()?
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p € R[Xq,..
(and vice versa).

Every sum of squares can be represented as p'Xp, where
., Xm]¥ and X is positive semi-definite

Matrix X is called positive semi-definite if

@ X is symmetric

@ x!Xx > 0forall x € R".
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Every sum of squares can be represented as p'Xp, where
p € R[Xi,...,Xn]* and X is positive semi-definite
(and vice versa).

Matrix X is called positive semi-definite if
@ X is symmetric
@ x!Xx > 0forall x € R".

Solvable with red(i_'_s): ?
ositive : : .
se%fde}imw Constraints Pick symbolic sum A

< | red(1+p'Qp) = 0 of squares p'Qp Pick Aum of

+ \ sgliares s
/ )
Verification conditions Systems of Grébner 7@(,1{()?

(=, # <, ) equations (=) bases B
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Constraint solving by semidefinite programming
(convex optimisation):
@ Has been used successfully in combination with Positivstellensatz
[Parrilo, 2003; Harrison, 2007]

Solvable with
Q positive
semi-definite?
—

v

Constraints

red(1+pQp) = 0

Pick symbolic sum
of squares p'Qp

N

Verification conditions
(=, # <, )

Systems of

equations (=)

Grobner
bases B

red(i+s)= ?
A

ol

Pick sum of
squares s
\

7!5611’1{0?
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Prove unsatisfiability of:

x>y,z>0,yz>xz
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Prove unsatisfiability of:
X>y,z>0,yz>xz
Translated to system of equations:

X—y=a, z="b? (yz—xz)c® =1
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Prove unsatisfiability of:
x>y, z>0,yz>xz
Translated to system of equations:
X—y=a z="b (yz—xz)c® =1
Corresponding Grdbner basis:

B = {a&—x+y, b®—z xzc? — yzc® + 1}
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Prove unsatisfiability of:
X>y,z>0,yz>xz
Translated to system of equations:
X—y=a z="b (yz—xz)c® =1
Corresponding Grébner basis:
B = {&—x+y, b?—z xzc® — yzc® + 1}

Pick basis monomials and symmetric matrix Q:

1 Qi1 Q12 13
p=|a Q= |g2 P2 @3
abc d13 Q3 Q33

p'Qp = q111% +2q1 28 + 2q; 3abc + 2qo 3@’ be + gz 3@ b*c?

10/18



thp = Qi1 12 + 2q4 ’232 + 2@y zabc + 2QQ,333bC + q3,3a2b202
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p'Qp = q111% +2q1 28 + 2q; 3abc + 2qp 3@’ be + gz 3@ b*c?
Reduce 1 + p'Qp w.r.t. B:

redg(1+p'Qp) = 1+ q1,1 — Gaa+ 201 2X — 2G4 2y +
2q zabc + 2g» zabex — 2qp sabey
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Reduce 1 + p'Qp w.r.t. B:

redg(1+p'Qp) = 1+ q1,1 — Gaa+ 201 2X — 2G4 2y +
2q zabc + 2g» zabex — 2qp sabey

Set up semidefinite program redg(1 + p!Qp) = 0:

1+q11—q3=0 —2q12=0 203 =0
2q12=0 2q13=0 —2G23=0
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p'Qp = q111% +2q1 28 + 2q; 3abc + 2qp 3@’ be + gz 3@ b*c?
Reduce 1 + p'Qp w.r.t. B:

redg(1+p'Qp) = 1+ q1,1 — Gaa+ 201 2X — 2G4 2y +
2q zabc + 2g» zabex — 2qp sabey

Set up semidefinite program redg(1 + p'Qp) = 0:

1+q11—q3=0 —2q12=0 203 =0
2012 =0 2q13=0 —2023=0
Solve the program: g3 3 = 1 and g;; = 0 for all (/, /) # (3,3)
1+p'Qp = 1+ (abc)? € (B)
N —

Witness for unsatisfiability
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@ Sound + complete method for quantifier-free real arithmetic
@ Sums of squares as certificates (“proof producing”)

@ Termination criteria can be given — decision procedure

@ In practice:
We enumerate basis monomials with ascending degree

@ Existing solvers for semidefinite programming are numeric
(we use CSDP)

@ Solution:
Solve program numerically, then round to exact solution
[Harrison, 2007]

12/18



Pre-processing of Grébner basis is a good idea:
@ Rewriting with polynomials x + t
@ Rewriting with polynomials X2 — aym? — - -- — apm?
(with aj > 0)
@ Elimination of polynomials xy — 1, x" + t
@ Splitting polynomials aym? + - - - + a,m2 € B with a; > 0
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Positivstellensatz methods [Parrilo, 2003; Harrison, 2007]:

@ Positivstellensatz [Stengle, 1973]:
Extension of Real Nullstellensatz for inequalities

@ Differences: Groébner bases, simpler certificates

Tiwari’s method [Tiwari, 2005]:

@ Differences: less heuristic = completeness,
semidefinite programming

Proof-producing quantifier elimination
[McLaughlin, Harrison, 2005]:

@ Differences: universal fragment vs. full real arithmetic,
performance

Numeric methods:

@ Differences: soundness + completeness
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@ Grobner basis approaches

o GM, GO: pure Grdbner bases (inequalities — equations)
o GK: Grobner bases combined with Fourier-Motzkin
@ GRN: Grobner bases for the Real Nullstellensatz

@ Quantifier elimination procedures
e QQ, QM, QR(: cylindrical algebraic decomposition (CAD)
@ QR;: CAD + virtual substitution
e QC, QH: Cohen-Hbérmander

@ Semidefinite programming for the Positivstellensatz

e PH: Harrison’s implementation
e PK: own implementation in KeYmaera

@ Case studies in hybrid systems verification
@ Verification of mathematical algorithms, geometry
@ (A few) synthetic problems
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New decision procedure for quantifier-free real arithmetic:
@ Grobner bases for the Real Nullstellensatz
@ Procedure is competitive with CAD + produces certificates

@ Current implementation is straightforward
= Much room for improvements

Comparison of symbolic methods for real arithmetic:
@ Grobner bases
@ Quantifier elimination
@ Positivstellensatz + Real Nullstellensatz methods

@ Optimise our procedure
@ Empirical comparison with Tiwari’s method
@ Integration with methods to check satisfiability
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Thanks for your attention!
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