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Abstract. Scalable handling of real arithmetic is a crucial part of the
verification of hybrid systems, mathematical algorithms, and mixed ana-
log/digital circuits. Despite substantial advances in verification tech-
nology, complexity issues with classical decision procedures are still a
major obstacle for formal verification of real-world applications, e.g.,
in automotive and avionic industries. To identify strengths and weak-
nesses, we examine state of the art symbolic techniques and implemen-
tations for the universal fragment of real-closed fields: approaches based
on quantifier elimination, Gröbner Bases, and semidefinite programming
for the Positivstellensatz. Within a uniform context of the verification
tool KeYmaera, we compare these approaches qualitatively and quanti-
tatively on verification benchmarks from hybrid systems, textbook algo-
rithms, and on geometric problems. Finally, we introduce a new decision
procedure combining Gröbner Bases and semidefinite programming for
the real Nullstellensatz that outperforms the individual approaches on
an interesting set of problems.

Keywords: real-closed fields, decision procedures, hybrid systems, soft-
ware verification

1 Introduction

The field of formal verification has the important ambition to check the behavior
of systems by either proving the correct functioning of the system or finding bugs
in its design. For several classes of systems that come from real-world domains,
reasoning about real quantities is an inherent aspect of the problem. This in-
cludes (i) embedded systems or complex physical systems, (ii) formal analysis
of mixed discrete/analog effects in chip design, or (iii) mathematical textbook
algorithms, numerical algorithms or floating point arithmetic in standard pro-
grams. For domains (i)–(ii), hybrid systems are a common model, i.e., systems
governed by interacting discrete and continuous transitions in the state space. In
these domains, the need for real arithmetic reasoning comes from the temporal
evolution of the continuous part of the state space, e.g., positions, velocities, ana-
log signals. For case (iii), real arithmetic occurs in the computations on program
data or are used as a first approximation for floating-point arithmetic.
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By a famous result due to Tarski [1], real arithmetic is decidable in the
sense that (the first-order theory of) real arithmetic is equivalent to the first-
order theory of real-closed fields, which is decidable by quantifier elimination
(i.e., the process of replacing quantified formulas equivalently by quantifier-free
formulas). Numerous algorithmic improvements have been made both for the
handling of basic real arithmetic and for specific verification procedures for the
problem domains (i)–(iii). However, for a large number of real-world systems,
the underlying problems in real arithmetic still have a prohibitive complexity for
quantifier elimination. Even numerical procedures for real arithmetic [2] suffer
from the curse of dimensionality limiting their scalability.

In this paper we compare three state of the art approaches to reasoning about
real-arithmetic in real-closed fields based on: quantifier elimination [3, 4] Gröbner
Bases [5], and semidefinite programming [6] for the Positivstellensatz [7]. Quan-
tifier elimination is defined for full quantified (polynomial) nonlinear real arith-
metic. The other approaches are for the universal fragment, i.e., formulas with
a universal quantifier prefix. We discuss strengths and weaknesses of these ap-
proaches for formal verification and compare multiple algorithms and imple-
mentations on a set of benchmarks originating from real verification problems or
interesting instances of real arithmetic. To obtain representative experimental
results, we integrate all these approaches within a single uniform framework of
the automated theorem prover KeYmaera for hybrid systems [8].

Finally, we introduce a new decision procedure for the universal fragment of
real-closed fields that combines Gröbner Basis computations with semidefinite
programming for the real Nullstellensatz [7] to avoid the scalability issues with
semidefinite programming for the Positivstellensatz. Our algorithm outperforms
the other algorithms on an interesting set of benchmarks.

With the goal of finding out which approaches are most suitable for real
world verification problems, we provide an experimental evaluation for a wide
range of techniques for real arithmetic. We contrast multiple state of the art
approaches and different implementations:

1. Quantifier elimination for real-closed fields in Mathematica, QEPCAD B [9],
Redlog [10], and HOL Light [11];

2. Real arithmetic handling with Gröbner Bases using external procedures in
Mathematica, the Orbital library, and internally with KeYmaera proof rules;

3. Semidefinite programming relaxations [6] for the Positivstellensatz [7] using
the CSDP solver [12] in our own implementation and in HOL Light [13];

4. Our new algorithm combining Gröbner Bases and semidefinite programming
for the real Nulstellensatz [7] using CSDP [12] and the Orbital library.

In this paper, we consider problems in the continuous world of reals that
arise in real world verification problems, including hybrid systems analysis and
program verification. Our contributions are a systematic quantitative and qual-
itative comparison of multiple techniques for handling real arithmetic within a
uniform verification framework and the introduction of a novel decision proce-
dure for universal real arithmetic that combines Gröbner Bases with semidefinite
programming for the real Nullstellensatz. We further address the question how
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expensive various levels of confidence in real verification are in real examples: ex-
ternal (unverified) blackboxes, external blackboxes producing formally checkable
certificates, and internal formal reasoning within a proof system.

2 Overall Verification Approach

We briefly discuss our formal verification approach for hybrid systems and math-
ematical algorithms within the automated theorem prover KeYmaera [8]. It is an
implementation of a Gentzen-style sequent proof calculus for hybrid systems [14]
that uses deduction modulo decision procedures for handling real arithmetic. The
calculus works on sequents of the form φ1, . . . , φn ` ψ1, . . . , ψm with the seman-
tics of the formula

∧n
i=1 φi →

∨m
i=1 ψi. Among several other rules, the calculus

transforms the propositional structure into a sequent representation.
The deduction modulo calculus of KeYmaera gives us a uniform context for

comparing the performance of multiple approaches and implementations for real
arithmetic. The input for KeYmaera is a formula given in differential dynamic
logic [14]. This logic extends first-order logic over real arithmetic by constructs
for reasoning about hybrid systems as well as real-valued mathematical algo-
rithms. For the verification task, the proof calculus transforms the input for-
mulas into first-order formulas over real-arithmetic. For details about the proof
rules of this transformation we refer to [14].

In this paper we address the question of handling the resulting real arith-
metic formulas. Although first-order logic over real arithmetic is decidable by
quantifier elimination [1] its complexity is doubly exponential in theory and can
be high in practice. The central point of this work is to examine the question
which approach to handling real arithmetic is best for which class of real world
examples. We further want to determine the computational cost for techniques
that provide formal proof certificates.

3 Methods for Handling Real Arithmetic

We survey different approaches to handling real arithmetic in background provers
for verification. We phrase these approaches in terms of reals for simplicity. Yet,
all subsequent theory in Sections 3–4 generalizes from R to real-closed fields.

In the sequel we assume the presence of standard rules for propositional
connectives. Such rules are not presented here, as propositional reasoning is or-
thogonal to the handling of arithmetic. The KeYmaera system uses classical
propositional sequent calculus rules; see [14, 15] for details. To simplify the pre-
sentation, we further assume simple rules to normalise sequents that translate,
e.g., g ≤ f to f ≥ g, f 6= g to ¬(f = g) and ` f > g to f ≤ g ` respectively.
We assume all inequalities to be moved to the antecedent in this way.

3.1 Gröbner Bases for Real Arithmetic

Gröbner bases [5] provide a sound but incomplete procedure for proving validity
of formulas in the universal fragment of equational first-order real arithmetic.
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Preliminaries. Let Q[X1, . . . , Xn] be the set of multivariate polynomials over the
indeterminates X1, . . . , Xn with coefficients in Q. A subset I ⊆ Q[X1, . . . , Xn]
is an ideal, iff I is a subgroup with respect to addition and

rx ∈ I, for all x ∈ I, r ∈ Q[X1, . . . , Xn] .

The ideal generated by a set G ⊆ Q[X1, . . . , Xn] is the smallest ideal I contain-
ing G, and is denoted by (G).

The notions of Gröbner bases and polynomial reductions are relative to an
admissible monomial order ≺, which is a strict well-order on monomials such
that uw ≺ vw whenever u ≺ v for arbitrary monomials u, v, w. Admissible orders
extend canonically to Q[X1, . . . , Xn] as a multiset order; see [5] for details. The
monomial order determines the leading term in multivariate polynomials, i.e.,
the maximal monomial with respect to ≺.

Definition 1 (Reduction). Let f, g ∈ Q[X1, . . . , Xn]. We say that f reduces to
g with respect to G ⊂ Q[X1, . . . , Xn] iff for some m ∈ N there are f0, f1, . . . , fm
in Q[X1, . . . , Xn] with f0 = f, fm = g such that, for all i, fi+1 = fi − higi
for some hi ∈ Q[X1, . . . , Xn], gi ∈ G, and fi+1 ≺ fi. We write g = redG f if, in
addition, g cannot be reduced further, i.e., there is no hm+1 ∈ Q[X1, . . . , Xn] and
gm+1 ∈ G with g − hm+1 gm+1 ≺ q.

Definition 2 (Gröbner basis). A finite subset G of an ideal I of Q[X1, .., Xn],
is called Gröbner basis iff I = (G) and redG f is unique for all polynomials f .
Further G is reduced if no g ∈ G can be reduced further with respect to G \ {g}.

There are several equivalent alternative formulations of this definition, for in-
stance that redG f = 0 iff f ∈ I. This means that Gröbner bases solve the ideal
membership problem and can, thus, directly be used as an (incomplete) proof
rule for equational arithmetic.

Gröbner Basis Eliminations. The most naive use of Gröbner bases for real arith-
metic is described by the rules A1, A2 in Fig. 1. The rule A1 closes a goal if the
ideal G generated by equations in the antecedent contains 1, which (by Hilbert’s
Nullstellensatz) implies that the equations do not have common solutions (i.e.,
are contradictory). Similarly, A2 can be applied if the sides f, g of an equation
in the succedent have the same remainder modulo G, which means f − g ∈ (G).

The scope of the rules can be extended by testing for radical membership
instead of ideal membership, which can prove problems like x2 = 0 ` x = 0 that
A2 cannot prove. The radical of an ideal I is the set

√
I =

∞⋃
i=1

{g ∈ Q[X1, . . . , Xn] : gi ∈ I} ⊇ I

Because the inclusion I ⊆
√
I can be strict (e.g.,

√
(x2) = (x)), testing for radical

membership is more liberal than ideal membership, while still being sound.
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(A1)
∗

Γ, g1 = g̃1, . . . , gn = g̃n ` ∆

(A2)
∗

Γ, g1 = g̃1, . . . , gn = g̃n ` f = h,∆

(A3)
Γ, (f − g)z = 1 ` ∆

Γ ` f = g,∆

(A4)
Γ, f − g = z2 ` ∆
Γ, f ≥ g ` ∆

(A5)
Γ, (f − g)z2 = 1 ` ∆

Γ, f > g ` ∆

(A6)
Γ ` 1 + s21 + · · ·+ s2n = 0,∆

Γ ` ∆

In all rules, z is a fresh variable. With the Gröbner basis G of the ideal
(g1 − g̃1, . . . , gn − g̃n), rule A1 is applicable if redG 1 = 0, and A2 if redG f = redG h.
Rules similar to A2, A4 and A5 can be defined for inequalities in the succedent. In A6,
the polynomials s1, . . . , sn can be chosen arbitrarily.

Fig. 1. Rule schemata of Gröbner calculus rules

In practice, the rule A3, which is known as Rabinowitch’s trick, represents
a simple way of testing for radical membership. It is based on the observation
that g ∈

√
I if and only if 1 ∈ (I ∪ {gz − 1}) (where z is a fresh indeterminate).

The latter property can be tested by first applying A3 and then A1.
Finally, inequalities can be translated to equations using A4, A5, which ex-

ploit the fact that a real number is positive iff it is a square (A5 is an optimized
version including Rabinowitch’s trick). Combined with the rules A1, A2, this
encoding of inequalities is rather weak, and not able to derive simple facts like
a ≤ b ∧ b ≤ c→ a ≤ c. It is, however, an important preprocessing step for the
complete procedure described in the next section (where we explain rule A6).

Proposition 1 (Soundness). The Gröbner basis rules in Fig. 1 are sound.
Rules A3, A4, A5 are even satisfiability-equivalent transformations, i.e., their re-
spective premisses and conclusions are satisfiability-equivalent. (See Appendix A).

The Gröbner basis approach gives a sound but incomplete overapproxima-
tion. To see why Gröbner bases are incomplete for real arithmetic, consider the
following. Gröbner bases are a general approach and do not take into account
the special properties of the reals. For instance, the sequent x2 = −1 ` is valid,
i.e., the formula x2 = −1 is unsatisfiable over R, but the Gröbner basis of x2 + 1
is {x2 + 1} and, in fact, x2 = −1 is satisfiable over C but not over R.

Implementations. We compare three implementations of the Gröbner basis rules:

GM The implementation provided by the Mathematica 7.0 computer algebra
system, which can be used as a reasoning back-end by KeYmaera.

GO The implementation of Buchberger’s algorithm [5] in the open-source Java-
library Orbital (written by the first author of this paper).

GK An implementation of Buchberger’s algorithm with (verified) proof rules
that are directly defined within KeYmaera. This procedure generalizes a cal-
culus for integer arithmetic [16] to the reals, and differs from GM and GO
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in that it does not use the rules A3, A4, A5, but instead integrates the
Fourier-Motzkin variable elimination rule [17] to handle inequalities (which
is complete for linear arithmetic). This tight integration of the two proce-
dures can simplify terms in inequalities using Gröbner bases, and can feed
equations derived by the Fourier-Motzkin procedure back to Buchberger’s
algorithm. We evaluate the benefits of this cooperation in Sect. 5. Since
our domain are the reals, we do not use the heuristic approach tailored to
nonlinear integer inequalities from [16].

3.2 A Complete Rule using the Real Nullstellensatz

While the rules A1, A2, A3, A4, A5 only form an incomplete calculus for prob-
lems in real arithmetic, the situation is different over the complex numbers:
Hilbert’s Nullstellensatz tells that A1, A3 together yield a decision procedure
for universal equational problems in C. A corresponding result for real-closed
fields is Stengle’s real Nullstellensatz [7]; also see [13]:

Theorem 1 (Nullstellensatz [7] for real-closed fields). Let R be a real-
closed field (e.g., R = R) and G be a finite subset of R[X1, . . . , Xn]. Then the set
{x ∈ Rn : g(x) = 0 for all g ∈ G} is empty if and only if there are polynomi-
als s1, . . . , sm ∈ R[X1, . . . , Xn] such that 1 + s21 + · · ·+ s2m ∈ (G). If, moreover,
G ⊆ Q[X1, . . . , Xn], then also the polynomials s1, . . . , sm can be chosen among
the elements of Q[X1, . . . , Xn].

This theorem leads to an extremely simple, yet complete, proof method
for the universal fragment of real arithmetic: in addition to the rules that
we have already discussed, we add rule A6 in Fig. 1 for injecting the equa-
tion 1 + s21 + · · ·+ s2m = 0 into a proof goal. Any valid proof goal can then be
closed in the following way: (i) inequalities and equations in the succedent are
turned into equations in the antecedent with the help of A3, A4, A5, (ii) the
witness 1 + s21 + · · ·+ s2m due to the real Nullstellensatz is generated using A6,
and (iii) the goal is closed by the Gröbner Basis computations with A2.

Corollary 1 (Completeness). Along with propositional rules, the rules in
Fig. 1 are complete for the universal fragment of real arithmetic.

Proof. Completeness follows from Theorem 1 using the satisfiability-equivalence
properties for the transformation by A3, A4, A5 according to Proposition 1. ut

The main difficulty with this calculus is obvious: it does not provide any
guidance for choosing the witness 1 + s21 + · · ·+ s2m = 0. One technique to tackle
the required search is semidefinite programming, following the work based on
Stengle’s Positivstellensatz (Sect. 3.4) in [6, 13]. We describe a new approach
that combines semidefinite programming with Gröbner bases in Sect. 4.

Example 1. In Fig. 2, we show a proof for the following implication (leaving out
propositional reasoning):

x ≥ y ∧ z ≥ 0→ xz ≥ yz. (1)
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∗
A2 x− y = a2, z = b2, (yz − xz)c2 = 1 ` 1 + (abc)2 = 0
A6 x− y = a2, z = b2, (yz − xz)c2 = 1 `

A4,A5 x ≥ y, z ≥ 0, yz > xz `

Fig. 2. Example proof using the real Nullstellensatz

The inequalities x ≥ y and z ≥ 0 are turned into equations using A4. Proving
by contradiction (or using propositional rules), the conclusion xz ≥ yz is con-
sidered as an assumption yz > xz and subsequently eliminated with the help of
A5. Once this is done, we rely on an oracle to tell us the witness 1 + (abc)2,
which is introduced using A6. Finally, the proof can be closed by A2: the set
{a2 − x+ y, b2 − z, xzc2 − yzc2 + 1} is a Gröbner basis representing the equa-
tions in the antecedent. The basis reduces the term 1 + (abc)2 to 0 as follows:

1 + a2b2c2
b2−z
 1 + a2zc2

a2−x+y
 1 + xzc2 − yzc2  0

3.3 Quantifier Elimination in Real-Closed Fields

A general method for handling quantified real arithmetic is based on the seminal
work by Tarski [1]. He showed that there is an algorithm computing a quantifier-
free formula that is equivalent to a given formula in (first-order) real arithmetic.

Theorem 2 (Quantifier elimination [1]). The first-order theory of reals (or
of real-closed fields) admits quantifier elimination, i.e., to each first-order for-
mula φ, a quantifier-free formula QE(φ) can be associated effectively that is
equivalent and has no additional free variables. Thus QE yields a decision proce-
dure for closed formulas when evaluating the remaining quantifier-free formulas.

Unlike the other approaches outlined in this paper, QE directly applies to full
nonlinear (polynomial) real arithmetic and not just to the universal fragment.
QE is also independent of propositional rules, except that computational effi-
ciency considerations advise to combine both [18].

Example 2. For instance, QE yields the following equivalence:

∃x (ax2 + bx+ c = 0) ≡ a 6= 0 ∧ b2 − 4ac ≥ 0 ∨ a = 0 ∧ (b = 0→ c = 0)

Tarski’s approach has been extended to practical algorithms [3, 4], which are
quite sophisticated. Unfortunately, the complexity of QE is doubly exponential
in the number of quantifier alternations [19].

Implementations. We compare six implementations of QE in experiments:

QQ Partial cylindrical algebraic decomposition (PCAD) [3] in QEPCAD B [9];
QM QE based on partial CAD [3] and validated numerics [20] in Mathematica;
QRc Partial CAD [3] in Redlog [10];
QRs Virtual substitution [4] in Redlog [10], falling back to QRc;
QC Harrison’s implementation of Cohen-Hörmander quantifier elimination;
QH Proof-producing quantifier elimination [11] in HOL Light.
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(A7)
∗

f1 ≥ f̃1, . . . , fm ≥ f̃m, g1 = g̃1, . . . , gn = g̃n ` h1 = h̃1, . . . , hl = h̃l

A7 is applicable iff s+ g +m2 = 0 for some s ∈ con({f1 − f̃1, . . . , fm − f̃m}), some
g ∈ (g1 − g̃1, . . . , gn − g̃n), and some m ∈ mon({h1 − h̃1, . . . , hl − h̃l}).

Fig. 3. Rule schemata of Positivstellensatz calculus rules

3.4 Semidefinite Programming for the Positivstellensatz

The Positivstellensatz for real-closed fields [7] is a generalisation of the real Null-
stellensatz. It gives rise to a sound and complete proof method for the universal
fragment of first-order real arithmetic that does not require the reductions A3,
A4, A5. The Positivstellensatz has recently been exploited in combination with
relaxations from semidefinite programming [6, 13].

The multiplicative monoid mon(H) generated by H ⊆ R[X1, . . . , Xn] is the
set of finite products of elements of H (including the empty product 1). The
cone con(F ) generated by a set F ⊆ R[X1, . . . , Xn] is the smallest set contain-
ing F and squares s2 of arbitrary polynomials s ∈ R[X1, . . . , Xn] that is closed
under addition and multiplication. For more computational representations of
cones and ideals, we refer to [6, 21].

Theorem 3 (Positivstellensatz [7] for real-closed fields). Let R be a real-
closed field (e.g., R = R) and F,G,H finite subsets of R[X1, . . . , Xn]. Then

{x ∈ Rn : f(x) ≥ 0 for all f ∈ F, g(x) = 0 f.a. g ∈ G, h(x) 6= 0 f.a. h ∈ H}

is empty iff

there are s ∈ con(F ), g ∈ (G),m ∈ mon(H) such that s+ g +m2 = 0 .

If, moreover, F,G,H ⊆ Q[X1, . . . , Xn], then also the polynomials s, g,m can be
chosen among the elements of Q[X1, . . . , Xn].

The polynomials s, g,m are polynomial infeasibility witnesses. For bounded de-
gree, witnesses s, g,m can be searched for using numerical semidefinite program-
ming [6] by parameterising the resulting polynomials. As (theoretical) degree
bounds exist for the certificate polynomials s, g,m, the Positivstellensatz yields
a decision procedure. These bounds are, however, at least triply exponential [6].
Thus, the approach advocated by Parrilo [6] is to increase the bound successively
and solve the existence of bounded degree witnesses due to the Positivstellensatz
by semidefinite programming [22].

As a simple corollary to Theorem 3 we have that A7 is a sound proof rule.

Corollary 2 (Soundness). The rule in Fig. 3 is sound.

In contrast to the rules in Fig. 1 the only additional transformation necessary for
rule A7 is a reduction from > to ≥ via f > g ↔ f ≥ g ∧ f 6= g. All other trans-
formations follow from the propositional sequent calculus rules and the rewriting
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rules described in the beginning of Sect. 3. Therefore, this approach does not in-
troduce new variables, as it does not need the rules A3 – A5. Alternatively, A5
can be used in place of the f > g axiomatisation as we show in the sequel.

Example 3. A proof for the implication (1) that uses the Positivstellensatz is
in Fig. 4. In contrast to the proof in Fig. 2, it is now unnecessary to eliminate
the inequalities x ≥ y and z ≥ 0, while the rule A5 has to be used for xz ≥ yz
(corresponding to yz > xz in the antecedent). A witness for the problem is:

c2 · (x− y) · z︸ ︷︷ ︸
s

+ (yz − xz)c2 − 1︸ ︷︷ ︸
g

+ 1︸︷︷︸
m2

= 0

The terms x− y and z in s stem from the inequalities in the sequent, while the
term g is derived from the equation.

Implementations. We compare two implementations using the semidefinite pro-
gramming optimization tool CSDP [12] to find witnesses for the Positivstellen-
satz:

PH John Harrison’s implementation [13] in HOL Light.
PK Our implementation within KeYmaera directly follows the approach pre-

sented by Parrilo [6] and Harrison [13]. We follow Parrilo’s enumeration of
polynomials without further optimization.

4 Gröbner Bases for the Real Nullstellensatz (GRN)

We describe a new approach to turn the complete calculus based on the real
Nullstellensatz (NSS, Theorem 1) into an effective proof procedure. While our
method is strongly inspired by, and in parts based on, semidefinite programming
for the Positivstellensatz (PSS, Theorem 3) [6, 13], there are two main motiva-
tions to deviate from this approach: (i) the application of the PSS requires
reasoning about ideal membership (the set (G) in Theorem 3) and, thus, to
solve systems of polynomial equations. This is an incentive to integrate Gröbner
bases as a computational, efficient, and well-studied method to this end; (ii) the
PSS requires constructing three witnesses s, g,m simultaneously, which makes
it intricate to balance degree bounds and the number of parameters to be de-
termined by semidefinite programming. Using a combination of Gröbner basis
computations and the single witnesses of the real NSS, we avoid these issues.

In order to prove by NSS that a set G of polynomials does not have common
zeroes, we need to find polynomials s1, . . . , sm such that 1 + s21 + · · ·+ s2m ∈ (G).

∗
A7x ≥ y, z ≥ 0, (yz − xz)c2 = 1 `
A5 x ≥ y, z ≥ 0, yz > xz `

Fig. 4. Example proof using the Positivstellensatz
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We reduce this problem to a search for positive semidefinite matrices with the
help of the following lemma. A matrix X ∈ Rk×k is called positive semidefinite
(PSD) if it is symmetric, and if xtXx ≥ 0 for each vector x ∈ Rk. There is a
simple correspondence between PSD matrices and sums of squares:

Lemma 1. Suppose p ∈ Q[X1, . . . , Xn]k is a vector of rational polynomials. The
following identities hold (see the proof in Appendix A):{

l∑
i=1

(cip)
2 : l ∈ N, ci ∈ Qk

}

=

{
l∑

i=1

αi(cip)
2 : l ∈ N, αi ∈ Q, αi ≥ 0, ci ∈ Qk

}
=
{
ptXp : X ∈ Qk×k positive semidefinite

}
By combining Lemma 1 with the NSS, we see that a set G of polynomials

does not have any common zeroes if and only if there is a vector p of polynomials
and a PSD matrix X ∈ Rk×k such that 1 + ptXp ∈ (G). As the vector space of
polynomials is generated by monomials, it is sufficient to consider vectors p of
monomials.

Semidefinite programming [22] provides a simple method to determine such
matrices X. A semidefinite program (SDP) is an optimisation problem in terms
of traces (tr) of matrices:

maximise tr(CX)
subject to tr(AiX) = bi (for i ∈ {1, . . . , n}),
where X positive semidefinite

where Ai, C ∈ Rk×k are symmetric matrices and bi ∈ R. Such optimisation prob-
lems can be solved efficiently using numerical convex optimization [22].

The key insight underlying our method is the following: by computing a
Gröbner basis B for the ideal (G), the NSS condition 1 + ptXp ∈ (G) can be en-
coded as the linear side constraints tr(AiX) = bi (i ∈ {1, . . . , n}) of a semidefinite
program searching for X. To see this, note that both the expression 1 + ptXp
and the reduction redB(1 + ptXp) are linear in X. Because Gröbner bases de-
termine unique remainders, we therefore have 1 + ptXp ∈ (G) if and only if
redB(1 + ptXp) = 0. This equation is a linear constraint on X suitable for SDP.

To capture this observation formally, let Q be a symmetric k × k matrix of
parameters:

Q =


q1,1 q1,2 . . . q1,k
q1,2 q2,2 . . . q2,k
. . . . . . . . . . .
q1,k q2,k . . . qk,k


The polynomial 1 + ptQp is linear in Q and can be represented in the form
1 + ptQp = qtCm, where q = (q1,1, q1,2, . . . , qk,k)t is the vector of all the Q-
parameters, m = (m1, . . . ,ms)

t is a vector of monomials over X1, . . . , Xn (con-

taining, at least, 1 and all products pipj of components of p), and C ∈ Qk2×s
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is a matrix. By computing the remainder qtDm = redB(qtCm) of this term for
a Gröbner basis B over Q[X1, . . . , Xn], we can construct the required side con-
straints:

Lemma 2. Suppose that the components of m are pairwise distinct, and that
qtCm and qtDm are two polynomials over Q[q1,1, q1,2, . . . , qk,k][X1, . . . , Xn] de-

fined by the matrices C,D ∈ Qk2×s, such that qtDm = redB(qtCm). Then the
following equation holds (see Appendix B for a proof):

{x ∈ Rk : redB(xtCm) = 0} = {x ∈ Rk : xtD = 0} (2)

Example 4. We return to the implication (1) proven in Fig. 2 by showing that the
polynomials B = {a2 − x+ y, b2 − z, xzc2 − yzc2 + 1} have no common zeroes.
The witness 1 + (abc)2 used in the proof of Fig. 2 can be constructed systemati-
cally for a suitable set of basis monomials, say, p = (1, a2, abc)t. We need to find
a PSD matrix X ∈ Q3×3 such that 1 + ptXp ∈ (B). To do so, we compute the
reduction redB(1 + ptQp) for a symbolic 3× 3 parameter matrix Q:

redB(1 + ptQp)

= redB(1 + q1,112 + 2q1,2a
2 + 2q1,3abc+ 2q2,3a

3bc+ q3,3a
2b2c2)

= 1 + q1,1 − q3,3 + 2q1,2x− 2q1,2y + 2q1,3abc+ 2q2,3abcx− 2q2,3abcy

By comparing coefficients, the constraints on Q for this polynomial to be 0 are:

1 + q1,1 − q3,3 = 0 −2q1,2 = 0 2q2,3 = 0

2q1,2 = 0 2q1,3 = 0 −2q2,3 = 0

A positive semidefinite solution of the constraints is q3,3 = 1 and qi,j = 0 for all
(i, j) 6= (3, 3), which means 1 + ptQp = 1 + (abc)2.

Theorem 4 (Completeness). By enumerating all monomials for p succes-
sively, Gröbner bases for the real Nullstellensatz give a complete method for uni-
versal real arithmetic: If the original formula is valid, then, when p contains all
monomials of a sufficiently large degree, the corresponding semidefinite programs
will have a solution (the witness).

Proof. The proof is a combination of Lemma 2 with Corollary 1.

4.1 Discussion and Practical Considerations

Semidefinite programming turns the search for witnesses 1 + s21 + · · ·+ s2m into
a (simpler) search for suitable basis monomials p. As the number of basis mono-
mials that need to be considered is finite (due to degree bounds on witnesses
[6]), this yields a theoretical decision procedure. Practically, we enumerate all
monomials with ascending degree. There might be more sophisticated methods,
however: the number of monomials that witnesses are actually built of is usu-
ally small, and it might be possible to locate likely candidates by analyzing the
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Gröbner basis B. In our experience, the number of basis monomials that are
considered before a solution is found (and thus the difficulty of a problem) de-
pends on (i) the number of variables in the polynomial ring, and (ii) the degree
of the leading monomials in the Gröbner basis.

Another issue is that implementations for semidefinite programming (like the
CSDP solver [12] used by us) are numerical and produce answers in floating point
arithmetic. To recover precise solutions in Q from such answers, we use a similar
approach as in [13]: We approximate floating point numbers to a certain preci-
sion by rationals (with the help of Stern-Brocot trees [23]), and check resulting
solution candidate for semidefiniteness. We increase the precision successively as
long as the solution candidate remains indefinite.

Optimizations. We found it essential to use preprocessing steps to reduce the
number of variables in a problem, such that the number of potential basis mono-
mials becomes tractable. Some heuristics are:

– If the Gröbner basis B contains a polynomial x+ t such that x does not
occur in t, then x and the polynomial can be eliminated by simple rewriting.

– If B contains polynomials xy − 1 and xn + t such that xn does not divide
t, then x and the polynomial xy − 1 can be eliminated by multiplying each
polynomial in B (except xy − 1) with a power of y and reducing w.r.t. xy − 1.

– Polynomials α1m
2
1 + · · ·+ αnm

2
n ∈ B such that αi > 0 for i ∈ {1, . . . , n} can

be replaced by the monomials m1, . . . ,mn.
– If B contains a polynomial α0x

2 − α1m
2
1 − · · · − αnm

2
n such that αi > 0 for

i ∈ {0, . . . , n} where x only occurs with even degree in B, then x can be
eliminated by rewriting and the polynomial can be removed.

The last two cases are surprisingly common, due to the encoding of inequalities
by quadratic terms performed by A4 and A5.

5 Experimental Results

We have integrated the techniques presented in Sect. 3–4 into KeYmaera. With
the various methods for real arithmetic integrated into a common framework and
real arithmetic examples from different domains, we have a solid base for our
experiments. The benchmarks4 are a collection of challenging arithmetic prob-
lems from the hybrid system world [24], the verification of invariant properties
for mathematical algorithms [25, 26] and algebraic geometry [27], as well as a
smaller number of synthetic problems. For the examples with mixed quantifiers,
our setting applies QM to the existential quantifiers such that we can still gain
insight into the scalability of the approaches that are restricted to the universal
fragment on these examples. We run our experiments on a dual Intel Xeon E5430
(quad core with 2.66 GHz) and 32 gigabytes RAM.

The experimental results (see Appendix C) summarized in Fig. 5 show that,
for our particular mix of examples, quantifier elimination procedures are still

4 Available along with KeYmaera from http://symbolaris.com/info/KeYmaera.html
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Fig. 5. Examples solved per time

faster than recent approaches with semidefinite programming relaxations for the
Positivstellensatz, while Gröbner bases alone have difficulties with “real” prob-
lems. As expected, procedures tailored for real arithmetic can solve substantially
more cases than Gröbner bases for general fields. Gröbner bases that integrate
Fourier-Motzkin (GK) solve many more problems.

Our combination, GRN, of Gröbner bases with the real Nullstellensatz is
competitive with quantifier elimination by partial CAD [3]. The experiments also
show that substantial performance improvements (QRs and QM) are still possi-
ble beyond partial CAD. Another interesting observation from the experiments
is that the Positivstellensatz (PH and PK) and our GRN approach complement
each other quite well. PH and GRN together can solve 84 out of 97 problems [28].

The experiments show that GM and GO are on a par. Further, QM and
QRs are very close, but clearly outperform QRc, QQ and QC both in runtime
and number of provable cases. QH is slower but competitive with the number
of examples solved by GK but does not yet perform as well as other QE imple-
mentations or GRN. The performance gap between PK and PH is surprising. In
part, it shows how important Harrison’s optimizations [13] of Parrilo’s work [6]
are, but may also be caused by different heuristics for recovering rationals from
floats and different enumeration orders for polynomials. This might indicate that
PK, indeed, gives a more objective comparison for GRN than PH, because PK
and GRN share exactly the same KeYmaera framework and rational recovering.
Our new GRN procedure is a clear win compared to PK. Inevitably, performance
depends on the system options and on the set of benchmarks.
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6 Related Work

Nipkow [29] presented a formally verified implementations of quantifier elimina-
tion in an executable fragment of Isabelle/HOL, currently for linear real arith-
metic only. McLaughlin and Harrison [11] presented a nonverified but proof-
producing implementation of general quantifier elimination, so that the result of
the procedure can be checked independently.

The sum of squares approach has been pioneered by Parrilo [6] and Harri-
son [13]. Harrison also gives optimizations for the univariate case.

Tiwari [30] presents an approach using Gröbner bases and sign conditions
on variables to produce unsatisfiability witnesses for nonlinear constraints. The
approach depends on appropriate heuristic variable orderings that are formed
by successively introducing new variables for polynomial expressions following
certain heuristics (which may not terminate). Our work and that of Tiwari share
the combination of Gröbner bases with witness generation. Yet we follow semi-
definite programming for the real Nullstellensatz, whereas [30] uses heuristic
generation of polynomial witness expressions. Tiwari uses the Positivstellensatz
to prove refutational completeness but not as part of his technique.

RSolver [2] is a numerical approach for deciding validity of (robust instances
of) first-order formulas over real arithmetic extended with transcendental func-
tions. Unlike our work, this relies on numerical stability of the input formula.

MetiTarski [31] is an interesting approach for handling special functions using
a combination of resolution proving with simple QE procedures. Their focus is
on handling special functions not on handling real arithmetic.

Hunt et al. [32] describe the handling of nonlinear arithmetic in ACL2, which
is based on heuristic multiplication of inequalities in the style of (1) and yields an
incomplete method. The method is claimed to be empirically successful, though,
and can also be applied to nonlinear integer arithmetic.

7 Discussion and Conclusions

The respective approaches from Sect. 3–4 have different advantages and weak-
nesses for formal verification of real world problems in real arithmetic. We draw a
qualitative comparison complementing the quantitative comparison from Sect. 5.

Quantifier Elimination. Quantifier elimination procedures [3] can handle full
nonlinear real arithmetic, including existential quantifiers. Their implementa-
tions are quite intricate algorithms for which correctness is not easily established
formally. Unfortunately, QE does not produce simple checkable certificates.

Proof-producing [11] or verified [29] QE procedures may be interesting im-
provements on the formal traceability of QE. Unfortunately, their performance
is not yet fully competitive with other quantifier elimination implementations or
our new proof-producing GRN procedure.

A compromise is reverification: Proof search [33, 18] in KeYmaera generates
several problems of real arithmetic to find a proof, but only those in the fi-
nal proof are soundness-critical. For soundness, it is sufficient to use a fast or
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untrusted implementation of QE during the proof search and to reverify the
final proof in a proof checker with a verified or proof-producing QE implemen-
tation [11, 29]. For this purpose, KeYmaera strategies are especially useful that
identify the sweetspot for applying QE iteratively during the proof search [18].

Positivstellensatz. In the context of verification, a useful property of the Posi-
tivstellensatz is that it produces a witness (s+ g +m2 = 0) for the validity of a
formula. Once the witness has been found, it is checkable by simple computations
in the polynomial ring to determine whether the polynomial identity holds by
comparing the coefficients. Similarly, the well-formedness of the witness can be
determined by checking whether s is build from sums of squares using an exten-
sion of “completing the square” [13]. Thus, complicated numerical semidefinite
programming tools [22] do not need to be part of the trusted computing base
concerning soundness. Due to its enumerative nature with a large number of
extra parameters, scalability with the number of variables is still limited.

Gröbner Bases. The Gröbner Basis approach does not have simple witnesses like
Positivstellensatz approaches. Their working principle, however, is strictly based
on symbolic computations, which can be carried out from a small set of rewrite
rules within a logic. This corresponds to our built-in Gröbner basis approach
GK, which is almost as efficient as external Gröbner basis implementations. Our
experimental results indicate that, due to the partial ignorance of real-closed
field properties, the capabilities of Gröbner bases alone are not sufficient, even
in combination with Fourier-Motzkin elimination.

Real Nullstellensatz. Our new decision procedure based on Gröbner basis com-
putations and the real Nullstellensatz share the presence of checkable witnesses
with approaches based on the Positivstellensatz. Once a witness 1 +

∑
i s

2
i = 0

has been found, the polynomial equality check can be performed easily within a
proof system using the GK rules, giving a fully formal proof. The performance in
our experiments show that this new approach is promising. It outperforms most
other approaches, except for highly tuned QE procedures, which lack support
for formal traceability. We believe that further research in this area is likely to
produce competitive but traceable solutions for real arithmetic.
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16. Rümmer, P.: A sequent calculus for integer arithmetic with counterexample gener-
ation. In Beckert, B., ed.: VERIFY’07 at CADE, Bremen, Germany. Volume 259
of CEUR-WS.org. (2007)

17. Schrijver, A.: Theory of Linear and Integer Programming. Wiley (1986)
18. Platzer, A.: Combining deduction and algebraic constraints for hybrid system

analysis. In Beckert, B., ed.: VERIFY’07 at CADE, Bremen, Germany. Volume
259 of CEUR Workshop Proceedings., CEUR-WS.org (2007) 164–178

19. Davenport, J.H., Heintz, J.: Real quantifier elimination is doubly exponential. J.
Symb. Comput. 5(1/2) (1988) 29–35

20. Strzebonski, A.W.: Cylindrical algebraic decomposition using validated numerics.
J. Symb. Comput. 41(9) (2006) 1021–1038

21. Bochnak, J., Coste, M., Roy, M.F.: Real Algebraic Geometry. Volume 36 of Ergeb-
nisse der Mathematik und ihrer Grenzgebiete. Springer (1998)

22. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge Univ. Press (2004)
23. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics: A Foundation

for Computer Science. Addison-Wesley Longman (1994)
24. Platzer, A., Quesel, J.D.: Logical verification and systematic parametric analysis

in train control. In Egerstedt, M., Mishra, B., eds.: HSCC. LNCS, Springer (2008)
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A Soundness Proof for Gröbner Basis Rules

Proof (Proposition 1). The rules in Fig. 1 are sound. As usual for the soundness
proofs we assume Γ to be true in an interpretation ν and ∆ to be false as there
is nothing to show otherwise. For A3, A4,A5, we show equivalence of premiss
and conclusion, which implies soundness.

A2 Suppose the conclusion was false in ν, i.e., ν |= g1 = g̃1 ∧ · · · ∧ gn = g̃n ∧ f 6= h.
Thus, ν |= g = 0 for all g ∈ G. Consequently, ν |= g = 0 for all polynomials g
in the ideal (G) of G. As a consequence of the applicability condition, we
have redG(f − h) = 0, which, by Def. 2, implies that f − h is in the ideal
of G. In combination, we have ν |= f − h = 0, hence ν |= f = h, which is a
contradiction. ut

A1 The soundness of A1 is a special case of the soundness of A2 when assuming
the false formula 1 = 0 for the succedent f = h.

A3 Satisfiability-equivalence of A3 is a consequence of the Rabinowitch trick
equivalence x 6= 0↔ ∃z (xz = 1), using f − g for x. More generally, this
holds in fields where non-zero elements are exactly the elements that have
some inverse z. By introducing a free new variable z, we obtain that the
premiss is satisfiable if and only if the conclusion is satisfiable.

A4 Satisfiability-equivalence follows from the equivalence f ≥ g ↔ ∃z (f − g = z2)
in the domain of reals. More generally, this holds in real-closed fields where
squares are exactly the positive numbers. By introducing a free new vari-
able z in the rule, this equivalence we obtain that the premiss and conclusion
are satisfiability-equivalent, i.e., the premiss is satisfiable if and only if the
conclusion is satisfiable.

A5 Satisfiability-equivalence follows from the equivalence x > 0↔ ∃z (xz2 = 1)
in the reals, using f − g for x.

A6 Since a sum of squares is nonnegative over R, the value of 1 + s21 + · · ·+ s2n
is strictly positive and 1 + s21 + · · ·+ s2n = 0 is a contradiction over the reals.
Consequently, if the premiss is valid, then so is the conclusion.

Proof (Lemma 1). The first equation holds because each non-negative rational
number αi can be written as a sum of four rational squares by Lagrange’s four-
square theorem.

We consider the two directions of the second equation:
“⊇”: This is shown (constructively) by [13, Theorem 1].

“⊆”: Let
∑l

i=1 αi(cip)
2 be a sum of squares with αi ≥ 0. We define the

matrices

C =


ct1
ct2
...
ctl

 , D =


α1

α2

. . .

αl


and thus obtain the identity:

l∑
i=1

αi(cip)
2 = (Cp)tD(Cp) = pt(CtDC)p
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The matrix CtDC = Q ∈ Qk×k is positive semidefinite because of:

xt(CtDC)x =

l∑
i=1

αi(cix)2 ≥ 0.

B Completeness of Gröbner Bases for the Real
Nullstellensatz

Proof (Lemma 2). First, observe that for all x ∈ Rn:

xtCm− xtDm ∈ (B) (3)

The proof of the lemma is as follows:

– “⊇”: Suppose xtD = 0. Then also xtDm = 0 and, by (3), xtCm− xtDm =
xtCm ∈ (B). This implies redB(xtCm) = 0 because B is a Gröbner basis.

– “⊆”: Suppose redB(xtCm) = 0, i.e., xtCm ∈ (B). By (3), this implies
xtDm ∈ (B).
Now, observe that also the instance xtDm is irreducible w.r.t. B: because
the parametrised polynomial qtDm is irreducible w.r.t. B, it has to be the
case that the i’th component of btD is zero whenever the monomial mi is
reducible w.r.t. B. This means that, in this case, the i’th column of D only
contains zeroes. Then also the i’th component of xtD is zero and xtDm
cannot contain any reducible terms.
Because B is a Gröbner basis, 0 is the only member of (B) that is irreducible
w.r.t. B, which implies xtDm = 0. Finally, because the elements of m are
pairwise distinct and thus linearly independent, this is only possible if xtD =
0.

C Full Details Experimental Results

In this section we present a table containing all experimental results produced for
our evaluation of the different techniques. To get comparability, we did neither
use the invariant generation techniques described in [33] but instead provided
the invariants necessary a priori nor did we use our iterative background closure
procedure [18].

All times are given in seconds. We write∞ if the computation did not termi-
nate within 600 seconds (1000 seconds for QH, because it needs ≈ 400 seconds
for startup). If the solver terminates unsuccessfully before this timeout we mark
this with –.
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Example GM GO GK QQ QM QRs QRc QC QH PH PK GRN

aligator/conditional/lcm gcd dijkstra 1.8 1.9 3.2 1.9 1.5 2.3 2.1 8.7 397.5 98.6 – 2.2
aligator/conditional/simple example 1 1.6 1.7 3.6 1.9 1.8 2.4 2.2 8.4 – 98.0 3.9 2
aligator/conditional/simple example 2 1.7 1.6 3.7 1.8 1.4 2 1.9 8.2 394.9 94.9 3.3 1.6
aligator/conditional/simple example 3 1.9 2 4.5 2.1 2 2.4 2.5 8.8 394.3 92.5 147.5 2.4
aligator/conditional/square root floor dijkstra 2.1 2.2 5.1 2.8 2 2.7 2.5 10.2 562.2 358.3 – 2.9
aligator/conditional/square root zuse 1.7 2.1 4.6 2.3 1.6 2.5 2 ∞ 504 93.3 – 1.9
aligator/conditional/wensey division wegbreit 2.8 2.8 5.1 3.3 9.1 3.6 5.9 ∞ ∞ 96.2 ∞ 2.6
aligator/consecutive cubes cohen 2.5 2.7 7.1 – 2.2 2.8 ∞ ∞ ∞ 94.1 – 2.9
aligator/division dijkstra 0.8 0.8 1.7 0.8 0.7 1.1 0.9 7.7 389.4 95.4 – 1
aligator/fibonacci knuth 1.9 1.8 6.3 2.2 2 2.1 2.1 9.6 – 94.5 5.6 1.9
aligator/fibonacci stansley 1.9 1.6 4.1 1.9 1.6 1.8 1.9 8.3 396 93.6 3.9 1.8
aligator/HC polyominoes stansley 5.5 6.2 19.8 6.2 5.9 6.2 5.9 12.7 393.2 101.1 85.6 6.1
aligator/integer cubic root knuth 2.1 2.3 6.1 – 2 2.7 2.6 9.2 408.9 95.3 – 2.2
aligator/integer square root kirchner 1.6 1.9 3.7 1.6 1.4 2.1 2 8.5 – 93.6 14.1 1.8
aligator/integer square root knuth 1 1 2.9 1.1 1 1.4 1.2 8.2 400.8 94.1 ∞ 1.1
aligator/simple example 1 0.9 0.7 1.3 0.8 0.7 1.1 1 7.6 388.2 92.7 1.9 0.9
aligator/simple example 2 0.8 0.8 1.8 0.8 0.6 0.9 0.9 8 379.9 91.2 1.7 0.7
aligator/simple example 3 1.4 1.5 4.2 1.6 1.3 1.9 1.8 8.8 379.4 91.8 3.8 1.5
aligator/simple example 4 2.1 2.5 4.9 2.3 1.9 3 2.9 13.5 ∞ 94.2 9.5 2.6
aligator/sum of powers 5 petter 1.5 1.8 7.1 1.8 1.4 1.8 1.8 8.5 380.2 93.7 – 1.8
aligator/tribonacci stansley 3.4 3.1 9.1 3.8 3.1 3.8 3.7 9.9 426.7 94.9 11.8 3.2
ATC/roundabout/TRM-essentials 6.4 7.3 22.2 – 5.6 7.9 – – – 98.4 – 7
ATC/roundabout/TRM-essentials-3 35 ∞ – – 89 64.2 – ∞ – ∞ ∞ ∞
bouncing-ball/bouncing-ball – – – – 5.5 8 59.1 ∞ ∞ ∞ ∞ –
bouncing-ball/bouncing-ball-simple – – – – 3.6 7.2 11.5 ∞ ∞ ∞ – ∞
complicated arithmetic/ETCS-essentials-surprise2 – ∞ – 1.5 1.5 1.6 1.7 ∞ ∞ ∞ ∞ ∞
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complicated arithmetic/train – – – – 125.8 3.8 ∞ ∞ ∞ ∞ ∞ 5.4
dynamical/nonlinear2 1.6 1.6 2.7 1.7 1.5 1.5 1.7 1.6 1.6 1.7 1.6 1.5
dynamical/nonlinear4 – – – 165.2 84.2 165.3 165.7 171.7 ∞ 353.3 – 165.4
dynamical/nonlinear5 – – – 2.4 1.9 2.4 2.7 8.9 – 105.3 37.1 2.4
ETCS/controllability/ETCS-d-braking – – – – 1.9 2.5 2.5 ∞ ∞ ∞ – 12
ETCS/decomposed/controllability lemma/to left – – – – 1.2 1.6 1.7 ∞ ∞ ∞ ∞ 7.7
ETCS/decomposed/controllability lemma/to right – – – – 0.8 1.2 1.2 ∞ ∞ ∞ – 7.8
ETCS/decomposed/essentials/accelerating – ∞ – 6.9 1.4 2.2 – ∞ ∞ ∞ ∞ ∞
ETCS/decomposed/essentials/breaking – – 6.8 17.5 1.6 1.8 1.9 9.3 ∞ ∞ ∞ 4.4
ETCS/decomposed/essentials/invariant-initially-valid 0.2 0.2 0.3 0.2 0.3 0.2 0.2 0.2 0.3 0.2 0.2 0.2
ETCS/decomposed/essentials/use-case – – – 0.7 0.5 0.8 1.2 7.6 480 93.5 ∞ 1.3
ETCS/decomposed/safety-lemma/initially-valid 0.3 0.3 0.4 0.3 0.4 0.3 0.4 0.4 0.3 0.4 0.4 0.3
ETCS/decomposed/safety-lemma/rbc goal1 – – 5 28.1 2.8 2.9 95.2 9.5 ∞ 118.8 ∞ 3.9
ETCS/decomposed/safety-lemma/rbc goal2 1.6 1.6 2.1 1.6 1.7 1.7 1.6 1.5 1.6 1.7 1.7 1.8
ETCS/decomposed/safety-lemma/train goal1 – – 9.4 16.4 2.5 3.1 3 10.9 ∞ ∞ ∞ 6.2
ETCS/decomposed/safety-lemma/train goal2 – – 6.3 4.3 2.6 2.8 3.4 10.1 ∞ ∞ ∞ 4.5
ETCS/decomposed/safety-lemma/train goal3 – – – – 5.3 ∞ ∞ ∞ ∞ ∞ ∞ ∞
ETCS/decomposed/safety-lemma/train goal4 – – 10 16.2 2.7 3.1 3.1 10 ∞ ∞ ∞ 16.7
ETCS/decomposed/safety-lemma/train goal5 – – 6.2 4.7 2.9 3.1 3.1 10.1 ∞ ∞ ∞ 5.7
ETCS/decomposed/safety-lemma/train goal6 – – – – 8.9 ∞ ∞ ∞ ∞ ∞ ∞ 49.5
ETCS/decomposed/safety-lemma/use-case – – – 1.7 1.3 1.6 4.2 8.2 ∞ ∞ ∞ 2
ETCS/paper/rbc-controllability-characterisation – – – 3.2 2.8 3.5 5.1 11.7 ∞ – – –
ETCS/paper/rbc-controllability-lemma – – 4.7 2.4 2 2.2 2.8 8.8 ∞ 95.8 – 2.4
ETCS/safety/binary driver-2007-10-09 – – – – 7.2 11.2 ∞ ∞ ∞ ∞ ∞ ∞
ETCS/safety/ETCS-essentials – – – 24.2 2.9 4.1 – ∞ ∞ ∞ ∞ ∞
accel-simple – – 15.6 – 5.3 9.4 ∞ ∞ ∞ ∞ ∞ 7.4
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Example GM GO GK QQ QM QRs QRc QC QH PH PK GRN

magnetic field 24.2 30.4 33.8 – 19.1 47.5 ∞ – – – ∞ 30.1
magnetic field-simplified 23.8 27.9 35.6 – 20.6 42.7 ∞ – – – ∞ 28.6
moving-point – – – 2 1.7 2.2 2.3 12.6 ∞ ∞ – ∞
water tank/water tank – – 19.8 17.2 8.9 24.8 27.6 133 – ∞ ∞ ∞
weispfennig/angle – – – – ∞ 1.5 ∞ ∞ ∞ ∞ ∞ 2.9
weispfennig/angle2 – – – – 10.7 546.8 – ∞ ∞ ∞ – ∞
weispfennig/pedos inequality – – – 1.5 1.4 1.6 1.9 ∞ ∞ 111.1 ∞ –
realTacletPOs/decompose mult – – 0.2 0.5 0.3 0.8 – 7.3 389.1 90.5 2.2 0.5
realTacletPOs/inEqSimp contradInEq2 – – – 0.6 0.6 0.8 – 7.8 479.2 99.0 – 2.1
realTacletPOs/inEqSimp contradInEq20 – – – 0.7 0.6 0.9 – 7.9 433.9 90.0 – 2.1
realTacletPOs/inEqSimp exactShadow0 – – – 0.6 0.4 0.6 – 7.5 448.4 108.9 – 2.1
realTacletPOs/inEqSimp exactShadow01 – – – 0.6 0.5 0.6 – 7.5 652.4 96.4 – 2.1
realTacletPOs/inEqSimp subsumption2 – – – 0.7 0.6 0.9 – 7.7 418.4 112.8 – 2.5
realTacletPOs/inEqSimp subsumption20 – – – 0.7 0.6 0.8 – 7.8 420 ∞ ∞ 2.9
realTacletPOs/multiply inEq0 – – – 0.5 0.4 0.7 – 7.4 422.7 91.2 6 1
harrison – – – 0.6 0.5 0.7 0.7 8.3 754.4 95.5 7.1 7.7
harrison2 – – – 0.8 0.4 1.1 – ∞ ∞ 94.1 – ∞
harrison3 – – – 0.4 0.3 0.5 0.5 158.1 ∞ 113.0 ∞ ∞
harrison4 – – – 0.6 0.5 0.8 0.9 9.3 ∞ 95.7 ∞ –
semi definite polynomials/quaternary2 – – – 7.7 0.7 3.4 2.5 ∞ ∞ 93.8 – ∞
semi definite polynomials/quaternary4 – – – 0.8 0.3 1.8 ∞ ∞ ∞ 97.2 – ∞
semi definite polynomials/ternary1 – – – 0.4 0.2 0.4 0.5 ∞ ∞ 91.0 – ∞
semi definite polynomials/ternary2 – – – 0.4 0.2 0.8 0.8 ∞ ∞ 93.5 61.9 16.4
semi definite polynomials/ternary4 – – – 0.6 0.2 0.9 0.8 ∞ ∞ 93.4 200.9 18.6
semi definite polynomials/ternary5 – – – 0.7 0.3 0.9 0.9 ∞ – ∞ – ∞
z3/nl10 – – 1.1 0.5 0.3 0.6 0.6 7.7 406.3 94.4 4.1 0.6
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z3/nl12 0.4 0.4 0.7 0.4 0.4 0.5 0.6 7.6 387.6 91.2 4.4 0.5
z3/nl14 – – 1 0.6 0.5 0.6 0.7 7.3 401.2 99.0 – 0.9
z3/nl20 0.4 0.5 1 0.5 0.4 0.7 0.7 7.9 601.3 92.5 1 0.6
z3/nl21 0.5 0.5 1.1 0.5 0.4 0.6 0.6 9.1 642.9 91.6 0.8 0.5
z3/nl3 1 1.4 2.6 0.8 0.6 0.8 0.9 7.7 552.5 89.9 ∞ 1.5
z3/nl33 – – – 0.5 0.4 0.6 0.6 7.6 407.4 97.3 ∞ 1
z3/nl36 – – – 0.4 0.3 0.5 0.5 7.3 384.4 95.9 – 0.5
z3/nl4 – – – 0.3 0.2 0.4 0.4 7.8 602 93.8 0.5 0.3
z3/nl40 – – 0.3 0.4 0.3 0.5 0.5 7.5 392 93.7 – 0.5
z3/nl42 – – – 0.5 0.4 0.6 0.7 7.6 426.1 112.6 – ∞
z3/nl43 – – – 0.6 0.5 0.6 0.7 8 399.6 93.1 ∞ 0.9
z3/nl5 – – – 0.5 0.3 0.5 0.5 7.3 399.3 93.4 ∞ 0.8
z3/nl52 – – 1.5 0.9 0.8 0.9 1 19.3 ∞ 92.5 ∞ 3.3
z3/nl54 0.4 0.4 1 0.4 0.3 0.6 0.5 7.4 378.1 99.8 4.4 0.5
z3/nl55 – – 1.6 0.6 0.4 0.6 0.7 7.6 390.3 90.9 113.9 0.8
z3/nl56 – – – 0.5 0.3 0.6 0.6 7.5 506 92.2 ∞ 0.8
z3/nl57 – – – 0.5 0.4 0.5 0.6 8.3 970.7 99.3 ∞ 0.7
z3/nl60 – – 0.5 0.4 0.3 0.6 0.5 7.4 381.9 92.7 2.8 –
z3/nl9 – – 0.4 0.4 0.3 0.5 0.5 7.5 377 94.5 1.9 0.8


