#### Real World Verification

André Platzer<sup>1</sup> Jan-David Quesel<sup>2</sup> Philipp Rümmer<sup>3</sup>

<sup>1</sup>Carnegie Mellon University, Computer Science Department

<sup>2</sup>University of Oldenburg, Department of Computing Science

<sup>3</sup>Oxford University Computing Laboratory

22nd International Conference on Automated Deduction 7 August 2009

#### Motivation, real world applications

#### Survey of real world methods

#### New procedure:

- Gröbner bases for the Real Nullstellensatz
- decides quantifier-free real arithmetic

#### Empirical evaluation:

Comparison of various decision procedures for real arithmetic

#### Conclusion



### Motivation + applications

#### Verification in the KeYmaera system:

- Hybrid systems
- Mathematical algorithms in real or floating-point arithmetic
- Geometric problems





### ReYmaera





## R Overall verification approach





## R Overall verification approach





### Short history of symbolic methods in real arithmetic

| 1930 | First quantifier elimination procedure by Tarski (Non-elementary)                                  |
|------|----------------------------------------------------------------------------------------------------|
| 1965 | Buchberger introduces Gröbner bases                                                                |
| 1973 | Real Nullstellensatz and Positivstellensatz by Stengle                                             |
| 1975 | Cylindrical algebraic decomposition (CAD) by Collins (Doubly exponential)                          |
| 1983 | Cohen-Hörmander elimination procedure                                                              |
| 2003 | Parrilo introduces semidefinite programming for the Positivstellensatz (Later refined by Harrison) |
| 2005 | Tiwari's polynomial simplex method                                                                 |



## $\mathcal{R}$ Short history of symbolic methods in real arithmetic

| 1930 | First quantifier elimination procedure by Tarski (Non-elementary)                                  |
|------|----------------------------------------------------------------------------------------------------|
| 1965 | Buchberger introduces Gröbner bases                                                                |
| 1973 | Real Nullstellensatz and Positivstellensatz by Stengle                                             |
| 1975 | Cylindrical algebraic decomposition (CAD) by Collins (Doubly exponential)                          |
| 1983 | Cohen-Hörmander elimination procedure                                                              |
| 2003 | Parrilo introduces semidefinite programming for the Positivstellensatz (Later refined by Harrison) |
| 2005 | Tiwari's polynomial simplex method                                                                 |



## R Gröbner bases for quantifier-free real arithmetic



Verification conditions  $(=, \neq, <, \leq)$ 



### Gröbner bases for quantifier-free real arithmetic

Inequalities and disequations can be eliminated:

$$f \neq g \equiv \exists z. (f - g)z = 1$$
  
 $f \geq g \equiv \exists z. f - g = z^2$   
 $f > g \equiv \exists z. (f - g)z^2 = 1$ 





## R Gröbner bases for quantifier-free real arithmetic

Goal: prove unsatisfiability of:

$$\bigwedge_i t_i = 0$$





### Gröbner bases for quantifier-free real arithmetic

Witnesses for unsatisfiability:

$$\left(\sum_{i} s_{i} t_{i}\right) = 1 \implies \bigwedge_{i} t_{i} = 0$$
 unsatisfiable

How to determine coefficients  $s_i$ ?





### Gröbner bases for quantifier-free real arithmetic

Witnesses for unsatisfiability:

$$\left(\sum_{i} s_{i} t_{i}\right) = 1 \implies \bigwedge_{i} t_{i} = 0$$
 unsatisfiable

How to determine coefficients  $s_i$ ?

Need some more notation:

• Ideal generated by  $\{t_1, \ldots, t_n\} \subseteq \mathbb{Q}[X_1, \ldots, X_n]$ :

$$(t_1,\ldots,t_n) = \left\{\sum_i s_i t_i \mid s_1,\ldots,s_n \in \mathbb{Q}[X_1,\ldots,X_n]\right\}$$



Systems of equations (=)  $\longrightarrow$  1  $\in$  ( $t_1$ , ...,  $t_n$ )?



### A Gröbner bases for quantifier-free real arithmetic

#### Gröbner bases to solve the ideal membership problem:

- Monomial ordering ≺: admissible total well-founded ordering on monomials
- Reduction of a polynomial s w.r.t.  $B = \{t_1, \dots, t_n\}$ :

$$s \succ s + u_1 t_{i_1}$$
  
 $\succ s + u_1 t_{i_1} + u_2 t_{i_2}$   
 $\succ \cdots$   
 $\succ \text{red}_B s$ 

• B is called Gröbner basis if  $red_B s = 0$  for all  $s \in (B)$ 





### A Gröbner bases for quantifier-free real arithmetic

#### Gröbner bases to solve the ideal membership problem:

- Monomial ordering ≺: admissible total well-founded ordering on monomials
- Reduction of a polynomial s w.r.t.  $B = \{t_1, \dots, t_n\}$ :

$$s \succ s + u_1 t_{i_1}$$
  
 $\succ s + u_1 t_{i_1} + u_2 t_{i_2}$   
 $\succ \cdots$   
 $\succ \text{red}_B s$ 

• B is called Gröbner basis if  $red_B s = 0$  for all  $s \in (B)$ 





Method is sound and complete over complex numbers:

#### Theorem (Hilbert's Nullstellensatz)

$$\neg \exists x \in \mathbb{C}^n : \bigwedge_i t_i(x) = 0 \quad iff \quad 1 \in (t_1, \dots, t_n)$$

⇒ Method cannot be complete over reals:

e.g. 
$$x^2 + 1 = 0$$
 is unsatisfiable  
but  $(x^2 + 1)$  does not contain a unit

We present an extension that is complete over the reals

### P The Real Nullstellensatz

#### Theorem (Stengle's Real Nullstellensatz, 1973)

$$eg \exists x \in \mathbb{R}^n : \bigwedge t_i(x) = 0 \quad iff$$

$$\exists s_1, \ldots, s_k \in \mathbb{R}[X_1, \ldots, X_m]: 1 + s_1^2 + \cdots + s_k^2 \in (t_1, \ldots, t_n)$$





### The Real Nullstellensatz

#### Theorem (Stengle's Real Nullstellensatz, 1973)

$$\neg \exists x \in \mathbb{R}^n : \bigwedge_i t_i(x) = 0$$
 iff

$$\exists s_1,\ldots,s_k \in \mathbb{R}[X_1,\ldots,X_m]: \ 1+s_1^2+\cdots+s_k^2 \in (t_1,\ldots,t_n)$$



Verification conditions  $(=, \neq, <, \leq)$ 

Systems of equations (=)

Gröbner

bases B

### P The Real Nullstellensatz

#### Theorem (Stengle's Real Nullstellensatz, 1973)

$$\neg \exists x \in \mathbb{R}^n : \bigwedge_i t_i(x) = 0$$
 iff

 $(=, \neq, <, \leq)$ 



 $\exists s_1, \ldots, s_k \in \mathbb{R}[X_1, \ldots, X_m] : 1 + s_1^2 + \cdots + s_k^2 \in (t_1, \ldots, t_n)$ 

Verification conditions Systems of

squares s Gröbner bases B

9/18

### The Real Nullstellensatz

Observation: [Parrilo, 2003] Sums of squares can be represented as scalar products

E.g.

 $(=, \neq, <, \leq)$ 

$$2x^{2}-2xy+y^{2} = x^{2}+(x-y)^{2} = \begin{pmatrix} x \\ y \end{pmatrix}^{t} \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$



bases B

9/18

### R The Real Nullstellensatz

#### Lemma

Every sum of squares can be represented as  $p^t X p$ , where  $p \in \mathbb{R}[X_1, \dots, X_m]^k$  and X is positive semi-definite (and vice versa).

Matrix X is called positive semi-definite if

- X is symmetric
- $x^t X x \ge 0$  for all  $x \in \mathbb{R}^n$ .



red(1+s)=0?

### 

#### Lemma

Every sum of squares can be represented as  $p^t X p$ , where  $p \in \mathbb{R}[X_1, \dots, X_m]^k$  and X is positive semi-definite (and vice versa).

Matrix X is called positive semi-definite if

- X is symmetric
- $x^t X x \ge 0$  for all  $x \in \mathbb{R}^n$ .



### 

Constraint solving by semidefinite programming (convex optimisation):

 Has been used successfully in combination with Positivstellensatz [Parrilo, 2003; Harrison, 2007]



## 

Prove unsatisfiability of:

$$x \ge y, \ z \ge 0, \ yz > xz$$

## R Example

Prove unsatisfiability of:

$$x \ge y$$
,  $z \ge 0$ ,  $yz > xz$ 

Translated to system of equations:

$$x - y = a^2$$
,  $z = b^2$ ,  $(yz - xz)c^2 = 1$ 

Prove unsatisfiability of:

$$x \ge y$$
,  $z \ge 0$ ,  $yz > xz$ 

Translated to system of equations:

$$x - y = a^2$$
,  $z = b^2$ ,  $(yz - xz)c^2 = 1$ 

Corresponding Gröbner basis:

$$B = \{a^2 - x + y, b^2 - z, xzc^2 - yzc^2 + 1\}$$

Prove unsatisfiability of:

$$x \ge y$$
,  $z \ge 0$ ,  $yz > xz$ 

Translated to system of equations:

$$x - y = a^2$$
,  $z = b^2$ ,  $(yz - xz)c^2 = 1$ 

Corresponding Gröbner basis:

$$B = \{a^2 - x + y, b^2 - z, xzc^2 - yzc^2 + 1\}$$

Pick basis monomials and symmetric matrix Q:

$$p = \begin{pmatrix} 1 \\ a^2 \\ abc \end{pmatrix} \qquad Q = \begin{pmatrix} q_{1,1} & q_{1,2} & q_{1,3} \\ q_{1,2} & q_{2,2} & q_{2,3} \\ q_{1,3} & q_{2,3} & q_{3,3} \end{pmatrix}$$

$$p^{t}Qp = q_{1,1}1^{2} + 2q_{1,2}a^{2} + 2q_{1,3}abc + 2q_{2,3}a^{3}bc + q_{3,3}a^{2}b^{2}c^{2}$$

$$p^{t}Qp = q_{1,1}1^{2} + 2q_{1,2}a^{2} + 2q_{1,3}abc + 2q_{2,3}a^{3}bc + q_{3,3}a^{2}b^{2}c^{2}$$

$$p^tQp = q_{1,1}1^2 + 2q_{1,2}a^2 + 2q_{1,3}abc + 2q_{2,3}a^3bc + q_{3,3}a^2b^2c^2$$
  
Reduce  $1 + p^tQp$  w.r.t.  $B$ :  
 $red_B(1 + p^tQp) = 1 + q_{1,1} - q_{3,3} + 2q_{1,2}x - 2q_{1,2}y + 2q_{1,3}abc + 2q_{2,3}abcx - 2q_{2,3}abcy$ 

$$p^{t}Qp = q_{1,1}1^{2} + 2q_{1,2}a^{2} + 2q_{1,3}abc + 2q_{2,3}a^{3}bc + q_{3,3}a^{2}b^{2}c^{2}$$

Reduce  $1 + p^t Qp$  w.r.t. *B*:

$$red_B(1 + p^t Qp) = 1 + q_{1,1} - q_{3,3} + 2q_{1,2}x - 2q_{1,2}y + 2q_{1,3}abc + 2q_{2,3}abcx - 2q_{2,3}abcy$$

Set up semidefinite program  $red_B(1 + p^t Qp) = 0$ :

$$1 + q_{1,1} - q_{3,3} = 0$$
  $-2q_{1,2} = 0$   $2q_{2,3} = 0$   $2q_{1,2} = 0$   $-2q_{2,3} = 0$ 

$$p^{t}Qp = q_{1,1}1^{2} + 2q_{1,2}a^{2} + 2q_{1,3}abc + 2q_{2,3}a^{3}bc + q_{3,3}a^{2}b^{2}c^{2}$$

Reduce  $1 + p^t Qp$  w.r.t. *B*:

$$red_B(1 + p^t Qp) = 1 + q_{1,1} - q_{3,3} + 2q_{1,2}x - 2q_{1,2}y + 2q_{1,3}abc + 2q_{2,3}abcx - 2q_{2,3}abcy$$

Set up semidefinite program  $red_B(1 + p^t Qp) = 0$ :

$$1 + q_{1,1} - q_{3,3} = 0$$
  $-2q_{1,2} = 0$   $2q_{2,3} = 0$   $2q_{1,3} = 0$   $-2q_{2,3} = 0$ 

Solve the program:  $q_{3,3}=1$  and  $q_{i,j}=0$  for all  $(i,j)\neq (3,3)$ 

$$1 + p^t Qp = \underbrace{1 + (abc)^2}_{\text{Witness for unsatisfiability}} \in (B)$$



### A Gröbner bases for the Real Nullstellensatz (GRN)

#### Properties of the procedure

- Sound + complete method for quantifier-free real arithmetic
- Sums of squares as certificates ("proof producing")
- Termination criteria can be given → decision procedure
- In practice: We enumerate basis monomials with ascending degree

#### Numerical issues

- Existing solvers for semidefinite programming are numeric (we use CSDP)
- Solution: Solve program numerically, then round to exact solution [Harrison, 2007]

### **Optimisations**

Pre-processing of Gröbner basis is a good idea:

- Rewriting with polynomials x + t
- Rewriting with polynomials  $x^2 \alpha_1 m_1^2 \cdots \alpha_n m_n^2$  (with  $\alpha_i > 0$ )
- Elimination of polynomials xy 1,  $x^n + t$
- Splitting polynomials  $\alpha_1 m_1^2 + \cdots + \alpha_n m_n^2 \in B$  with  $\alpha_i > 0$

## R Comparison with related work

#### Positivstellensatz methods [Parrilo, 2003; Harrison, 2007]:

- Positivstellensatz [Stengle, 1973]:
   Extension of Real Nullstellensatz for inequalities
- Differences: Gröbner bases, simpler certificates

#### Tiwari's method [Tiwari, 2005]:

 Differences: less heuristic ⇒ completeness, semidefinite programming

#### Proof-producing quantifier elimination

[McLaughlin, Harrison, 2005]:

 Differences: universal fragment vs. full real arithmetic, performance

#### Numeric methods:

• Differences: soundness + completeness

### $hline{\mathcal{R}}$ Empirical comparison of decision procedures

- Gröbner basis approaches
  - GM, GO: pure Gröbner bases (inequalities → equations)
  - GK: Gröbner bases combined with Fourier-Motzkin
  - GRN: Gröbner bases for the Real Nullstellensatz
- Quantifier elimination procedures
  - QQ, QM, QR<sub>c</sub>: cylindrical algebraic decomposition (CAD)
  - QR<sub>s</sub>: CAD + virtual substitution
  - QC, QH: Cohen-Hörmander
- Semidefinite programming for the Positivstellensatz
  - PH: Harrison's implementation
  - PK: own implementation in KeYmaera

#### Benchmarks: 100 problems taken from ...

- Case studies in hybrid systems verification
- Verification of mathematical algorithms, geometry
- (A few) synthetic problems

# R Experiments



### R Conclusion

New decision procedure for quantifier-free real arithmetic:

- Gröbner bases for the Real Nullstellensatz
- Procedure is competitive with CAD + produces certificates
- Current implementation is straightforward
  - ⇒ Much room for improvements

#### Comparison of symbolic methods for real arithmetic:

- Gröbner bases
- Quantifier elimination
- Positivstellensatz + Real Nullstellensatz methods

#### Future work

- Optimise our procedure
- Empirical comparison with Tiwari's method
- Integration with methods to check satisfiability

### Thanks for your attention!