Form Methods Syst Des (2016) 49:33-74
DOI 10.1007/s10703-016-0241-z

ModelPlex: Verified Runtime Validation
of Verified Cyber-Physical System Models

Stefan Mitsch - André Platzer

Received: 11 April 2015 / Revised: 21 September 2015 / Accepted: 24 December 2015

Abstract Formal verification and validation play a crucial role in making cyber-physical
systems (CPS) safe. Formal methods make strong guarantees about the system behavior if
accurate models of the system can be obtained, including models of the controller and of
the physical dynamics. In CPS, models are essential; but any model we could possibly build
necessarily deviates from the real world. If the real system fits to the model, its behavior
is guaranteed to satisfy the correctness properties verified with respect to the model. Other-
wise, all bets are off.

This article introduces ModelPlex, a method ensuring that verification results about
models apply to CPS implementations. ModelPlex provides correctness guarantees for CPS
executions at runtime: it combines offline verification of CPS models with runtime valida-
tion of system executions for compliance with the model. ModelPlex ensures in a provably
correct way that the verification results obtained for the model apply to the actual system
runs by monitoring the behavior of the world for compliance with the model. If, at some
point, the observed behavior no longer complies with the model so that offline verifica-
tion results no longer apply, ModelPlex initiates provably safe fallback actions, assuming
the system dynamics deviation is bounded. This article, furthermore, develops a systematic
technique to synthesize provably correct monitors automatically from CPS proofs in dif-
ferential dynamic logic by a correct-by-construction approach, leading to verifiably correct
runtime model validation. Overall, ModelPlex generates provably correct monitor condi-
tions that, if checked to hold at runtime, are provably guaranteed to imply that the offline
safety verification results about the CPS model apply to the present run of the actual CPS
implementation.

Keywords Runtime verification - Static verification - Cyber-physical systems - Hybrid
systems - Differential dynamic logic

1 Introduction

Cyber-physical systems (CPS) involve controllers and the relevant dynamics of the environ-
ment. Since safety is crucial for CPS, their models (e. g., hybrid system models [31]) need

S. Mitsch

Computer Science Department, Carnegie Mellon University

E-mail: smitsch@cs.cmu.edu

Present address: Department of Cooperative Information Systems, Johannes Kepler University

A. Platzer
Computer Science Department, Carnegie Mellon University
E-mail: aplatzer @cs.cmu.edu

http://dx.doi.org/10.1007/s10703-016-0241-z

2 Stefan Mitsch, André Platzer

to be verified formally. Formal verification guarantees that a model is safe with respect to a
safety property. The remaining task is to validate whether the model is adequate, so that the
verification results for the model transfer to the actual system implementation [18, 42]. This
article introduces ModelPlex [24], a method to synthesize correct-by-construction monitors
for CPS by theorem proving automatically: it uses sound axioms and proof rules of differ-
ential dynamic logic [33] to formally verify that a model is safe and to synthesize provably
correct monitors that validate compliance of system executions with that model. The dif-
ficult question answered by ModelPlex is what exact conditions need to be monitored at
runtime to guarantee compliance with the models and thus safety.

System execution, however, provides many opportunities for surprising deviations from
the model: faults may cause the system to function improperly [43], sensors may deliver
uncertain values, actuators may suffer from disturbance, or the formal verification may have
assumed simpler ideal-world dynamics for tractability reasons or made unrealistically strong
assumptions about the behavior of other agents in the environment. Simpler models are
often better for time-critical decisions and optimizations, because they make it possible to
compute predictions at the rate required for real-time decisions. The same phenomenon
of simplicity for predictability is often exploited for the models in formal verification and
validation, where formal verification results are often easier to obtain for simpler models. It
is more helpful to obtain a verification or prediction result about a simpler model than to fail
on a more complex one. The flipside is that the verification results obtained about models
of a CPS only apply to the actual CPS at runtime to the extent that the system fits to the
model. ModelPlex enables tradeoffs between analytic power and accuracy of models while
retaining strong safety guarantees.

Validation, i. e., checking whether a CPS implementation fits to a model, is an interesting
but difficult problem. Even more so, since CPS models are more difficult to analyze than
ordinary (discrete) programs because of the continuous physical plant, the environment,
sensor inaccuracies, and actuator disturbance, making full model validation quite elusive.

In this article, we, thus, settle for the question of runtime model validation, i. e. validat-
ing whether the model assumed for verification purposes is adequate for a particular system
execution to ensure that the offline safety verification results apply to the current execution.!
But we focus on verifiably correct runtime validation to ensure that verified properties of
models provably apply to the CPS implementation, which is important for safety and certifi-
cation [5]. Only with such a way of validating model compliance is there an unbroken chain
of evidence of safety claims that apply to the actual system, rather than merely to its model.
ModelPlex provides a chain of formal proofs as a strong form of such evidence.

At runtime, ModelPlex monitors check for model compliance. If the observed system
execution fits to the verified model, then this execution is safe according to the offline verifi-
cation result about the model. If it does not fit, then the system is potentially unsafe because
it evolves outside the verified model and no longer has an applicable safety proof, so that a
verified fail-safe action from the model is initiated to avoid safety risks, cf. Fig. 1. System-
level challenges w.r.t. monitor implementation and violation cause diagnosis are discussed
elsewhere [8, 21, 45].

Checking whether a system execution fits to a verified model includes checking that
the actions chosen by the (unverified) controller implementation fit to one of the choices
and requirements that the verified controller model allows. It also includes checking that

' ModelPlex checks system execution w.r.t. a monitor specification, and thus, belongs to the field of runtime
verification [18]. In this article we use the term runtime validation in order to clearly convey the purpose of
monitoring (i.e., runtime verification monitors properties without offline verification; ModelPlex validates
adequacy of models to transfer offline verification results to the online situation).

ModelPlex: Verified Runtime Validation of Verified Cyber-Physical System Models 3

> (Controller)

ModelPlex
| Compliance Monitor l— Fallback

(Sensors)

Fig. 1: ModelPlex monitors in a Simplex [39] setting: a fallback action gets executed when
sensor readings and control decisions do not comply with a monitor.

the observed states can be explained by the plant model. The crucial questions are: What
are the right conditions to monitor? Which monitor conditions guarantee safety without
being overly restrictive? How can the correctness of such executable monitor conditions be
proved formally? How can a compliance monitor be synthesized that provably represents all
important aspects of complying with the verified model correctly? How much safety margin
does a system need to ensure that fail-safe actions are always initiated early enough for the
system to remain safe, even if its behavior ceases to comply with the model?

The last question is related to feedback control and can only be answered when assum-
ing some constraints on the maximum deviation of the real system dynamics from the plant
model [36]. Otherwise, i.e., if the real system might be infinitely far off from the model,
safety guarantees are impossible. By the sampling theorem in signal processing [40], such
constraints further enable compliance monitoring solely on the basis of sample points in-
stead of the unobservable intermediate states about which no sensor data exists.’

Extension. In addition to providing proofs for the results, this article extends the short ver-
sion [24] with support for a correct-by-construction approach to synthesize ModelPlex mon-
itors by a systematic transformation in the differential dynamic logic axiomatization [33].
We leverage an implementation of this axiomatization in our entirely new theorem prover
KeYmaera X [14] by performing the ModelPlex monitor proof construction in place, as op-
posed to splitting it over the branches of its classical sequent calculus [29]. Sequent calculi
are usually preferred for proving properties, because they induce a sequent normal form that
simplifies proof construction by narrowing proof search to proof rules for top-level opera-
tors and splitting the proof over independent branches as needed. Proofs cannot close during
the ModelPlex monitor construction, however, because the proof represents the conditions
on system executions that the verified model imposes. That is why proof branching in our
previous ModelPlex implementation [24] led to sizeable monitors with nontrivial redun-
dancy which were simplified with (unverified) external optimization tools and, thus, had to
be reverified for correctness.

Our new ModelPlex monitor synthesis presented here exploits the flexibility of differ-
ential dynamic logic axioms [33] more liberally to significantly improve locality of the
construction, which leads to reductions of the resulting monitors compared to our previ-
ous approach [24]. The axiomatic ModelPlex construction also preserves the structure in
the model better. The ModelPlex construction now remains entirely under the auspices of
the theorem prover without external simplification, thereby eliminating the need to reverify
correctness of the resulting monitor. Efficiency during the ModelPlex monitor construction
in the prover is retained using contextual rewriting in the uniform substitution calculus for

2 When such constraints are not available, our method still generates verifiably correct runtime tests, which
detect deviation from the model at the sampling points, just not between them. A fail-safe action will then
lead to earliest possible best-effort mitigation of safety risks (rather than guaranteed safety).

4 Stefan Mitsch, André Platzer

differential dynamic logic [35]. We now also implemented optimizations of the ModelPlex
monitor constructions as proof tactics that were previously performed manually. This leads
to a fully automatic synthesis procedure for correct-by-construction ModelPlex monitors
that produces proofs of correctness for the monitors it synthesizes.

2 Differential Dynamic Logic by Example

This section recalls differential dynamic logic £ [29, 31, 33], which we use to syntactically
characterize the semantic conditions required for correctness of the ModelPlex approach.
Its proof calculus [29, 31, 33, 35] is also exploited to guarantee correctness of the specific
ModelPlex monitors produced for concrete CPS models. A tactic for the proof calculus
implements the correct-by-construction ModelPlex monitor synthesis algorithm.

This section also introduces a simple water tank that will be used as a running example
to illustrate the concepts throughout.

The water level in the tank is controlled
py a digitgl controller that can periodica.Hy gd- flow +f maximum level m
just flow into and from the tank by adjus.tmg flow — I current level x
two valves. Every time the controller decides
on adjusting the flow, it measures the water
level through a sensor (i. e., it samples the water
level). As a safety condition, we want the water tank to never overflow: any control decision
of the controller must be such that the water level stays within 0 and a maximum water level
m at all times. We will use this example to introduce d. and its syntax for modeling hybrid
programs step by step. The final example is repeated in App. A for easy reference.

Fig. 2: Water tank model.

2.1 Syntax and Informal Semantics

Differential dynamic logic has a notation for modeling hybrid systems as hybrid programs.
Table 1 on page 6 summarizes the relevant syntax fragment of hybrid programs together
with an informal semantics. The formal semantics p () of hybrid program « is a relation
on initial and final states of running & (recalled in Section 2.2 below).

Syntax of hybrid programs by example. Let us start by modeling the controller of the water
tank example, which can adjust two valves by either opening them or closing them.

(Vin :=1Uvip :=0); (Vour :=1Uvoy :=0)

Here, we use (deterministic) assignment x := 6 to assign values to valves: setting a valve
to 1, as in vj, := 1 means that the valve is open, while setting it to 0 means that the valve is
closed. Now any valve can either be opened or closed, not both at the same time, which we
indicate using the nondeterministic choice ot U f3, as in vy, := 1 Uv;, := 0. The controller first
adjusts the incoming valve vj,, before it adjusts the outgoing valve voy, as modeled using
the sequential composition ; 3.

For theorem proving, however, it often makes sense to describe the system at a more
abstract level in order to keep the model simple. Let us, therefore, replace the two valves
with their intended effect of adjusting water flow f.

fi=x2-1<f<1)

ModelPlex: Verified Runtime Validation of Verified Cyber-Physical System Models 5

Here, we use nondeterministic assignment f :=3x, which assigns an arbitrary real number
to f, so we abstractly model that the controller will somehow choose water flow. Next, we
need to restrict this arbitrary flow to those flows that make sense. Let us assume that the
incoming and the outgoing pipe from our water tank can provide and drain at most 1 liter
per second, respectively. For this, we use the test ?(—1 < f < 1), which checks that —1 <
f <1 holds, and aborts the execution attempt if it does not. Together, the nondeterministic
assignment and test mean that the controller can choose any flow in the interval f € [—1,1].

Now that we know the actions of the controller, let us add the physical response, often
called plant, using differential equations. We use x to denote the current water level in the
water tank.

fr=x2-1<f<1); {¥=f&x>0}

The idealized differential equation x' = f means that the water level evolves accord-
ing to the chosen flow. This considerably simplifies water flow models (e. g., it neglects the
influence of water level on flow, and flow disturbance in pipes). The evolution domain con-
straint x > 0 models a physical constraint that the water level can never be less than empty.
Otherwise, the differential equation would include negative water content in the tank below
zero on negative flow, because differential equations evolve for an arbitrary amount of time
(even for time 0), as long as their evolution domain constraint is satisfied. Note, that when
the tank is empty (x = 0) and the controller still chooses a negative flow f < 0 as permitted
by the test 2(—1 < f < 1), the evolution domain constraint x > 0 in the ODE will abort
immediately. As a result, only non-negative values for f will make progress in case the tank
is empty. This model means that the controller can choose flow exactly once, and then the
water level evolves according to that flow for some time. Next, we include a loop, indicated
by the Kleene star, so that the controller and the plant can run arbitrarily many times.

(f::*; N-1<f<1); {x’:f&xz()})*

However, this model provides no guarantees whatsoever on the time that will pass be-
tween two controller executions, since differential equations are allowed to evolve for an
arbitrary amount of time. In order to guarantee that the controller runs at least every € time,
we model controller periodicity and sampling period by adding the differential equation
t' =1 to capture time, and a constraint ¢ < € to indicate that at most € time can pass until
the plant must stop executing and hand over to the controller again. We reset the stopwatch
t after each controller run using 7 :=0.

(f=x2-1<f<1);:=0; (X =f,=1&x>0At<¢e})"

Note, that through ¢ < € the sampling period does not need to be the same on every
control cycle, nor does it need to be exactly € time.

Now that we know the sampling period, let us make one final adjustment to the con-
troller: It actually cannot always be safe to choose positive inflow, as allowed by the test
?7—1< f <1 (e.g.,it would be unsafe if the current water level x is already at the maximum
m). Since we know that the controller will run again at the latest in € time, we can choose
inflow such that it will not exceed the maximum level m until then, as summarized below.

*
(f::*; ?(—1§f§ %);t::O; (=1, r’:l&xzomgs})

6 Stefan Mitsch, André Platzer

Table 1: Hybrid program representations of hybrid systems.

Statement Effect

o B sequential composition, first run hybrid program ¢, then hybrid program 3
oauUp nondeterministic choice, following either hybrid program « or 8

a* nondeterministic repetition, repeats hybrid program o n > 0 times

x:=0 assign value of term 0 to variable x (discrete jump)

Xi=x assign arbitrary real number to variable x

F check that a particular condition F holds, and abort if it does not

(x/] =0,..., evolve x; along differential equation system)H, =6;

X, =60, &F) restricted to maximum evolution domain F

Differential dynamic logic syntax by example. Next, we want to prove that this program is
correct. For this, we first need to find a formal safety condition that captures correctness.
Since we want the tank to never overflow, all runs of the program must ensure 0 < x < m,
which in d% is expressed using the box modality [¢t]¢. The formula [a]¢ is not true in all
initial states, only in those that at least satisfy 0 <x << m to begin with. The modeling idiom
¢ — [a]y expresses that, when started in an initial state that satisfies the initial condition ¢,
then all runs of the model ¢ result in states that satisfy y, similar to a Hoare triple. Formula
(1) below summarizes the water tank model and the safety condition using this idiom.

O<x<smre>0-— [(f:—*;?<_1§f§m£x>;
—

’ J—t M
t:O, {x/:fvllzl&xz()/\tge}) (nggm)

This formula expresses that, when started with a safe water level between 0 and max-
imum (0 <x < m) and with some positive sampling period (¢ > 0), our water tank model
will keep the water level between 0 and maximum. It is provable in the d.Z proof calculus.

Syntax summary. Sequential composition o; 8 says that starts after o finishes. The non-
deterministic choice @ U f3 follows either o or 8. The nondeterministic repetition operator
o repeats o zero or more times. Assignment x:= 0 instantaneously assigns the value of
term 6 to the variable x, while x:=* assigns an arbitrary value to x. The test ?F checks that
a condition F holds, and aborts if it does not. X’ = @ & F describes a continuous evolution
of x within the evolution domain F.

The set of A% formulas is generated by the following grammar (~ € {<,<,=,>,>}
and 0y, 6, are arithmetic expressions in +, —, -, / over the reals):

¢u=01~6r [0 [OAY[OVY o=y |Vxd| o |[]g | (a)¢

0L allows us to make statements that we want to be true for all runs of a hybrid program
([x]9) or for at least one run ({ct)¢). Both constructs are necessary to derive safe monitors:
we need [ct]¢ proofs so that we can be sure all behavior of a model are safe; we need (o) ¢
proofs to find monitor specifications that detect whether or not a system execution fits to
the verified model. Differential dynamic logic comes with a verification technique to prove
correctness properties of hybrid programs (cf. [33] for an overview of A% and KeYmaera,
and [14] for an overview of KeYmaera X).

ModelPlex: Verified Runtime Validation of Verified Cyber-Physical System Models 7

2.2 Formal Semantics of A%

ModelPlex is based on a transition semantics instead of trace semantics [31], since it is
easier to handle and fits to checking monitors at sample points.

The semantics of .7, as defined in [29], is a Kripke semantics in which states of the
Kripke model are states of the hybrid system. Let R denote the set of real numbers, and V
denote the set of variables. A state is amap v : V — R; the set of all states is denoted by Sta.
We write v |= ¢ if formula ¢ is true at state v (Def. 2). Likewise, [0],, denotes the real value
of term O at state v, while v(x) denotes the real value of variable x at state v. The semantics
of HP « is captured by the state transitions that are possible by running o. For continuous
evolutions, the transition relation holds for pairs of states that can be interconnected by a
continuous flow respecting the differential equation and invariant region. That is, there is
a continuous transition along ¥’ = @ & H from state Vv to state o, if there is a solution of
the differential equation x’ = 0 that starts in state v and ends in @ and that always remains
within the region H during its evolution.

Definition 1 (Transition semantics of hybrid programs) The transition relation p speci-
fies which state @ is reachable from a state v by operations of «. It is defined as follows.

. (v,o) € piff o(x) = [6], and v(z) = @(z) for all state variables z # x.

. (v,0) € p iff v(z) = o(z) for all state variables z # x.

. (vio)epiffv=wandv = ¢.

. (v,o) € p iff for some r>0, there is a (flow) function
©:[0,r] — Sta with ¢(0) = v,@(r) = o, such that for each time { € [0,r] the differ-
ential equation holds and the evolution domain is respected @(§) |= xi = 6,&H, see
[29, 34] for details

5. p=pUp

6. p={(v,w):(v,u) €p,(u,o) € p forastate u}

7. p = Uy,en P where o1 = (or; o) and o® = %t rue.

B W N~

Definition 2 (Interpretation of . formulas) The interpretation = of a A% formula with
respect to state Vv is defined as follows.

\%): 0; ~ 6, iff [[9]]]‘, ~ [[92]]‘/ for ~ € {:7§7<727>}

vE§AYiff v E ¢ and v | v, accordingly for —,V, —, <>

vV |= Vx¢ iff o |= ¢ for all o that agree with v except for the value of x

v | dx ¢ iff 0 = ¢ for some o that agrees with v except for the value of x
v = [a]¢ iff o = ¢ for all ® with (v,®) € p

v = (o) ¢ iff o = ¢ for some wwith (v,®) € p

A

We write = ¢ to denote that ¢ is valid, i. e., that v |= ¢ for all states v.

2.3 Notation and Supporting Lemmas

BV(a) denotes the bound variables [35] in «, i.e., those written to in a, FV(y) are free
variables [35] in y, X is the set of all variables, and A\B denotes the set of variables being
in some set A but not in some other set B. Furthermore, v|4 denotes the state v projected to
just the variables in A, whereas vy denotes the state v in which x is interpreted as y.

In the proofs throughout this article, we will use the following lemmas specialized from
[35, Lemmas 12, 14, and 15]. Hybrid programs only change their bound variables:

8 Stefan Mitsch, André Platzer

Lemma 1 (Bound effect lemma) If (v,®) € p(), then v =0 on £\ BV().
The truth of formulas only depends on their free variables:

Lemma 2 (Coincidence lemma) If v =V on FV(¢) then v |= ¢ iff V = ¢.
Similar states (that agree on the free variables) have similar transitions:

Lemma 3 (Coincidence lemma) If v ="V onV D FV(a) and (v,w) € p(a), then there is
an @ such that (V,®) € p(ot) and @ = @ on V.

The notation v|y = V|y is used interchangeably with v = ¥ agree on V.

3 ModelPlex Approach for Verified Runtime Validation

CPS are almost impossible to get right without sufficient attention to prior analysis, for in-
stance by formal verification and formal validation techniques. We assume to be given a ver-
ified model of a CPS, i. e. formula (2) is proved valid,? for example using the differential dy-
namic logic proof calculus [29, 33] implemented in KeYmaera [37] and KeYmaera X [14]:

¢ — o]y (@)

Formula (2) expresses that all runs of the hybrid system a*, which start in states that
satisfy the precondition ¢ and repeat arbitrarily many times, only end in states that satisfy
the postcondition y. Note, that in this article we discuss models of the form o* for compre-
hensibility reasons. The approach is also applicable to more general forms of models (e. g.,
models without loops, or models where only parts are executed in loops).

The model a* is a hybrid system model of a CPS, which means that it describes both
the discrete control actions of the controllers in the system and the continuous physics of
the plant and the system’s environment. For example, our running example of a water tank
repeated below models a hybrid system, which consists of a controller that chooses flow and
a plant that determines how the water level changes depending on the chosen flow.

ot = (f::*; ?(—lgfg ?);1:20; X' =f, t’:l&xZO/\tSs})

Formula (2) is proved using some form of induction with invariant ¢, i. e., a formula for
which the following three formulas are provable:

@ is an invariant for (2),i.e., @ — [o]@ O — @ 0=y 3)

which shows that a loop invariant ¢ holds after every run of « if it was true before (i.e.,
@ — [a]@), that the loop invariant holds initially (¢ — ¢) and implies the postcondition
(@ —=w.

However, since we usually made approximations when modeling the controller and the
physics, and since failures and other deviations may occur in reality (e.g., a valve could
fail), we cannot simply transfer this safety proof to the real system. The safety guarantees
that we obtain by proving formula (2) about the model a* transfer to the real system, if the
actual CPS execution fits to o*.

3 We use differential dynamic logic (d%) and KeYmaera and KeYmaera X as a theorem prover to il-
lustrate our concepts throughout this article. The concept of ModelPlex is not predicated on the use of
KeYmaera/KeYmaera X to prove (2). Other verification techniques could be used to establish validity of
this formula. The flexibility of the underlying logic d.%, its support for both [ct]¢ and ()¢, and its proof
calculus, however, are exploited for systematically constructing monitors from proofs in the rest of the article.

ModelPlex: Verified Runtime Validation of Verified Cyber-Physical System Models 9

Example 1 (What to monitor) Let us recall the water tank example. First, since failures
may occur we need to monitor actual evolution, such as that the actual water level cor-
responds to the level expected by the chosen valve positions and the actual time passed
between controller executions does not exceed the modeled sampling period. The monitor
needs to allow some slack around the expected water level to compensate for the neglected
physical phenomena. Sections 3.2 and 3.5 describe how to synthesize such model monitors
automatically. Second, the controller implementation differs from the model, e.g., it might
follow different filling strategies, so we need to check that the implemented controller only
chooses flows f that satisfy —1 < f < "“T_x Section 3.4 describes how to synthesize such
controller monitors automatically. Finally, we can monitor controller decisions for the ex-
pected real-world effect, since the hybrid system model contains a model of the physics of
the water tank. Section 3.6 describes how to synthesize such prediction monitors automat-
ically. The controller in the model, which is verified to be safe, gives us a fail-safe action
that we can execute instead of the unverified controller implementation when one of the
monitors is not satisfied.

Since we want to preserve safety properties, a CPS ¥ fits to a model «*, if the CPS
reaches at most those states that are reachable by the model, i. e., p(y) C p(a*) [27], because
all states reachable by a* from states satisfying ¢ are safe by (2). For example, a controller
that chooses inflow more cautiously, such as only half the maximum inflow from the model,
i.e., f < 5%, would also be safe. So would be running the controller more frequently than
every € time, but not less frequently.

However, we do not know the true CPS 7 precisely,* so we cannot use refinement-based
techniques (e. g., [27]) to prove that the true CPS 7y refines the model o*. Therefore, we need
to find a condition based on a* that we can check at runtime to see if concrete runs of the
true CPS y behave like the model o*.

Example 2 (Canonical monitor candidates) A monitor condition that would be easy to
check is to monitor the postcondition y (e. g., monitor the safety condition of the water
tank 0 < x < m). But that monitor is unsafe, because if y is violated at runtime, the system
is already unsafe and it is too late to do anything about it (e. g., the water tank did already
overflow). Another monitor that would be easy to check is the invariant ¢ used to prove
Formula (2). But that monitor is also unsafe, because once ¢ is violated at runtime, the
controller is no longer guaranteed to be safe, since Formula (3) only proves it to be safe
when maintaining invariant @ (e. g., in the water tank example, the invariant =0 <x <m
is not even stronger than the safety condition). But if we detect when a CPS is about to
deviate from o before leaving ¢, we can still switch to a fail-safe controller to avoid =y
from ever happening (see Fig.3). Yet even so, the invariant ¢ will not even contain all
conditions that need to be monitored, since ¢ only reflects what will not change when
running the particular model &, which says nothing about the behavior of the true CPS 7.

The basic idea behind ModelPlex is based on online monitoring: we periodically sample
7 to obtain actual system states V;. A state v; includes values for each of the bound variables
(i.e., those that are written) from the model a*. For example, for our water tank we need
to sample flow f (written to in f := %), water level x (written to in X' = f), and time ¢
(written to in # := 0 and x’ = 1). We then check pairs of such states for being included in the
reachability relation of the model, which is expressed in A% semantics as (v;_1,V;) € p(a*).
We will refer to the first state in such a pair by prior state and to the second one by posterior
state. This is the right semantic condition to check, but not computationally represented. The

4 Tt is an annoying fact of physics that there will never quite be a perfect model of .

10 Stefan Mitsch, André Platzer

Fig. 3: States when safety measures are required according to postcondition Y, invariant ¢,
and monitor. The water tanks illustrate water levels corresponding to these conditions.

important question answered by ModelPlex through automatic synthesis is how that check
can be represented in a monitor condition in an easily and efficiently computable form.

Example 3 (Desired arithmetic monitor representation) For example, by manually analyz-
ing the hybrid program of the water tank example, the result is expected to be the following
real arithmetic formula. The annotations under the braces refer to the part of the hybrid
program of the water tank that points us to the corresponding condition.

Cr<vi(n) < ™Y) v))
(i) ¥/ =f, =1
AVi_1(x) > 0AV(x) >0AN0< V;(t) <€

(iii) =0, &x>0Nt<e

) fimss 21275

This formula describes that (i) the flow v;(f) in the posterior state has to obey certain
bounds, depending on the prior water level v;_;(x), resulting from the nondeterministic
assignment and the test; (i) the posterior water level v;(x) is given by the solution of the
differential equation x+ [fdr = x+ ft, i. e., the posterior water level should be equal to the
prior water level v;_;(x) plus the amount resulting from flow v;(f) in time v;(¢); finally,
(iii) the evolution domain constraints must be true, meaning the posterior water level must
be non-negative and the time v;(f) must be between 0 and €. Note, that it is tempting to just
read off a wrong condition v;(t) = 0 from hybrid program ¢ := 0. Since ¢ is not constant
in the ODE following the assignment (¢ := 0; ¢’ = 1), this condition must be phrased 0 <
v;(t). Also note, that it is very easy to get the evolution domain wrong: evolution domain
constraints have to hold throughout the ODE, which includes the beginning and the end,
so the check must include both v;_; (x) > 0 and v;(x) > 0. The sound proof calculus of ¥
prevents such mistakes when deriving monitor conditions.

The question is: How to find such an arithmetic representation automatically from just
the formula (1)? And how to prove its correctness? ModelPlex derives three kinds of such
formulas as monitors (model monitor, controller monitor, and prediction monitor, cf. Fig. 4)
that check the behavior of the actual CPS at runtime for compliance with its model. These
monitors have the following characteristics.

Model monitor The model monitor checks the previous state v;_; and current state v; for
compliance with the model, i. e.. whether the observed transition from v;_; to v; is com-

ModelPlex: Verified Runtime Validation of Verified Cyber-Physical System Models 11

Model monitor Controller monitor Prediction monitor
model adequate? control safe? until next cycle?

Fig. 4: Use of ModelPlex monitors along a system execution.

patible with the model. In each state v; we test the sample point v;_; from the previous
execution y;_ for deviation from a*, i.e., test (vi_1, Vi) € p(a*). If violated, other ver-
ified properties may no longer hold for the system so a failsafe action is initiated. The
system itself, however, still satisfies safety condition y if the prediction monitor was sat-
isfied at v;_. Frequent violations indicate an inadequate model that should be revised
to better reflect reality.

Controller monitor The controller monitor checks the output of a controller implemen-
tation against the correct controller model. If the controller implementation performs
an action that the controller model allows in the present state, then it has been veri-
fied offline to be safe by Formula (2). Otherwise, the action is discarded and replaced
by a default action that has been proved safe. In intermediate state V; we test the cur-
rent controller decisions of the controller implementation 7 for compliance with the
model, i.e., test (Vi, V;) € p(Cey1). The controller gy will be obtained from the model
a* through proof steps. Controller monitors have some similarities with Simplex [39],
which is designed for switching between verified and unverified controllers. The con-
troller monitor, instead, corresponds to the more general idea of testing contracts dy-
namically at runtime while defaulting to a specified default action choice if the contract
fails. If a controller monitor is violated, commands from a fail-safe controller replace
the current controller’s decisions to ensure that no unsafe commands are ever actuated.

Prediction monitor The model monitor detects deviations from the model as soon as pos-
sible on the measured data, but that may already have made the system unsafe. The role
of the prediction monitor is to check the impact of bounded deviations from the model
to predict whether the next state could possibly become unsafe upon deviation from the
model so that a corrective action is advised. If the actual execution stays far enough
away from unsafe states, the prediction monitor will not intervene because no distur-
bance within the bound could make it unsafe. In intermediate state V; we test the safety
impact of the current controller decision w.r.t. the predictions of a bounded deviation
plant model O, Which has a tolerance around the model plant Qpjant, i. €., check
Vir1 = ¢ for all vy such that (V;,Viy1) € p(Ospiant)- Note, that we simultaneously
check all v;1 by checking a characterizing condition of Qgpjan; at ¥;. If violated, the
current control choice is not guaranteed to keep the system safe under all disturbances
until the next control cycle and, thus, a fail-safe controller takes over.

A simulation illustrating the effect of these monitors on the water tank running example
will be discussed in Fig. 11 on page 33, where an unsafe controller and small deviation from
the idealistic model would result in violation of the safety property, if not corrected by the
monitors synthesized in this article.

12 Stefan Mitsch, André Platzer

The assumption for the prediction monitor is that the real execution is not arbitrarily far
off the plant models used for safety verification, because otherwise safety guarantees can
be neither made on unobservable intermediate states nor on safety of the future system evo-
lution [36]. We propose separation of disturbance causes in the models: ideal plant models
Oplant fOr correctness verification purposes, implementation deviation plant models Ogpjant
for monitoring purposes. We support any deviation model (e. g., piecewise constant distur-
bance, differential inclusion models of disturbance), as long as the deviation is bounded and
differential invariants can be found. We further assume that monitor evaluations are at most
some € time units apart (e. g., along with a recurring controller execution). Note that distur-
bance in Otspy is more manageable compared to a model of the form a*, because we can
focus on single runs ¢ instead of repetitions for guaranteed monitoring purposes.

3.1 Characterizing Semantic Relations between States in Logic

All ModelPlex monitors relate states, albeit for different purposes to safeguard different
parts of the CPS execution (Fig.4). States are semantic objects and as such cannot be re-
lated, manipulated, or even just represented precisely in a program. This section develops
a systematic logical characterization as syntactic expressions for such state relations, which
will ultimately lead to computable programs for the corresponding monitor conditions. We
systematically derive a check that inspects states of the actual CPS to detect deviation from
the model o. We first establish a notion of state recall and show that compliance of an
execution from state v to @ with & can be characterized syntactically in d.%Z.

The ModelPlex monitoring principle illustrated in Fig. 4 is intuitive, but its sequence of
states V; is inherently semantic and, thus, inaccessible in syntactic programs. Our first step is
to introduce a vector of logical variables x and x™ for the symbolic prior and posterior state
variables. The basic idea is that ModelPlex monitors identify conditions on the relationships
between the values of prior and posterior state expressed as a logical formula involving the
variables x and x. Concrete states v;_; and V; can then be fed into the monitor formula as
the real values for the variables x and x™ to check whether the monitor is satisfied along the
actual system execution.

Def.3 and Lemma4 below describe central ingredients for online monitoring in this
article and are true for models 8 of arbitrary form (not just for models o* with a loop).

Definition 3 (State recall) Let V denote the set of variables whose state we want to recall.
We use the formula Y = Aoy x =x" to express a characterization of the values of variables
x in a state posterior to a run of §, where we always assume the fresh variables x™ to occur
solely in Y. The variables in x™ can be used to recall this state. We define the satisfaction
relation (v, ®) |= ¢ of A% formula ¢ for a pair of states (v,) as ¢ evaluated in the state

resulting from v by interpreting x* as @(x) forallx € V, i.e., (v, 0) [¢ iff v;i(x) = ¢.

This enables a key ingredient for ModelPlex: establishing a direct correspondence of a
semantic reachability of states with a syntactic logical formula internalizing that semantic
relationship by exploiting the (-) modality of d.Z.

Lemma 4 (Logical state relation) Let V = BV(f). Two states v, ® that agree on X\ V, i. e.,
Vis\wv = 0|5y, i.e, V(z) = 0(z) forallz € 2\ V, satisfy (v,) € p(B) iff (v, 0) = (B)T™.

Proof “=" Let (v,®) € p(B). Since v and vfi(x) agree except on x, which are not free

variables of 8, (v,®) € p(B) also implies by coincidence Lemma 3 that there is a @

ModelPlex: Verified Runtime Validation of Verified Cyber-Physical System Models 13

such that (V;‘i(x), ®) € p(B) and ® = @ except on x. Now (v;’fr(x)7 ®) € p(B) implies

that v:i(x) = @ agree except on BV() by bound effect Lemma 1. Hence, v;im =@

agree on x since x™ & BV(B) and, thus, also a);i(x) = @ on x*. Since ® = @ agree

(0] ~ (0]
except on x* and a)x+(x) = @ agree on x", also a)ﬁ(x) =

o(x) o(x)

[0)
implies, (v i ,w;ﬂ(’“)) € p(P), because (v ., @) € p(B). As w;i(x) Ex=x" forall x,
o(x)

so ® " |=T". Consequently, vfi(x) E (B)Y*, whichis (v,0) = (B)T™.

“<” Let (v,0) = (B)TT, that is, vﬁ(x) E (B)Y*. So there is a @ such that (v;i(x),(b) €
p(B) and @ ET". Now @ = 1" implies that @(x) = @(x"). By the bound effect
Lemmall, vaim = @ agree except on BV(f). Thus, ®@(x") = v;ﬁ(x) (x*) = o(x) for

X

all x € BV(B) as x™ ¢ BV(f). Combining both yields that @ = ® agree on all x €
BV(B). Since (v;i(x), ®) € p(B) and vﬁ(x) = v agree except on x* ¢ FV(B), coinci-
dence Lemma 3 implies there is a pt such that (v, 1) € p(f) and pu = @ agree except on
xT.So, 4 = @ = wagree onx € BV(). And it = v agree except on x € BV(f3) by bound
effect Lemma 1. From the assumption that v = ® agree except on BV(f3), it follows that
U= o also on £\ BV(f), so u = @. Hence, (v, 1) € p(B) implies (v,®) € p(B). O

agree everywhere, which

~ —

Suppose the CPS executed for some period of time and made it from state v to a state
o. That transition fits to the verified model a* iff the semantic condition (v,®) € p(a*)
holds, i.e., the states v, ® are in the transition relation induced by the semantics of a*.
The syntactic formula (o*)Y* expresses something like that. Lemma4 enables us to use
formula (4) as a starting point to find compliance checks systematically.

(@) @)

The logical formula (4) relates a prior state of a CPS to its posterior consecutive state
through at least one path through the model o*.> The formula (4) is satisfied in a state v,
if there is at least one run of the model a* starting in the state v and resulting in a state @
recalled using Y. In other words, at least one path through o* explains how the prior state
v got transformed into the posterior state .

In principle, formula (4) would already be a perfect monitor for the question whether the
state change to T+ can be explained by model a*. But formula (4) is hard if not impossible
to evaluate at runtime efficiently, because it refers to a hybrid system a*, which includes
loops, nondeterminism, and differential equations and is, thus, difficult to execute without
nontrivial backtracking and differential equation solving. Yet, any formula that is equivalent
to or implies (4) but is easier to evaluate in a state is a correct monitor as well.

To simplify formula (4), we use theorem proving to find a quantifier-free first-order real
arithmetic form so that it can be evaluated efficiently at runtime. The resulting first-order
real arithmetic formula can be easily implemented in a runtime monitor that is evaluated by
plugging the concrete values in for x and x™. A monitor is executable code that only returns
true if the transition from the prior system state to the posterior state is compliant with
the model. Thus, deviations from the model can be detected at runtime, so that appropriate
fallback and mitigation strategies can be initiated.

. . R e
5 Consecutive states for a* mean before and after executions of o (i.e., in o;a; 0 at the positions indicated
with an arrow, not within).

14 Stefan Mitsch, André Platzer

3.2 Model Monitor Synthesis

This section introduces the nature of ModelPlex monitor specifications, which form the basis
of our correct-by-construction synthesis procedure for ModelPlex monitors. Here, we focus
on the ModelPlex model monitor, but its principles continue to apply for the controller and
prediction monitors, as elaborated subsequently.

Semantical (v,®) € p(a*)
iy by Lemma 4
Logical (v,0) | (a®)T" entails safety @ |= v by Theorem 1
10 by d.Z proof
Arithmetical (v,®) = F(x,x") by online monitoring

Offline
transformation
by proof

Fig. 5: Semantical representation, logic characterization, and arithmetical form of a model
monitor. Monitor synthesis translates between these representations offline.

Fig. 5 gives an overview of the offline synthesis process for model monitors. Semanti-
cally, a monitor is a check that a pair of states (v, ®) is contained in the transition relation
p(a*) of the monitored hybrid systems model o*. This corresponds to our intuitive under-
standing of a monitor: through sensors, we observe states of a system, and want to know if
those observations fit to the model a* of the system. By Lemma 4, the syntactic counterpart
in the logic d.Z of this semantic condition (v, ®) € p(a*) is the logical formula (o*)Y*
from (4). The d.Z formula (4) syntactically characterizes the semantic statement that the
hybrid system model a* can reach a posterior state® characterized by x* from the prior state
characterized by x. The A formula (4) is a perfect logical monitor but difficult to execute
quickly, so we are looking for easier logical formulas F(x,x") that are equivalent to or im-
ply formula (4). ModelPlex uses theorem proving to systematically synthesize a provably
correct real arithmetic formula F(x,x") in a correct-by-construction approach.’

The intuition is that formula (4) holds because all conditions hold that are identified
as implying formula (4) in its proof. Some of these conditions hold always (subgoals that
can be proved to be valid always) while others will be checked at runtime whether they
hold (subgoals that do not always hold but only during executions that fit to the particular
hybrid system a*). If the ModelPlex monitor is satisfied at runtime, then the proof implying
formula (4) holds in the current CPS execution.

Note, that computationally expensive operations, such as quantifier elimination, are per-
formed offline in this process and only arithmetic evaluation for concrete state values remains
to be done online. If the ModelPlex specification (4) does not hold for the variable values
from a prior and posterior state during the CPS execution (checked by evaluating F (x,x™)
on observations), then that behavior does not comply with the model (e. g., the wrong control
action was taken under the wrong circumstances, unanticipated dynamics in the environment
occurred, sensor uncertainty led to unexpected values, or the system was applied outside the
specified operating environment).

6 Recall that Y™ = A,y x = x™ for variables V. 7 The formula F(x,x") implies (a*)Y ", because we will
use non-equivalence proof steps to derive F(x,x") from (a*)T ™.

ModelPlex: Verified Runtime Validation of Verified Cyber-Physical System Models 15

<)Modela @aﬂ:r*

F(x,xT) = m: in state @
compare to previous state vV

Fig. 6: A model monitor checks that two states v and @ are contained in the transition
relation of the program (v, ®) € p(a*); the posterior state @ is captured in x* through 1.

Intuitively, a model monitor ¥, is correct when the monitor entails safety if it is satisfied
on consecutive observations, which is formalized in Theorem 1 below. Note, that Theorem 1
for models 8 without loops follows immediately from Lemma 4 and the safety proof. Thanks
to Lemma 4, correctness of model monitors is also easy to prove:

Theorem 1 (Model monitor correctness) Let o* be provably safe, so |= ¢ — [a*]y and
let V.= BV(a*). Let vy, Vi, V2,V ... € R" be a sequence of states that agree on X\V, i.e.,
Vols\v = Vi|z\v for all k, and that start in vo = @. If (Vi, Viy1) = Xm for all i < n, then
v, = v where

Im = (@)Y ®)

Proof Show (vp,V,) € p(a*) by induction over n, such that = ¢ — [o*]y and v = ¢
imply v, = w. If n =0 then (v, vy) € p(a*) trivially by Def. 1. For n+ 1 > 0 assume
(Vo, V) € p(a*) and (Vy, Vuy1) E (@*)TT. By Lemmad, (v,,V,41) E (@*)Y implies
that (V, Var1) € p(a®). Now (v, vy,) € p(o*) and (Vy, Vyr1) € p(0®) imply (Vo, Vay1) €
p(a*). Hence we conclude v, = y from vy = ¢ and ¢ — [a*]y. O

By Theorem 1, any formula implying xp, is also a correct model monitor, such as ()T,
which more conservatively limits acceptable executions of the real 7y to those that correspond
to just one iteration of ¢o* as opposed to arbitrarily many.

Example 4 (Arithmetical model monitor condition) As illustrated in Fig. 5 and shown con-
cretely below, we can simplify formula (5) into an arithmetical representation F(x,x")
such that F(x,x") = (a*)Y™", by applying the axioms of .. The synthesis algorithm to
automatically generate the condition F (x,x") is presented in Section 3.3.
F(xx™)
1< [P IENT =x+ T AX>0AE> T 20N x>0
= ((fr=x (-1 < f <),
=0, (X =f, ' =1&x>0At<e)")(f=fTAx=x"At=1tT)

o* rt

The formula F (x,x™) says that (i) only valid flows should be chosen for the posterior state,
ie,—1<fr< %, (ii) that the posterior water level x™ must be determined by the prior
level x and the flow over time x™ = x4 f¢T, and (iii) that the evolution domain constraint

must be satisfied in both prior and posterior state, i.e.,x > 0A€g > 1T >0A fHrt +x>0.

——
xt

This formula corresponds to the expected result from Example 3, since x corresponds to
vi_1(x) and x* corresponds to v(x), and so forth.

16 Stefan Mitsch, André Platzer

The formula in Example 4 contains checks for water level x, flow f, and time ¢, because
these are the variables changed by the model. If we want to additionally monitor that the
model does not change anything except these variables, we can use Corollary 1 to include
frame constraints for specific variables into a monitor (e. g., the value of variable € is not
changed by the water tank model, and therefore not supposed to change in reality).

Corollary 1 Theorem I continues to apply when replacing V by any superset V.2 BV(o/®).

*

Proof Any variable z € V\ BV(a*) can be added to Theorem 1 by considering (z := z; &)
instead of o*, which has the same behavior but one more bound variable. O

So far, Theorem 1 assumed that everything stays constant, except for the water level
x, the flow f, and the time z. This assumption is stronger than absolutely necessary, and,
strictly speaking, prevents us from using the monitor in an environment where values that
are irrelevant to the model and its safety condition change (e. g., the water temperature).
Corollary 2 ensures monitor correctness in environments where irrelevant variables change
arbitrarily. Theorem 2 and 3 can be extended with corollaries similar to Corollaries 1 and 2.

Corollary 2 When replacing V by any superset V.2 BV(o*) UFV([o*]w) UFV(Xm), The-
orem I continues to hold without the assumption that the vy, agree on X\V.

Proof Assume the conditions of Theorem 1 with any sequence of states Vg, Vi, V2, V3... €
R”", with vy |= ¢. Consider a modified sequence of states Vo, V1, V2, V3... such that for all
k: v agrees with ¥, on V and V; agrees with vy on X\V, which, thus, satisfies the as-
sumptions of Theorem 1. Hence, (V;, Viy1) = Xm implies (V;, V1) E Xm by Lemma 2 using
V D FV(xm). Thus, (V;,Viy1) = xm for all i < n implies (V;, Vi1) = xm for all i < n, so
Theorem 1 implies V, = . Since V 2O FV(y), Lemma 2 implies that v, = y. O

Theorem 1 ensures that, when the monitor is satisfied, the monitored states are safe, i.e.,
W holds. We can get an even stronger result by Corollary 3, which says that a model monitor
also ensures that inductive invariants ¢ of the model are preserved.

Corollary 3 Under the conditions of Theorem 1 it is also true that v, = @ for an invariant
Qs o — @ 0[] and ¢ — .

Proof From |= ¢ — [a*]y it follows that there exists a @ s.t. § — @, ¢ — [¢t]@, and ¢ — .
Hence = ¢ — [a¢*]@ and Theorem 1 applies with ¢ in place of . O

Now that we know the correctness of the logical monitor representation, let us turn to
synthesizing its arithmetical form.

3.3 Monitor Synthesis Algorithm

Our approach to generate monitors from hybrid system models is a correct-by-construction
approach. This section explains how to turn monitor specifications into monitor code that
can be executed at runtime along with the controller. We take a verified d.% formula (2) and
a synthesis tactic choice (whether to synthesize a model, controller, or prediction monitor)
as input and produce a monitor F(x,x") in quantifier-free first-order form as output. The
algorithm, listed in Algorithm 1, involves the following steps:

ModelPlex: Verified Runtime Validation of Verified Cyber-Physical System Models 17

Algorithm 1: ModelPlex monitor synthesis

input : A hybrid program a*, a set of variables V O BV (ot*), a tactic choice 7 (model monitor,
controller monitor, prediction monitor)
output: A monitor F(x,x") that is first-order and implies (@*)1*

begin
T+ «— Agey X =xT with fresh variables x;" // Specification conjecture
G+ {{o*)T*} // Set of proof goals
S«—0 // Specification goals
1 while G # 0 do // Analyze specification conjecture
choose any goal g € G
G« G\{g}
if g is first-order then
| if £ g then S «— SU{g} // Monitor at runtime if unprovable
else
g <— apply d.Z proof rule according to tactic Tto g // Simplification step
L G+— GU{g}
F(x,xT) — Agess // Collect all open goals

1. A dZ formula (2) about a model o* of the form ¢ — [o*]y is turned into a specification
conjecture (5) of the form (a*)T™.

2. Theorem proving according to the tactic choice is applied on the specification conjec-
ture (5) until no further A% proof rules are applicable and only first-order real arithmetic
formulas remain open.

3. The monitor specification F (x,x") is the conjunction of the unprovable first-order real
arithmetic formulas from open sub-goals. The intuition behind this is that goals, which
remain open in the offline proof, are proved online through monitoring. Although this
do not yield a proof for all imaginable runs, that way we obtain a proof for the current
run of the real CPS.

The correctness of the monitoring conditions obtained through Algorithm 1 is guaran-
teed by the soundness of the d.Z calculus. In the remainder of the section, we will exemplify
Algorithm 1 by turning the model of the water tank example into a model monitor.

Generate the specification conjecture. We map d.Z formula (2) syntactically to a specifica-
tion conjecture of the form (5),i.e., (a*)Y*. By design, this conjecture will not be provable.
But the unprovable branches of a proof attempt will reveal information that, had it been in
the premises, would make (5) provable. Through ¥, those unprovable conditions collect
the relations of the posterior state of model a* characterized by x* to the prior state x, i.e.,
the conditions are a representation of (4) in quantifier-free first-order real arithmetic.

Example 5 (Specification conjecture) The specification conjecture for the water tank model
monitor is:

}v+
(fr=m?2(m1<f<m) =0, (X =f, ' =1&x>0A1<e})) x=xTAf=fTAt=1T)

It is constructed by Algorithm 1 in steps “specification conjecture” and “set of proof goals”
from the model by flipping the modality and formulating the specification requirement as
a property, since we are interested in a relation between two consecutive states v and @
(recalled by x*, f* and t ™).

18 Stefan Mitsch, André Platzer

Use theorem proving to analyze the specification conjecture. We use the axioms and proof
rules of A% [29, 33, 35] to analyze the specification conjecture (o*)Y *. These proof rules
syntactically decompose a hybrid model into easier-to-handle parts, which leads to sequents
with first-order real arithmetic formulas towards the leaves of a proof. Using real arithmetic
quantifier elimination we close sequents with logical tautologies, which do not need to be
checked at runtime since they always evaluate to true for any input. The conjunction of the
remaining open sequents is the monitor specification; it implies formula (4).

In the remainder of this article, we follow a synthesis style based on the axiomatization

of d¥. Axiomatization-style synthesis differs from the sequent-style synthesis of the short
version [24] in the mechanics of the simplification step of Algorithm 1. The axiomatiza-
tion of .7 allows working in place with fast contextual congruences. This leads to simpler
monitors and simpler proofs since the synthesis proof does not branch and thus keeps work-
ing on the same goal (§ = g, so |G| = 1), as opposed to the sequent-style synthesis, which
may create new goals (|G| > 1). For comparison, the corresponding sequent-style synthesis
techniques of the short version [24] of this article is elaborated in App.C. The complete
proof calculus is reported in the literature [29, 33, 35]. We explain the requisite proof rules
on-the-fly while discussing their use in the running example.
Example 6 (Analyzing loops, assignments, and tests) The analysis of the water tank con-
jecture from Example 5 uses (x) elim to eliminate the loop, (;) to handle the sequential
composition, followed by (:= *) to analyze the nondeterministic assignment (f :=*). The
hybrid program plant is an abbreviation forr:=0; {x' = f,t’ =1 & x > 0Ar < €}, whereas
Y is an abbreviation for x = x" A f = f+ At =t The nondeterministic assignment axiom
(:= «) introduces an existential quantifier. Note that rewriting can still continue in-place,
as demonstrated by rewriting the sequential composition and test inside the quantifier.

(D (0:B)o = () (B)o ((:=x)) (x:=#)9(x) < Ixo(x)

() CH)y < (HAy) () elim) ()¢ — ()¢

FAf (-1 < f< ™2 A (plant)TT)
X\ (plant) Y+

f <22 plan) T+

(x) elim’_ <(f::*;?*1 <f< %;plant)*>r+

Let us look more closely into the first step of Example 6, i. e., (x) elim. Usually, proving
properties of the form (o*)¢ about loops requires an inductive variant in order to prove
arbitrarily many repetitions of the loop body. With monitoring in mind, though, we can
unwind the loop and execute the resulting conditions repeatedly instead, as elaborated in
Lemma5.

Lemma 5 (Loop elimination) Let o be a hybrid program and o* be the program that
repeats o arbitrarily many times. Then (o) — (a*) ¢ is valid.

Proof We prove in dZ using loop unwinding (*), monotonicity [| mon and propositional
reasoning as follows.

() (@) & 0V (@)@} ([mon) L4 [rea Lyrd

or (=D
[a]¢ F [aly Lo—ykA

ModelPlex: Verified Runtime Validation of Verified Cyber-Physical System Models 19

*

F ()9 F9 — oV {a(a)p
) g — (o) (9 V (@) (a)9) F oV (@) (@ V {ay(ahe) 1™ (a)g — (a)(9 v (a)(a")9)
ENMOICGICED)
) Fo V(o) (a*)g
w F{a*)9

O

Lemma 5 allows us to check compliance with the model a* by checking compliance on
each execution of « (i. e., online monitoring [18]), which is easier than for a* because the
loop was eliminated.

We will continue Example 6 in subsequent examples. The complete sequence of proof
rules applied to the specification conjecture of the water tank is described in App. B. Most
steps are simple when analyzing specification conjectures: sequential composition ((;)),
nondeterministic choice ((U)), deterministic assignment ({(:=)) replace current facts with
simpler ones (or branch the proof as propositional rules do). Challenges arise from handling
nondeterministic assignment and differential equations in hybrid programs.

Let us first consider nondeterministic assignment x := *. The proof rule for nondetermin-
istic assignment ((:= x)) results in a new existentially quantified variable. Using axiomatic-
style synthesis, we can postpone instantiating the quantifier until enough information about
what exact instance to use is discovered, see Example 7. The sequent-style synthesis, in
contrast, must instantiate the quantifier right away, in order to continue synthesis on the ex-
istentially quantified formula. App. C discusses ways on how to instantiate such quantifiers
ahead of time.

Next, we handle differential equations. Even when we can solve the differential equa-
tion, existentially and universally quantified variables remain. Let us inspect the correspond-
ing proof rule from the A calculus [33] in its axiomatic form. When solving differential

QE(9),

) ((0) =xA[T" =1]y(T) = 6(y(T))) — (QE))

((y = Q&H)¢ < IT>0 ((YO<T<T (x:=y(7))H) A (x::y(T))q))) !

' T and 7 are fresh logical variables
2 iff ¢ = QE(9), ¢ is a first-order real arithmetic formula, QE(¢) is an equivalent quantifier-free formula
computable by [7]

equations, we first have to prove the correctness of the solution, as indicated by the left-
hand side of the implication in axiom ('). Then, we have to prove that there exists a duration
T, such that the differential equation stays within the evolution domain H throughout all
intermediate times 7 and the result satisfies ¢ at the end. At this point we have four options:

— we can postpone handling the quantifier until additional facts about a concrete instance
are discovered, which is the preferred tactic in axiomatic-style synthesis;

— we can instantiate the existential quantifier, if we know that the duration will be #;

— we can introduce a new logical variable, which is the generic case in sequent-style syn-
thesis that always yields correct results, but may discover monitor specifications that are
harder to evaluate;

— we can use quantifier elimination (QE) to obtain an equivalent quantifier-free result (a
possible optimization could inspect the size of the resulting formula).

20 Stefan Mitsch, André Platzer

Example 7 (Analyzing differential equations) Continuing Example 6, in the analysis of the
water tank example, we solve the differential equation, see ('). The condition y(0) = x A
[T" = 1]y(T) = 0(y(T)), with the solution y(T) = fT + x of this example, is closed on
a side branch. Next, we have an existential quantifier with an equality r = 0, so we can
instantiate ¢ with 0 by Jo. In the next step, we instantiate the existential quantifier 37 with
tT, as now revealed in the last conjunct t = T'; we do the same for 3f by f = f. Finally,
we use quantifier elimination (QE) to reveal an equivalent quantifier-free formula.
$(6)
(30 =0 ¢(x)]

! Logical variable x does not appear in term 6

1< fr <M axt =x+ Tt Ax>00e> 1t >0A Tt x>0

B 1< fH < MXAVOKTSHT (x+ T2 OAT< e)Af* = frAxt =x+ frrt Art =1t

BRI (—1 S f < MEAVOSTSIT (x+ fT>0AT< E)Af = fHAxT =x+ fri At =1t)

R If (1S FSMEATT > O(VOSTST (x+ fT > OAF < e)Af = fH Axt =x+ fTArT =T))
3 — = = =

R (-1L F<EEAT = 03T >0(VO<I<T (x4 fT>0NF+1<¢)

AN =fTAxT =x+fTAtT =T +1))

O b 3f (1< f<mEAT =0 = f,/ =1 &x>O0A1 < e})TT)
DTS (1< <X N (=0, (W = £,/ =1 &x>0A1 <e})TT)

The analysis of the specification conjecture finishes with collecting the open sequents

from the proof to create the monitor specification F (x,x") o N(open sequent). The axiomatic-
style synthesis operates fully in-place, so there is only one open sequent to collect. In con-
trast, the sequent-style synthesis usually splits into multiple branches. Moreover, the col-
lected open sequents may include new logical variables and new (Skolem) function sym-
bols that were introduced for nondeterministic assignments and differential equations when
handling existential or universal quantifiers. These can be handled in a final step by re-
introducing and instantiating quantifiers, see App. C.

Let us now recall our desired result from Example 3 and compare it to the formula
synthesized in Examples 6 and 7. Also recall that v;_; denotes the prior state and v; denotes
the posterior state of running the model, so we have the following correlations of symbols:
Vi—1(f) corresponds to f, v;_1(t) to t, v;_1(x) to x, whereas v;(f) corresponds to £, v;(t)
to ", and v;(x) to xT.

m—Vi_1(x)

—1<v(f) <

—lsfrem

AVi(x) = Vi1 (x) +vi(f)vi(e)
xt=x+fFrt

/\Vi,I(X) >0A v,-(x) >0N0< V,'(t) <e
—_———— ——r —— ——

x>0 frit+x>0 e>1+>0

The conjuncts from the synthesized formula cover all the desired conditions nicely, con-
sidering that x™ is expanded to its lengthier equal form x™ =x+ f 1.

Remark 1 (Monitor evaluation at runtime) The complexity of evaluating an arithmetic for-
mula over the reals for concrete numbers (such as a monitor for the concrete numbers corre-
sponding to the current state) is linear in the formula size, as opposed to deciding the validity
of such formulas, which is doubly exponential [10]. Evaluating the same formula on float-
ing point numbers is inexpensive, but may yield incorrect results due to rounding errors;

ModelPlex: Verified Runtime Validation of Verified Cyber-Physical System Models 21

on exact rationals the bit-complexity can be non-negligible. We use interval arithmetic to
obtain correct results while retaining the efficiency of floating-point computations. Interval
arithmetic over-approximates a real value using an interval of two floating-point values that
contains the real, which means the monitors become more conservative (e. g., to evaluate
x < m in interval arithmetic, consider x € [x;,x,] and m € [m;,my], so [x;,x,] < [m;,m,] if
X, < my, which in turn implies x < m). This leads to an interval-arithmetic formula F (x,x™)
that implies F (x,x") and, thus, also implies the required monitor condition Formula (5).

3.4 Controller Monitor Synthesis

For a hybrid system o* of the canonical form (Q; aplam)*, a controller monitor X checks
that two consecutive states v and V are reachable with one controller execution Oy, i. €.,
(v, V) € p(0ter1) with V =BV (0y1). This controller monitor is to be executed before a con-
trol choice by the controller is sent to the actuators. The program 0,y is derived from o
by skipping differential equations according to Lemma 6 below. Recall that a differential
equation {x' = 6 & H} can be followed for a nondeterministic amount of time, including 0,
which lets us skip it as long as its evolution domain constraint H is satisfied in the beginning,
as captured by (1) (Y™ A H). That way, a controller monitor ensures that the states reach-
able by a controller enable subsequent runs of the plant, see Theorem 2. We systematically
derive a controller monitor from the specification formula (a*)Y ™, see Fig. 7. A controller
monitor can be used to initiate controller switching similar to Simplex [39], yet in provably
correct-by-construction ways.

Semantical (v,) € p(a*)
) by Lemma4
- Logical (v,) = (a*)(X™)
° ‘% = i by Lemma 5
EEEZ| Logical (v,0)k (a)(X)
© g & T by Lemma 6
=S Logical (v,®) = (Cte1)(YT AH) entails safety @ = ¢ by Theorem 2
i by d.Z proof
Arithmetical (v, ®) = F(x,x") by online monitoring

Fig. 7: Semantical representation, logical characterization, and arithmetical form of a con-
troller monitor. Monitor synthesis translates between these representations offline.

Lemma 6 (Differential skip) Let X' = 0 denote a set of differential equations with evolution
domain H. Then HA ¢ — (X' = 0 & H) ¢ is valid.

Proof We prove in d.Z using ['] skip derived from DW [35].

22 Stefan Mitsch, André Platzer

F(x,xT) = xc: in state ¥ com-
pare to pre-controller state v

Fig. 8: A controller monitor checks that two states v and V are contained in the transition
relation of the controller portion of the model (V,V) € p(ty1); the posterior state V is
captured in x™ through T'+.

)90 A D(PAY) 0V (=) (9=) PV Y

([] skip) [f' = 6 & H]p — (H = ¢) ((-)) ()¢ <> ~[a]=¢

(skie " —(H — —¢) —

Theorem 2 (Controller monitor correctness) Let o be of the canonical form Ocy; Cpjans
with the continuous model Opjgy = x' = 0 & H and let V = BV(0yyyy). Assume |= ¢ — [0]y
has been proven with invariant ¢ asin (3),i.e., 9 — @, @ — [a]@, and ¢ — Y. Let v |= @, as
is checked by), (Corollary 3). Furthermore, let V be the state after running the actual CPS
controller implementation and let V agree with v on Z\V, i.e., V|g\y = V|p\y. If (V, V) = Xc
with

Xe = (Cerrt) (T+ AH)

then (v, V) € p(Gen), V = @, and there exists a state @ such that (V,®) € p(Clpjant)-

Proof By Lemmad4, (v, V) = (Qy)Y ™ implies (v, V) € p(0teyn). The assumption (v, V) =
(Oetr1) (XY™ A H) furthermore implies V = H, (v, V) = (Otcui; Oplan) Y™ by Lemma 6, hence
(v,V) = ()Y and (v, V) € p(a) by Lemma4. Since v = ¢ by assumption, we get V = ¢
from ¢ — [a]@. Now V = ¢ AH, so there exists @ s.t. (V,®) € p(Oplant)- O

The corollaries to Theorem 1 carry over to Theorem 2 accordingly.

3.5 Monitoring in the Presence of Expected Uncertainty and Disturbance

Up to now we considered exact ideal-world models. But real-world clocks drift, sensors
measure with some uncertainty, and actuators are subject to disturbance. This makes the
exact models safe but too conservative, which means that monitors for exact models are
likely to fall back to a fail-safe controller rather often. In this section we discuss how we
find ModelPlex specifications in the sequent-style synthesis techniques so that the safety
property (2) and the monitor specification become more robust to expected uncertainty and
disturbance. That way, only unexpected deviations beyond those captured in the normal

ModelPlex: Verified Runtime Validation of Verified Cyber-Physical System Models 23

operational uncertainty and disturbance of model o* cause the monitor to initiate fail-safe
actions.

In d.%, we can, for example, use nondeterministic assignment from an interval to model
sensor uncertainty and piece-wise constant actuator disturbance (e. g., as in [26]), or differ-
ential inequalities for actuator disturbance (e. g., as in [38]). Such models include nondeter-
minism about sensed values in the controller model and often need more complex physics
models than differential equations with polynomial solutions.

Example 8 (Modeling uncertainty and disturbance) We incorporate clock drift, sensor un-
certainty and actuator disturbance into the water tank model to express expected devia-
tion. The measured level x; is within a known sensor uncertainty u of the real level x (i.e.
X5 € [x—u,x+ u]). We use differential inequalities to model clock drift and actuator distur-
bance. The clock, which wakes the controller, is slower than the real time by at most a time
drift of c; it can be arbitrarily fast. The water flow disturbance is at most d, but the water
tank is allowed to drain arbitrarily fast (may even leak when outgoing valve is closed).
To illustrate different modeling possibilities, we use additive clock drift and multiplicative
actuator disturbance.

0<x<mNeE>0Nc<INO<unO<d
— [(xS::*;?(x—ugxsgx—l—u); f::*;?(—l <f< 7’"75{”(1—0));
1:=0; {¥ < fd, 1—cgﬂ&xzomgs})*](ogxgm)

We analyze Example 8 in the same way as the previous examples, with the crucial
exception of the differential inequalities. We cannot use the proof rule (') to analyze this
model, because differential inequalities do not have polynomial solutions. Instead, we use
DM (cf. Lemma 7) and the DE proof rule of A% [31] to turn differential inequalities into
a differential-algebraic constraint form that lets us proceed with the proof. Rule DE turns
a differential inequality ¥’ < 6 into a quantified differential equation 3d(¥' =d & d < 6)
with an equivalent differential-algebraic constraint. Rule DM turns a fluctuating disturbance
(3d X' = d & H)¢ into a mean disturbance 3d(x' = d & H)¢, see Lemma7.

Lemma 7 (Mean disturbancez Reachability with mean disturbancg d throughout approx-
imates fluctuating disturbance d: (DM) 3d(x' = 0(d) & H)$ — (3d X' = 6(d) & H)¢.

Proof We prove in d.Z using differential refinement DR [31].

956 ()0, g TOGKL. X)) A

OR) —775 VT IOL

2 (Finst) p(()) — Fxp(x)

! differential refinement: differential-algebraic constraints &, & have the same changed variables

2 s is a new (Skolem) function symbol and X, ..., X, are all free variables of I (x)
* *
Jinstaxt vy ¥ (' = 0(d()) & H — 3d (¥ = 0(d) & H)) H¥=0d)&H)¢F K =0(d()&H)¢
DR (' =0(d() &H)¢ F (3d ¥ = 6(d) & H)¢
& (Y =0(d) &HYp+ (3dx =6(d) & H)¢

Example 9 (Analyzing differential inequalities) Loops, assignments and tests are analyzed
as in the previous examples. We continue with differential inequalities as follows. First,
we eliminate the differential inequalities by rephrasing them as differential-algebraic con-

24 Stefan Mitsch, André Platzer

straints in step (DE). Then, we refine by extracting the existential quantifiers for flow
disturbance d and time drift 7, so that they become mean disturbance and mean time
drift in step (DM). Note, that the existential quantifier moved from inside the modality
(3d(x' = d), ...) to the outside 3d(x¥' = d, ...), which captures that the states reachable
with fluctuating disturbance could also have been reached by following a mean disturbance
throughout. The resulting differential equation has polynomial solutions and, thus, we can
use (') and proceed with the proof as before.

(DM) 3d(¥' = 0(d) & H)¢ — (Fd X' = 0(d) & H)¢

(DE)

! differential inequality elimination: special case of DR, which rephrases the differential inequalities < as
differential-algebraic constraints (accordingly for other or mixed inequalities systems).
*
Fr v, t(3d,f(x=d Nt =FAd < fdN1—c<FAd > ONF< &)
—Sx<fdAN1—c<tAx>0A1 <€)

o
OOp QB S (LAY =df =T & d < fdAN—c<TAx>O0AL<€)TT)
Fooo P kg £ (AR W =dt =T &d < fdAl—c <TAX>O0AL <E)TT)

PE b oy fr(L AW < fdl—c<t &x>0A1<e)YT)
I ...(analyze as in previous examples)
G e (= s W < fd, 1—c <t &x>0At<eD))T+

As expected, we get a more permissive monitor specification. Such a monitor specifica-
tion says that there exists a mean disturbance d and a mean clock drift ¢ within the allowed
disturbance bounds, such that the measured flow 7, the clock ™, and the measured level x™*
can be explained with the model. These existential quantifiers will be turned into equivalent
quantifier-free form in subsequent steps by QE.

So far, we discussed proof rule (') to solve differential equations when synthesizing
model monitors. Recent advances [41] on proving (-)¢ properties (where ¢ is phrased using
equalities) point to an interesting direction for synthesizing model monitors without solving
differential equations. In the next section, we will use . techniques based on differen-
tial invariants, differential cuts [30], and differential auxiliaries [32] to handle differential
equations and inequalities without requiring any closed-form solutions when synthesizing
prediction monitors.

3.6 Monitoring Compliance Guarantees for Unobservable Intermediate States

With controller monitors, non-compliance of a controller implementation w.r.t. the mod-
eled controller can be detected right away. With model monitors, non-compliance of the
actual system dynamics w.r.t. the modeled dynamics can be detected when they first occur.
We switch to a fail-safe action, which is verified using standard techniques, in both non-
compliance cases. The crucial question is: can such a method always guarantee safety? The
answer is linked to the image computation problem in model checking (i. e., approximation
of states reachable from a current state), which is known to be not semi-decidable by nu-
merical evaluation at points; approximation with uniform error is only possible if a bound is

ModelPlex: Verified Runtime Validation of Verified Cyber-Physical System Models 25

known for the continuous derivatives [36]. This implies that we need additional assumptions
about the deviation between the actual and the modeled continuous dynamics to guarantee
compliance for unobservable intermediate states. Unbounded deviation from the model be-
tween sample points just is unsafe, no matter how hard a controller tries. Hence, worst-case
bounds capture how well reality is reflected in the model.

We derive a prediction monitor to check whether a current control decision will be able
to keep the system safe for time € even if the actual continuous dynamics deviate from the
model. A prediction monitor checks the current state, because all previous states are ensured
by a model monitor and subsequent states are then safe by (2).

Semantical (v,®) € p(a®)
0 by Lemma4
Logical (v.0) = (a)(Y™)
- i by Lemma 5
=g Logical (v,) = (a)(X™)
é g % i by Lemma 6
S “g Z Logical (v,®) = (Oe) (X" AH)
s T by Lemma 8§
Logical (v,®) |= (Oeut) (YT AH A [sp1an @) entails safety by Theorem 3
10 by d.Z proof
Arithmetical (v, ®) = F(x,x") by online monitoring

Fig. 9: Semantical representation, logical characterization, and arithmetical form of a pre-
diction monitor. Monitor synthesis translates between these representations offline.

In order to derive a prediction monitor, we use Lemma 8 to introduce a plant with dis-
turbance as additional predicate into our logical representation.

Lemma 8 (Introduce predicate) Formula (o) (¢ A y) — ()¢ is valid.

Proof Follows from ¢ A y — ¢ using the diamond variant of [] mon. a

Definition 4 (¢-bounded plant with disturbance &) Let Oy be a model of the form
x' = 0 & H. An g-bounded plant with disturbance §, written Otsplant» 1S @ plant model of the
formxp:=0; (f(0,0) <x' <g(0,6)&H Axy < €) for some f, g with fresh variable € > 0
and with a clock x{, = 1. We say that disturbance § is constant if x ¢ FV(8); it is additive if
f(6,0)=6—6and g(6,6) =0+39.

Theorem 3 (Prediction monitor correctness) Let o be of the canonical form Ocyj; Opjans
with the continuous model Gpjan; = X' = 0 & H and let V = BV(at) U FV([Ol piani] @)- Let o*
be provably safe, i. e., |= ¢ — [0*|y has been proved using invariant @ as in (3). Let v |= @,
as checked by X, from Corollary 3. If (v, V) |= x, with

Xp = <actrl> (T7L ANH A [a5planl](p)
then we have @ |= @ for all ® s.t. (V,®) € P (Cerrts Ospians)-

26 Stefan Mitsch, André Platzer

Modelew - ___

F(x,xT) = xp: in state ¥ check

. . States reachable within € time
potential upcoming states @ - - T _ _ !

Fig. 10: A prediction monitor checks that none of the potential states @ reachable from state
V by following the plant with some disturbance & for up to time € is unsafe; the posterior
state V is captured in x* through T'*.

Proof Assume (v, V) = xp, i.¢e., V;(X) = Xp- By Theorem2, (v, V) = (Qw)Y ™ implies
V |= @, since v |= @. Furthermore, then there exists y such that g =1+ AH A [Ogpian] @ With
(vxvfx>7 1) € p(0y) and the two states v and u agree on all variables except the ones mod-
ified by O, i1 Vi |5 BV () = B\ BV () Now 1 b= T implies pi(x) = p(x*) =
v;fC> (x*) = ¥(x). (in other words, |y = V|y). Also i |= [Ot5pian] @. Thus, by Lemma 2, ¥ |=
[@spiant] @ since V 2 FV([Apian| @) and hence we have @ = ¢ for all (V,) € p(&spian)-
O

Observe that this is also true for all intermediate times § € [0, ®(¢)] by the transition
semantics of differential equations, where @(¢) < € because Otsplant 18 bounded by €.

Remark 2 By adding a controller execution () prior to the disturbed plant model, we
synthesize prediction monitors that take the actual controller decisions into account. For
safety purposes, we could just as well use a monitor definition without controller x, =
[O(gplam] ¢. But that would result in a rather conservative monitor, which has to keep the CPS
safe without knowledge of the actual controller decision.

3.7 Decidability and Computability

One useful characteristic of ModelPlex beyond soundness is that monitor synthesis is com-
putable, which yields a synthesis algorithm, and that the correctness of those synthesized
monitors w.r.t. their specification is decidable, cf. Theorem 4 and Theorem 5.

From Lemma 5 it follows that online monitoring [18] (i. e., monitoring the last two con-
secutive states) is permissible. So, ModelPlex turns questions (o*)¢ into () ¢. For decid-
ability, we first consider canonical hybrid programs o of the form & = Oy1; Ofprane Where
Otctr1 and Cppane are free of further nested loops. To handle differential inequalities in .’ for-
mulas of the form [Qsp1an]9, the subsequent proofs additionally use the rules for handling
differential-algebraic equations [31].

Theorem 4 (Monitor correctness is decidable) We assume canonical models of the form
O = Oleyyi; Oplans Without nested loops, with solvable differential equations in Gyjay and dis-
turbed plants gy, with constant additive disturbance 8 (see Def. 4) and F (x,x*),@,H to
be first-order formulas. Then, monitor correctness is decidable, i. e., the formulas F (x,x*) —
(@)Y, F(x,x") = () X AH), and F(x,x%) = (o) (YT AH A [Cspian) @) are decid-
able.

ModelPlex: Verified Runtime Validation of Verified Cyber-Physical System Models 27

Proof From relative decidability of A% [33, Theorem 11] we know that sentences of d.%Z
(i.e., dZ formulas without free variables) are decidable relative to an oracle for discrete
loop invariants/variants and continuous differential invariants/variants. Since neither Oy
nOT Ofplaye contain nested loops, we manage without an oracle for loop invariants/variants.
Further, since the differential equation systems in Ofan; are solvable, we have an effective
oracle for differential invariants/variants. Let Cly(¢) denote the universal closure of A% for-
mula ¢ (i.e., Cly(¢) =V cpy()2-¢)- Note that when |= F then also = Cly(F) by a standard
argument.

Model monitor F(x,x") — (&)Y ": Follows from relative decidability of A% [33, Theorem

11], because Cly(F (x,x") — ()Y) contains no free variables.

Controller monitor F(x,x") — (0te1) (Y AH): Follows from relative decidability of A% [33,
Theorem 11], because Cly(F (x,x") — {0tew) (Y™ A H)) contains no free variables.
Prediction monitor F(x,x") — (0teu1) (X' AH A [Qlgpiant @): First assume that [Qlgpane] @ can

be represented in a first-order formula B such that B — [@gp1ant @. Then, by

((o)o A [a](9 = y)) = (@) (9 AY)
decidability splits into two cases:
Case F(x,x7) = (Gtet) (YT AH AB): follows from case F(x,x") — (Cte) (Y A H)
(controller monitor) above.
Case (Y'" AH AB) — [@spiand]@: Since the disturbance & in Otgpjane is constant addi-
tive and the differential equations in 0fan are solvable, we have the disturbance
functions f(6,8) and g(6,8) applied to the solution as an oracle® for differen-
tial invariants (i. e., the differential invariant is a pipe around the solution without
disturbance). Specifically, to show (X'* AH AB) = [Ctspland]@ by Def. 4 we have
to show YT AHAB) = [x0:=0; (6 —86 <x' <0+ 8&H Axp < €)]e. We pro-
ceed withonly (Y'Y AHAB) — [x0:=0; (X <0+ 8 &H Axp < €)@ since the case
0 — & < x’ follows in a similar manner. By definition of Osplant We know 0 < xp,
and hence continue with (Y"AHAB) — [¥ <0+ 8 &H A0 < xq < €]¢ by differ-
ential cut 0 < xp. Using the differential cut rule [31], we further supply the oracle
sol, + &xg, where sol, denotes the solution of X' = 0 in Ofplant and Ox(the solution
for the disturbance since 0 is constant additive. This leads to two proof obligations:
Prove oracle (Y*AHAB) = ¥ <0+ 8&H A0 < x < g]x < sol, + 8xg, which
by rule differential invariant [31] is valid if we can show 0 < xp < & — x’ <
sol. + (8xg)’ where the primed variables are replaced with the respective right-
hand side of the differential equation system. From Def. 4 we know that x}, = 1
and 8’ = 0 and since sol, is the solution of X' = 8 in O We further know
that sol’, = 6; hence we have to show 0 <xp < & — 0+ 8 < 6+ §, which is
trivially true.

Use oracle (YTAHAB) =[x <0+8&HAN0<xp < é&Ax < soly+ 8xp]@, which
by rule differential weaken [31] is valid if we can show

(Y*AHAB) = V*((HANO<xg < €Ax <soly+6x0) — @)

where V¥ denotes the universal closure w.r.t. @, i. ., Vx. But since B — [®spiant| ¢
is valid, this is provable by quantifier elimination. Furthermore, we cannot get a

better result than differential weaken, because the evolution domain constraint

contains the oracle’s answer for the differential equation system, which charac-

terizes exactly the reachable set of the differential equation system.

8 By design, the disturbed plant Olgplane also includes a clock xo, so the oracle additionally includes the trivial
differential invariant xy > 0.

28 Stefan Mitsch, André Platzer

We conclude that the oracle is proven correct and its usage is decidable.

It remains to show that [(x(splam](p can be represented in a first-order formula B such
that B — [a(;plam}(p. We know from Lemma 7 that any fluctuating disturbance can be
approximated by its mean disturbance throughout. So for all fluctuating disturbances
in [, 8] we have a corresponding constant additive mean disturbance from [—3,],
which yields solvable differential equations. Hence, there exists a first-order formula B
such that B — [Otgplam] ¢ is valid. For the constant additive case, there even is a first-order
formula B that is equivalent to [Osp1an] @, because every constant additive disturbance
can be replaced equivalently by a mean disturbance using the mean-value theorem for
the disturbance as a (continuous!) function of time [30]. Consequently, the above cut to
add B is possible if and only if the monitor y;, is correct, leading to a decision procedure.

O

For computability, we start with a theoretical proof on the basis of decidability, before
we give a constructive proof, which is more useful in practice.

Theorem 5 (Monitor synthesis is computable) We assume canonical models of the form
O = Oyl Oplans Without nested loops, with solvable differential equations in Gyjay and dis-
turbed plants Ol ;q,, With constant additive disturbance & (see Def. 4). Then, monitor synthe-
sis is computable, i. e., the functions synth,, : (@)Yt — F(x,xT), synth, : (Ole) YT AH) —
F(x,x"), and synth, : (Oter) (Y NH N[0 pian| @) — F (x,x") are computable.

Proof Follows immediately from Theorem 4 with recursive enumeration of monitors. O

We give a constructive proof of Theorem 5. The proof is based on the observation that,
except for loop and differential invariants/variants, rule application in the d.% calculus is
deterministic: from [31, Theorem 2.4] we know that, relative to an oracle for first-order
invariants and variants, the d.% calculus gives a semidecision-procedure for A% formulas
with differential equations having first-order definable flows.

Proof For the sake of a contradiction, suppose that monitor synthesis stopped with some
open sequent not being a first-order quantifier-free formula. Then, by [31, Theorem 2.4] the
open sequent either contains a hybrid program with nondeterministic repetition or a differ-
ential equation at top level, or it is not quantifier-free. But this contradicts our assumption
that both 0ty and O1an, are free from loops and that the differential equations are solvable
and disturbance is constant, in which case for

Model monitor synthesis ¥p: the solution rule (') would make progress, because the differ-
ential equations in O,y are solvable; and for

Prediction monitor synthesis y,: the disturbance functions f(6,5) and g(0,8) applied to
the solution provide differential invariants (see proof of Theorem4) so that the differ-
ential cut rule, the differential invariant rule, and the differential weakening rule [31]
would make progress.

In the case of the open sequent not being quantifier-free, the quantifier elimination rule QE
would be applicable and turn the formula including quantifiers into an equivalent quantifier-
free formula. Hence, the open sequent neither contains nondeterministic repetition, nor a
differential equation, nor a quantifier. Thus we conclude that the open sequent is a first-
order quantifier-free formula. O

ModelPlex: Verified Runtime Validation of Verified Cyber-Physical System Models 29

3.8 A Proof Tactic for Automatic Monitor Synthesis

Based on the decidability and computability results above, this section explains how to im-
plement ModelPlex monitor synthesis (Algorithm 1) as an automatic proof tactic for correct-
by-construction monitor synthesis. This proof tactic is formulated in the tactic language of
our theorem prover KeYmaera X [14]. KeYmaera X features a small soundness-critical core
for axiomatic reasoning. On top of that core, tactics steer the proof search: axiomatic tactics
constitute the most basic constructs of a proof, while tactic combinators (e. g., sequential
tactic execution) are a language to combine tactics into more powerful proof procedures.
The tactic language of KeYmaera X provides operators for sequential tactic composition (;),
tactic repetition (*), optional execution (?), and alternatives (|) to combines basic d. tactics,
see [14].

For ModelPlex, we combine propositional axiomatic tactics with tactics for handling hy-
brid programs into a single tactic called synthesize, which performs the steps of Algorithm 1
in place such that the monitor is synthesized on a single proof branch by successively trans-
forming the model. The synthesize tactic finds modalities with hybrid programs, and uses
contextual equivalence rewriting to replace these modalities in place while retaining a proof
of correctness of those transformations.

synthesize = locate(prepare)*; locate (rewriteHP)™ ; local QE?; (30)* 6)

(G] (W) | ((*) elim) model monitor
() | (U) | ((x) elim) | ({") skip) controller monitor

rewriteHP = ((:=)) | ((:=)) | ((:=) eq) | ((?)) | ({') solve) ®)

prepare = { (@)

The synthesize tactic operates on a specification conjecture (*)Y . It combines tactic
selection as in a regular expression with search, so that formulas are turned into axioms step-
by-step (backwards search). Synthesize starts with prepare, which determines whether to
synthesize a controller monitor (unwinds loops and skips differential equations) or a model
monitor (unwinds loops). Then, it repeats rewriting hybrid programs until none of the hybrid
program tactics is applicable anymore, indicated by locate(rewriteHP)*. Note, that the syn-
thesize tactic does not need to instantiate existential quantifiers at intermediate steps, since
it can continue rewriting inside existential quantifiers. After rewriting hybrid programs is
done, an optional local quantifier elimination step is made, cf. (6), in case that any universal
quantifiers remained from the ODE in the innermost sub-formula, followed by instantiating
the existential quantifiers using Jo.

At the heart of the synthesize tactic is locate, which searches for the topmost formula that
includes a hybrid program (i. e., a diamond modality) and chooses the appropriate tactic to
reduce that program. The proof search itself is backward in sequent-style, which starts from
the monitor specification conjecture and searches for steps that transform the conjecture
gradually into axioms. This tactic seems like a natural way of synthesizing monitors, since
it starts from the conjecture and repeatedly applies proof steps until no more progress can
be made (i.e., no more steps are applicable). However, repeated search for the topmost
hybrid program operator incurs considerable computation time overhead, as we will see in
Section 4.

To avoid repeated search, we provide another tactic using a forward chase. The forward
chase uses proof-as-computation and is based on unification and recursive forward applica-
tion of axioms, which allows us to construct a proof computationally from axioms until we

30 Stefan Mitsch, André Platzer

Table 2: Case study overview

Case Study Characteristics Dim. Proof steps Branches
‘Water tank 1 control branch, solvable ODE 5 38 4
Cruise control [20] 3 control branches, solvable ODE 11 969 124
Speed limit [25] 6 control branches, solvable ODE 9 410 30
ETCS safety [38] 8 control branches, solvable ODE 16 193 10
Robot [26] 3 control branches, non-solvable ODE 14 3350 225

reach the monitor specification conjecture. Each step of the recursive computation knows
the position where to apply the subsequent step, so that no search is necessary.

4 Evaluation
4.1 Monitor Synthesis

We developed two software prototypes: A sequent-style synthesis prototype uses KeYmaera 3
[37] and Mathematica. It uses Mathematica to simplify redundant monitor conditions after
synthesizing the monitor in KeYmaera 3, and therefore must recheck the final monitor for
correctness. An axiomatic-style prototype is implemented as a tactic in KeYmaera X [14],
which generates controller and model monitors fully automatically and avoids branching by
operating on sub-formulas in a single sequent. The axiomatic-style prototype synthesizes
correct-by-construction monitors and produces a proof of correctness during the synthesis
without the need to recheck.

To evaluate our method, we synthesize monitors for prior case studies of nondetermin-
istic hybrid models of autonomous cars, train control systems, and robots (adaptive cruise
control [20], intelligent speed adaptation [25], the European train control system [38], and
ground robot collision avoidance [26]), see Table2. For the model, we list the dimen-
sion in terms of the number of function symbols and state variables, as well as the size
of the safety proof for proving (2), i.e., number of proof steps and the number of proof
branches. The safety proofs of Formula (2) transfer from KeYmaera 3 and were not repeated
in KeYmaera X.

Table 3 summarizes the evaluation results. The main result is the completely automatic,
correct-by-construction synthesis in KeYmaera X with a single open branch on which the
monitor is being synthesized. The monitor sizes in KeYmaera X are usually smaller than
those of KeYmaera 3, because the structure is preserved better so no external simplifica-
tion is needed, cf. last column “unsimplified”. Without external simplification, very similar
conditions with only small deviations are repeated on each open branch, For example, the
controller monitor sizes listed the sequent-style synthesis need to be multiplied roughly by
the number of open branches, in order to get the monitor size before external simplification.

A detailed analysis follows in subsequent paragraphs below. For the monitor, we list
the dimension of the monitor specification in terms of the number of variables, compare
the number of manual steps among all steps and branches left open among all branches
when deriving the monitor with or without Opt. 1, as well as the number of steps when
rechecking monitor correctness. Finally, we list the monitor size in terms of the number of
arithmetic, comparison, and logical operators in the monitor formula. The number of proof
steps of KeYmaera 3 and KeYmaera X are not directly comparable, because both implement
different calculi. KeYmaera X leads to more but simpler proof steps.

ModelPlex: Verified Runtime Validation of Verified Cyber-Physical System Models 31

Table 3: Monitor synthesis case studies

Case Study Dim. Manual/steps (Open/branches) Rechecking Unsimpl. Size
with Opt. 1 without Opt. 1 (branches)

Axiomatic-style synthesis

& Water tank 30/1698 (1/344) 0/1858 (1/311) ___— __— 58

Water tank 3 0/157 (1/32) see left / 12
., Cruise control 7 0/759 (1/189) 0/809 (1/204) / 78
= Robot 11 0/6425 (1/2730) see left / 108
Speed limit 6 0/7312 (1/2835) see left % 163

Sequent-style synthesis

Water tank 3 12/16 (2/2) 3120 (272) 64 5) ~ X2 32
& Cruise control 7 98/133 (13/13) 52/597 (21/21) 19514 (1058) 1111 1111
Speed limit 6 335/487 (32/32) 648/5016 (126/126) 64311 (2294) 19850 19850
Water tank 1 8/12 (272) 0/14 (2/2) 40 3) ~ %2 20
., Cruise control 7 48/83 (13/13) 0/518 (106/106) 5840 676) ~x10 84
= Robot 11 68/98 (10/10) 0/1210 (196/196) 26166 (2854) ~ x10 121
Speed limit 6 247/377 (32/32) N/A 226543 (31832) 2452 2452
ETCS safety 13 114/156 (13/16) 0/359 (31/37) 16770 (869) ~ x10 153
+3 Water tank 1 31/135 (4/10) N/A 307 (12) ~ X2 43

http://www.cs.cmu.edu/~smitsch/resource/modelplex_fmsd_study.zip

Performance Analysis. We analyze the computation time for deriving controller monitors
fully automatically in the axiomatic-style synthesis technique, comparing both the backward
tactic and forward chase implementations introduced in Section 3.8 above. The computation
time measurements were taken on a 2.4 GHz Intel Core i7 with 16GB of memory, averaged
over 20 runs. Table4 summarizes the performance measurements for the axiomatic-style
synthesis in KeYmaera X and the sequent-st. Unsurprisingly, the repeated search for appli-
cable positions in the backward tactic results in a considerable computation time overhead,
when compared to the forward chase. Additional performance gains in the forward chase are
rooted in (i) its ability to largely use derived axioms, which need only be proven once during
synthesis (instead of repeatedly on each occurrence, as in the backward tactic); and (ii) its
ability to postpone assignment processing and thus avoid intermediate stuttering assign-
ments, which are necessary for successful uniform substitution [35], but result in additional
proof steps if performed early.

For the sequent-style syn-
thesis technique we list the
time needed to perform the
fully automated steps without
Opt. 1 in KeYmaera. The raw

Table 4: Monitor synthesis duration

Case Study Axiomatic-style Sequent-style
Search Chase Synth. +Check

synthesis times are compara- Water tank 0.9 0.3 1.3 4.9
ble to those in the chase-based Cruise control [20] 22.9 33 127 >1,000

. . . Robot [26] 72.1 234 23,5 >1,000
axiomatic-style synthesis, be- Speed limit [25] 30.4 21 06 2049

cause the sequent-style tech-
nique always operates on the
top-level operator and does not need search. Recall, however, that in the sequent-style syn-
thesis technique the monitors are simplified with an unverified external procedure and, there-

9 Synthesis with Opt. 1, not counting for manual interaction

http://www.cs.cmu.edu/~smitsch/resource/modelplex_fmsd_study.zip

32 Stefan Mitsch, André Platzer

fore, need to be re-checked for correctness in KeYmaera. This check needs considerable
time, as listed in the last column of Table 4.

KeYmaera X The axiomatic-style synthesis prototype supports proof search steering with
fine-grained tactics, and applies tactics in-place on sub-formulas, without branching on top-
level first. As a result, synthesis both with and without Opt. 1 is fully automatic and avoids
redundancies in monitor conditions. The reasoning style of KeYmaera X, as illustrated in
Proof 3 on page 43, uses frequent cuts to collect all monitoring conditions in a single open
branch, which results in a larger overall number of branches than in sequent-style synthesis.
The important characteristic is that these side branches all close, so that only a single branch
remains open. This means that synthesis does not require untrusted procedures to simplify
monitoring conditions that were duplicated over multiple branches, which also entails that
the final rechecking of the monitor is not required, see column “proof steps (branches)”.
Having only one branch and operating on sub-formulas also means that Opt. 1 does not
need to be executed at intermediate stages in the synthesis process. Remaining existential
quantifiers can be instantiated once at the end of the synthesis process, so that synthesis with
and without Opt. 1 become identical.

KeYmaera X, however, is still in an early development stage and, so far, does not sup-
port differential inequalities and arbitrary differential equations in diamond modalities, so
we cannot evaluate prediction monitor and model monitor synthesis fully. As development
progress continues, these restrictions will diminish and we will analyze the model moni-
tor and prediction monitor case studies with the axiomatic-style synthesis prototype once
available.

KeYmaera 3 In the sequent-style synthesis prototype we support model monitor and pre-
diction monitor synthesis for a wider range of systems, albeit at the cost of significantly in-
creased manual interaction: for example, Opt. 1 has to be applied manually, since KeYmaera 3
does not provide sufficiently fine-grained steering of its automated proof search. Since op-
timization occurs after non-deterministic assignments and differential equations (i. e., in the
middle of a proof), most of the synthesis process is user-guided as a consequence. For con-
troller monitors, the sequent-style synthesis prototype without Opt. 1 is fully automatic (see
number of manual steps in column “without Opt. 1” in lines 4-7, marked). In full automa-
tion, however, the proof search of KeYmaera 3 results in increased branching, since propo-
sitional steps during proofs are usually cheap (see number of branches in column “without
Opt. 1”). As a consequence, even though the relative number of manual proof steps is re-
duced, the massive branching of the automatic proof search implies that in absolute terms
more manual steps might be necessary than in the completely manual process (see number
of manual steps in line 3, Speed limit case study, where local quantifier elimination after
solving ODEs is performed manually). This can be avoided with fine-grained tactic support,
as is achieved in the axiomatic-style synthesis prototype.

Although the number of steps and open branches differ significantly between manual
interaction for Opt. 1 and automated synthesis, the synthesized monitors are logically equiv-
alent. But applying Opt. 1 usually results in structurally simpler monitors, because the con-
junction over a smaller number of open branches (cf. Table 3) can still be simplified auto-
matically. The model monitors for cruise control and speed limit control are significantly
larger than the other monitors, because their size already prevents automated simplifica-
tion by Mathematica. Here, the axiomatic-style synthesis approach is expected to provide
significant advantage, since it does not duplicate conditions over many branches and, thus,
computes small monitors even without further simplification.

ModelPlex: Verified Runtime Validation of Verified Cyber-Physical System Models 33

t = 14: disturbance detected by
monitor X, fail-safe action taken

Maximum level m = 1 ’

‘ ,

1
.

’ I
if monitor would not
reject unsafe action

water level x

disturbed
dynamics Aerreenns

/_ 1
X*f‘f’zfo

..'\

safety level

monitor Ym safety level
monitor X
—0.5 | 05
: : : : : : : : !
0 2 4 6 8 10 12 14 16
t = 4: unsafe control action detected t = 12: Reduced commanded flow,
by monitor Y, fail-safe action taken but unexpected disturbance occurs

Fig. 11: Water tank simulation with monitor illustration, —«— is maximum level (m), —6—
is current level (x), —5— is commanded flow (f), - - is the output of monitor ¥, for the
complete model, and --#-- is the output of monitor), for the controller.

4.2 Model Simulation with Monitoring

We tested the ModelPlex monitors with a simulation in Mathematica'® on hybrid system
models of the water tank example used throughout this article.

To illustrate the behavior of the water tank model with a fallback controller, we created
two monitors: Monitor ¥, validates the complete model (as in the examples throughout this
article) and is executed at the beginning of each control cycle (before the controller runs).
Monitor Y. validates only the controller of the model o* (compares prior and posterior state
of fi=%; 7—1 < f < ™F) and is executed after the controller but before control actions
are issued. Thus, monitor }, resembles conventional runtime verification approaches, which
do not check CPS behavior for compliance with the complete hybrid model. This way, we
detect unexpected deviations from the model at the beginning of each control cycle, while
we detect unsafe control actions immediately before they are taken. With only monitor Y
in place we would require an additional control cycle to detect unsafe control actions!!,
whereas with only monitor). in place we would miss deviations from the model.

Fig. 11 shows a plot of the variable traces of one simulation run. In the simulation, we
ran the controller every 2s (¢ = 2, indicated by the grid for the abscissa and the marks on

sensor and actuator plots). The controller was set to adjust flow to w = % for the first
three controller cycles, which is unsafe on the third controller cycle. Monitor B immediately

10 nttp://www.wolfram.com/mathematica I We could run monitor ¥y, in place of y. to
achieve the same effect. But monitor ¥, implements a more complicated formula, which is unnecessary
when only the controller output should be validated.

http://www.wolfram.com/mathematica

34 Stefan Mitsch, André Platzer

detects this violation at # = 4, because on the third controller cycle setting f = % violates
f< % The fail-safe action at ¢+ = 4 drains the tank and, after that, normal operation
continues until 7 = 12. Unexpected disturbance x’ = f + % occurs throughout ¢ = [12, 14],
which is detected by monitor Y. Note, that such a deviation would remain undetected
with conventional approaches (monitor), is completely unaware of the deviation). In this
simulation run, the disturbance is small enough to let the fail-safe action at r = 14 keep the
water tank in a safe state.

5 Related Work

Runtime verification and monitoring for finite state discrete systems has received significant
attention (e. g., [9, 16, 23]). Other approaches monitor continuous-time signals (e. g., [11,
28]). We focus on hybrid systems models of CPS to combine both.

Several tools for formal verification of hybrid systems are actively developed (e. g.,
SpaceEx [13], dReal [15], extended NuSMV/MathSat [6]). For monitor synthesis, however,
ModelPlex crucially needs the rewriting capabilities and flexibility of (nested) [¢(] and (ct)
modalities in A% [31] and KeYmaera [37]; it is thus an interesting question for future work
if other tools could be adapted to ModelPlex.

Runtime verification is the problem of checking whether or not a trace produced by a
program satisfies a particular formula (cf. [18]). In [44], a method for runtime verification
of LTL formulas on abstractions of concrete traces of a flight data recorder is presented.
The RV system for Java programs [22] predicts execution traces from actual traces to find
concurrency errors offline (e. g., race conditions) even if the actual trace did not exhibit the
error. We, instead, use prediction on the basis of disturbed plant models for hybrid systems at
runtime to ensure safety for future behavior of the system and switch to a fail-safe fallback
controller if necessary. Adaptive runtime verification [4] uses state estimation to reduce
monitoring overhead by sampling while still maintaining accuracy with Hidden Markov
Models, or more recently, particle filtering [17] to fill the sampling gaps. The authors present
interesting ideas for managing the overhead of runtime monitoring, which could be benefi-
cial to transfer into the hybrid systems world. The approach, however, focuses purely on the
discrete part of CPS.

The Simplex architecture [39] (and related approaches, e. g., [1, 3, 19]) is a control sys-
tem principle to switch between a highly reliable and an experimental controller at runtime.
Highly reliable control modules are assumed to be verified with some other approach. Sim-
plex focuses on switching when timing faults or violation of controller specification occur.
Our method complements Simplex in that (i) it checks whether or not the current system
execution fits the entire model, not just the controller; (ii) it systematically derives provably
correct monitors for hybrid systems; (iii) it uses prediction to guarantee safety for future
behavior of the system.

Further approaches with interesting insights on combined verification and monitor or
controller synthesis for discrete systems include, for instance, [2, 12].

Although the related approaches based on offline verification derive monitors and switch-
ing conditions from models, none of them validates whether or not the model is adequate
for the current execution. Thus, they are vulnerable to deviation between the real world and
the model. In summary, this article addresses safety at runtime as follows:

— Unlike [39], who focus on timing faults and specification violations, we propose a sys-
tematic principle to derive monitors that react to any deviation from the model.

ModelPlex: Verified Runtime Validation of Verified Cyber-Physical System Models 35

— Unlike [4, 17, 19, 22], who focus on the discrete aspects of CPS, we use hybrid system
models with differential equations to address controller and plant.

— Unlike [19, 39], who assume that fail-safe controllers have been verified with some other
approach and do not synthesize code, we can use the same technical approach (d.%) for
verifying controllers and synthesizing provably correct monitors.

— ModelPlex combines the leight-weight monitors and runtime compliance of online run-
time verification with the design time analysis of offline verification.

— ModelPlex synthesizes provably correct monitors, certified by a theorem prover.

— To the best of our knowledge, our approach is the first to guarantee that verification
results about a hybrid systems model transfer to a particular execution of the system
by verified runtime validation. We detect deviation from the verified model when it first
occurs and, given bounds, can guarantee safety with fail-safe fallback. Other approaches
(e. g., [3. 19, 39]) assume the system perfectly complies with the model.

6 Conclusion

ModelPlex is a principle to build and verify high-assurance controllers for safety-critical
computerized systems that interact physically with their environment. It guarantees that
verification results about CPS models transfer to the real system by safeguarding against
deviations from the verified model. Monitors created by ModelPlex are provably correct
and check at runtime whether or not the actual behavior of a CPS complies with the veri-
fied model and its assumptions. Upon noncompliance, ModelPlex initiates fail-safe fallback
strategies. In order to initiate those strategies early enough, ModelPlex uses prediction on
the basis of disturbed plant models to check safety for the next control cycle. This way,
ModelPlex ensures that verification results about a model of a CPS transfer to the actual
system behavior at runtime.

The new axiomatic-style monitor synthesis performs monitor construction in place,
which enables correct-by-construction synthesis entirely within the theorem prover, con-
structing a proof as evidence of the correctness of the monitor. The axiomatic-style synthesis
retains efficiency using contextual rewriting in a uniform substitution calculus for differen-
tial dynamic logic. It also preserves structure, leading to smaller monitor sizes.

Future research directions include extending ModelPlex with advanced d.% proof rules
for differential equations [33, 41], so that we not only synthesize prediction monitors from
differential equations without polynomial solutions, but also model monitors. An interest-
ing question for certification purposes is end-to-end verification from the model to the final
machine code, which this article reduces to the problem of a verified translation from the
monitor formula to the monitor code. This last step is conceptually straightforward but tech-
nically nontrivial in languages like C.

Acknowledgements This material is based on research sponsored by DARPA under agreement number
DARPA FAS8750-12-2-0291. The U.S. Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright notation thereon. The research received funding from
NSF, grant agreement CNS-1054246. The research leading to these results has received funding from the Peo-
ple Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-
2013) under REA grant agreement no. PIOF-GA-2012-328378.

36

Stefan Mitsch, André Platzer

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

Aiello AM, Berryman JF, Grohs JR, Schierman JD (2010) Run-time assurance for ad-
vanced flight-critical control systems. In: AIAA Guidance, Nav. and Control Conf.,
AIAA, DOI 10.2514/6.2010-8041

Alur R, Bodik R, Juniwal G, Martin MMK, Raghothaman M, Seshia SA, Singh R,
Solar-Lezama A, Torlak E, Udupa A (2013) Syntax-guided synthesis. In: FMCAD,
IEEE, pp 1-17

Bak S, Greer A, Mitra S (2010) Hybrid cyberphysical system verification with Sim-
plex using discrete abstractions. In: Caccamo M (ed) IEEE Real-Time and Embedded
Technology and Applications Symposium, IEEE Computer Society, pp 143152
Bartocci E, Grosu R, Karmarkar A, Smolka SA, Stoller SD, Zadok E, Seyster J (2012)
Adaptive runtime verification. In: Qadeer S, Tasiran S (eds) RV, Springer, LNCS, vol
7687, pp 168—182

. Blech JO, Falcone Y, Becker K (2012) Towards certified runtime verification. In: Aoki

T, Taguchi K (eds) ICFEM, Springer, LNCS, vol 7635, pp 494-509

Cimatti A, Mover S, Tonetta S (2013) SMT-based scenario verification for hybrid sys-
tems. Formal Methods in System Design 42(1):46-66

Collins GE, Hong H (1991) Partial cylindrical algebraic decomposition for quantifier
elimination. J Symb Comput 12(3):299-328

Daigle MJ, Roychoudhury I, Biswas G, Koutsoukos XD, Patterson-Hine A, Poll S
(2010) A comprehensive diagnosis methodology for complex hybrid systems: A case
study on spacecraft power distribution systems. IEEE Transactions on Systems, Man,
and Cybernetics, Part A 40(5):917-931

D’ Angelo B, Sankaranarayanan S, Sanchez C, Robinson W, Finkbeiner B, Sipma HB,
Mehrotra S, Manna Z (2005) LOLA: Runtime monitoring of synchronous systems. In:
TIME, IEEE Computer Society, pp 166—174

Davenport JH, Heintz J (1988) Real quantifier elimination is doubly exponential. J
Symb Comput 5(1-2):29-35, DOI 10.1016/S0747-7171(88)80004-X

Donzé A, Ferrere T, Maler O (2013) Efficient robust monitoring for STL. In: Sharygina
N, Veith H (eds) CAYV, Springer, LNCS, vol 8044, pp 264-279

Ehlers R, Finkbeiner B (2011) Monitoring realizability. In: Khurshid S, Sen K (eds) RV,
Springer, LNCS, vol 7186, pp 427-441

Frehse G, Guernic CL, Donzé A, Cotton S, Ray R, Lebeltel O, Ripado R, Girard A,
Dang T, Maler O (2011) SpaceEx: Scalable verification of hybrid systems. In: Gopalakr-
ishnan G, Qadeer S (eds) CAYV, Springer, LNCS, vol 6806, pp 379-395

Fulton N, Mitsch S, Quesel J, Volp M, Platzer A (2015) Keymaera X: an axiomatic
tactical theorem prover for hybrid systems. In: Felty AP, Middeldorp A (eds) Au-
tomated Deduction - CADE-25 - 25th International Conference on Automated De-
duction, Berlin, Germany, August 1-7, 2015, Proceedings, Springer, Lecture Notes in
Computer Science, vol 9195, pp 527-538, DOI 10.1007/978-3-319-21401-6_36, URL
http://dx.doi.org/10.1007/978-3-319-21401-6_36

Gao S, Kong S, Clarke EM (2013) dReal: An SMT solver for nonlinear theories over
the reals. In: Bonacina MP (ed) CADE, Springer, LNCS, vol 7898, pp 208-214
Havelund K, Rosu G (2004) Efficient monitoring of safety properties. STTT 6(2):158—
173

Kalajdzic K, Bartocci E, Smolka SA, Stoller SD, Grosu R (2013) Runtime verification
with particle filtering. In: Legay A, Bensalem S (eds) RV, Springer, LNCS, vol 8174

http://dx.doi.org/10.1007/978-3-319-21401-6_36

ModelPlex: Verified Runtime Validation of Verified Cyber-Physical System Models 37

18.

19.

20.

21.

22.

23.

24,

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Leucker M, Schallhart C (2009) A brief account of runtime verification. J Log Algebr
Program 78(5):293-303

Liu X, Wang Q, Gopalakrishnan S, He W, Sha L, Ding H, Lee K (2008) ORTEGA: An
efficient and flexible online fault tolerance architecture for real-time control systems.
IEEE Trans Industrial Informatics 4(4):213-224

Loos SM, Platzer A, Nistor L (2011) Adaptive cruise control: Hybrid, distributed, and
now formally verified. In: Butler M, Schulte W (eds) FM, Springer, LNCS, vol 6664,
DOI 10.1007/978-3-642-21437-0_6

Mcllraith SA, Biswas G, Clancy D, Gupta V (2000) Hybrid systems diagnosis. In:
Lynch NA, Krogh BH (eds) HSCC, Springer, LNCS, vol 1790, pp 282-295

Meredith PO, Rosu G (2010) Runtime verification with the RV system. In: Barringer H,
Falcone Y, Finkbeiner B, Havelund K, Lee I, Pace GJ, Rosu G, Sokolsky O, Tillmann
N (eds) RV, Springer, LNCS, vol 6418, pp 136-152

Meredith PO, Jin D, Griffith D, Chen F, Rosu G (2012) An overview of the MOP run-
time verification framework. STTT 14(3):249-289

Mitsch S, Platzer A (2014) ModelPlex: Verified runtime validation of verified cyber-
physical system models. In: Bonakdarpour B, Smolka SA (eds) Runtime Verifica-
tion - 5th International Conference, RV 2014, Toronto, ON, Canada, September 22-
25, 2014. Proceedings, Springer, Lecture Notes in Computer Science, vol 8734, pp
199-214, DOI 10.1007/978-3-319-11164-3_17, URL http://dx.doi.org/10.
1007/978-3-319-11164-3_17

Mitsch S, Loos SM, Platzer A (2012) Towards formal verification of freeway traffic
control. In: Lu C (ed) ICCPS, IEEE, pp 171-180, DOI 10.1109/ICCPS.2012.25
Mitsch S, Ghorbal K, Platzer A (2013) On provably safe obstacle avoidance for au-
tonomous robotic ground vehicles. In: Robotics: Science and Systems

Mitsch S, Quesel JD, Platzer A (2014) Refactoring, refinement, and reasoning: A log-
ical characterization for hybrid systems. In: Jones CB, Pihlajasaari P, Sun J (eds) FM,
Springer, vol 8442, pp 481-496, DOI 10.1007/978-3-319-06410-9_33

Nickovic D, Maler O (2007) AMT: A property-based monitoring tool for analog sys-
tems. In: Raskin JF, Thiagarajan PS (eds) FORMATS, Springer, LNCS, pp 304-319
Platzer A (2008) Differential dynamic logic for hybrid systems. J Autom Reas
41(2):143-189, DOI 10.1007/s10817-008-9103-8

Platzer A (2010) Differential-algebraic dynamic logic for differential-algebraic pro-
grams. J Log Comput 20(1):309-352, DOI 10.1093/logcom/exn070, advance Access
published on November 18, 2008

Platzer A (2010) Logical Analysis of Hybrid Systems. Springer, DOI 10.1007/
978-3-642-14509-4

Platzer A (2011) The structure of differential invariants and differential cut elimination.
Logical Methods in Computer Science 8(4)

Platzer A (2012) The complete proof theory of hybrid systems. In: LICS, IEEE, DOI
10.1109/LICS.2012.64

Platzer A (2012) Logics of dynamical systems. In: LICS, IEEE, pp 13-24, DOI 10.
1109/LI1CS.2012.13

Platzer A (2015) A uniform substitution calculus for differential dynamic logic. In:
Felty AP, Middeldorp A (eds) CADE, Springer, LNCS, vol 9195, pp 467-481, DOI
10.1007/978-3-319-21401-6.32, 1503.01981

Platzer A, Clarke EM (2007) The image computation problem in hybrid systems model
checking. In: Bemporad A, Bicchi A, Buttazzo G (eds) HSCC, Springer, LNCS, DOI
10.1007/978-3-540-71493-4_37

http://dx.doi.org/10.1007/978-3-319-11164-3_17
http://dx.doi.org/10.1007/978-3-319-11164-3_17
1503.01981

38

Stefan Mitsch, André Platzer

37.

38.

39.

40.

41.

42.

43.

44,

45.

Platzer A, Quesel JD (2008) KeYmaera: A hybrid theorem prover for hybrid systems.
In: Armando A, Baumgartner P, Dowek G (eds) IICAR, Springer, LNCS, vol 5195,
DOI 10.1007/978-3-540-71070-7_15

Platzer A, Quesel JD (2009) European Train Control System: A case study in formal
verification. In: Breitman K, Cavalcanti A (eds) ICFEM, Springer, LNCS, vol 5885,
DOI 10.1007/978-3-642-10373-5_13

Seto D, Krogh B, Sha L, Chutinan A (1998) The Simplex architecture for safe online
control system upgrades. In: American Control Conference, pp 3504-3508, DOI 10.
1109/ACC.1998.703255

Shannon C (1949) Communication in the presence of noise. Proc of the IRE 37(1):10-
21, DOI 10.1109/JRPROC.1949.232969

Sogokon A, Jackson PB (2015) Direct formal verification of liveness properties in
continuous and hybrid dynamical systems. In: Bjgrner N, de Boer FD (eds) FM
2015: Formal Methods - 20th International Symposium, Oslo, Norway, June 24-
26, 2015, Proceedings, Springer, Lecture Notes in Computer Science, vol 9109, pp
514-531, DOI 10.1007/978-3-319-19249-9_32, URL http://dx.doi.org/10.
1007/978-3-319-19249-9_32

Srivastava AN, Schumann J (2013) Software health management: a necessity for safety
critical systems. ISSE 9(4):219-233

Wang D, Yu M, Low CB, Arogeti S (2013) Model-based Health Monitoring of Hybrid
Systems. Springer, DOI 10.1007/978-1-4614-7369-5

Wang S, Ayoub A, Sokolsky O, Lee I (2011) Runtime verification of traces under
recording uncertainty. In: Khurshid S, Sen K (eds) RV, Springer, LNCS, pp 442456
Zhao F, Koutsoukos XD, Haussecker HW, Reich J, Cheung P (2005) Monitoring and
fault diagnosis of hybrid systems. IEEE Transactions on Systems, Man, and Cybernet-
ics, Part B 35(6):1225-1240

http://dx.doi.org/10.1007/978-3-319-19249-9_32
http://dx.doi.org/10.1007/978-3-319-19249-9_32

ModelPlex: Verified Runtime Validation of Verified Cyber-Physical System Models 39

A Running Example: Water Tank

The running example for this article is a simple water tank that will be used to illustrate the concepts through-
out. The water level in the tank is controlled by a digital controller that can periodically adjust flow into and
from the tank by adjusting two valves. Every time the controller decides on adjusting the flow, it measures
the water level through a sensor (i. e., it samples the water level). As a safety condition, we want the water
tank to never overflow: any control decision of the controller must be such that the water level stays within 0
and a maximum water level m at all times.

For proving safety, we model this example as a hybrid system model in (9).

0<x<mNne>0— [(f::*; ?(—1§f§ m;x);
S —
0

* b4)
t:=0; {x’:f7 /zl&xZO/\tSE}) }(O<x<m)

The water tank has a current water level x and a maximum water level m. The water tank controller,
which runs at least every € time units, nondeterministically chooses any flow f (written f:=) between a
maximum outflow —1 and a maximum inflow % (by the subsequent test ? (—1 <f< %)) Note, that
when the tank is empty (x = 0) and the controller still chooses a negative flow f < 0 as permitted by the test
? (—1 <f< %) the evolution domain constraint x > 0 in the ODE, which models a physical constraint
that water level cannot be negative, will abort immediately. As a result, only non-negative values for f will
make progress in case the tank is empty. Choosing flow directly simplifies the behavior of the actual water
tank implementation (a single flow value models two valves).!> The water level in the tank evolves according
to the idealized differential equation x’ = f, t = 1 & x > 0At < €. Besides the water level changing according
to the flow X’ = £, the differential equation system includes time ' = 1 to model controller periodicity (t < €).
This considerably simplifies water flow models (e. g., it neglects the influence of water level on flow, and flow
disturbance in pipes). The first conjunct x > 0 in the evolution domain models a physical constraint that
the water level can never be below zero (otherwise, the differential equation would include negative water
content in the tank below zero on negative flow). The second conjunct t < & models the sampling period of
our controller, that is it allows the ODE to be followed only for at most € time before interrupting it for a
control decision. Note, that through ¢ < € the sampling period does not need to be the same on every control
cycle, nor does it need to be exactly € time. This water tank never overflows, as witnessed by a proof for the
A% formula (1).

However, since we made approximations when modeling the controller and the physics, and since fail-
ures and other deviations may occur in reality (e. g., a valve could fail), we cannot simply transfer this safety
proof to the real system.

First, since failures may occur we need to monitor actual evolution, such as that the actual water level
corresponds to the level expected by the chosen valve positions and the actual time passed between controller
executions does not exceed the modeled sampling period. The monitor needs to allow some slack around
the expected water level to compensate for the neglected physical phenomena. Sections 3.2 and 3.5 describe
how to synthesize such model monitors automatically. Second, the controller implementation differs from the
model, so we need to check that the implemented controller only chooses flows f that satisfy —1 < f < #=%.
Section 3.4 describes how to synthesize such controller monitors automatically. Finally, we can additionally
monitor controller decisions for the expected real-world effect, since the hybrid system model contains a
model of the physics of the water tank. Section 3.6 describes how to synthesize such prediction monitors
automatically. The controller in the model, which is verified to be safe, gives us a fail-safe action that we can
execute in place of the unverified controller implementation when one of the monitors is not satisfied.

12 In this example, this simplification is admittedly somewhat artificial but reminiscent of aspects of more
general systems. In more complicated systems, such as adaptive cruise control, a controller needs to aim for
passenger comfort, high fuel economy, and other secondary goals besides ensuring safety, so focusing on the
safety-relevant features greatly fosters safety verification.

40 Stefan Mitsch, André Platzer

B Water Tank Monitor Specification Conjecture Analysis

CF¢,A TFy,A r-a QE(9)
N YT WO s @ I
() (s B) o < () (B)¢ (M CH)y < (HA) (=) (x:=6)¢(x) < ¢(0)

(=) eq) (x:= 0)9(x) 3 Vx = 00(x) ((:= %)) (ri=)(x) > T (x)

() (p0) =xA[T" = 1]y(T) = 6(y(T))) —
((y = Q&H)$ < IT>0 ((YO<T<T (x:=y(7))H) A (x::y(T))q))) 2

L iff ¢ = QE(¢), ¢ is a first-order real arithmetic formula, QE(¢) is a quantifier-free formula
2 T and 7 are fresh logical variables

F(-1<f<m2A (1)
opt. 1 FIf(-1<f<2EAT=03F>0(..)

BT (1<f<BINT=0F>0(VO<S<T(fS+x>0N5+r<e)
ANff+x=x"ANf=fTAi+t=1t")))
TR (1SS EEAT=0F>0(VOSF<T(f§+x>0N5+1 <€)
ANt =T+ (ff+x=x"Nf=frAt=1T)))
) RS (C1<f<mANF =0T >0(VO<F<P (fi+x>0AF+1<e¢)
A= fT+x)(t:=T+1)(x=x"Af=f"At=1")))
TR (CIS S EEAT =0T Z0(VOLS ST (0:=5+1)(f§+x> 0Nt <€)
A= fT+x)(t:=i+0)1"))
FIf(-1<f<ZEAT=0F>0(VO<S<T (x:=f+x)(t:=5+1)(x>0Ar<¢g)
Ax = fi4+x) (=T +0T7T))

T
L
~

=0('=f1=1&x>0A1<g)T")
() =f1'=1&x>0A1<)TT)
B2X A (planf)YT)
F EIf(?— < f < "= (plan) T
VRIS f < plant) T
D (fi=2)(2—1 §f§ "X plant) Yt

F{fi=x2-1<f< %;plant})"+

=

Proof 1: Analysis of the water tank monitor specification conjecture (plant is an abbreviation
fort:=0; ¥ = f,t' =1&x>0At <&, Y is an abbreviation forx =x" A f = fF At =1t")

ModelPlex: Verified Runtime Validation of Verified Cyber-Physical System Models 41

C Sequent-Style Monitor Synthesis

This section lists the monitor synthesis approach in the sequent style of the short version [24]. Proof 2 shows
a complete sequence of proof rules applied to the water tank specification conjecture of Example 5 on page
17, with Tt =x=xT"Af=frAt=1t".

r't¢,A THy,A r'-a QE(9)
(Ar) T onv.A (Wr) I o.a (QE) B :

W (a)(Be HAy _ X) X=X)9,
() @ Bo «” Y (=) T=0)e (=) =
o >0 (VOI<t (x:=y(D))H) A (x:=y(1))9) , @ I't¢(6),3x¢(x),A ,

(X =0&H)¢ TFIxe(x),A

‘ IF3X (AP H)),A X

O rarwa - F,clf’nFan,AS G0 S e new)

L iff ¢ = QE(¢), ¢ is a first-order real arithmetic formula, QE(¢) is a quantifier-free formula

2 X is a new logical variable

3 ¢ and 7 are fresh logical variables and (x:=y(z)) is the discrete assignment belonging to the solution y of
the differential equation with constant symbol x as symbolic initial value.

4 @isan arbitrary term, often a new (existential) logical variable X.

5 Among all open branches, free logical variable X only occurs in the branches I', &; - ¥, A

F—1<fr <2 axt =x+ fHtArt >0Ax>0
ANE>tT >0NfTtt+x>0
o FIF(—1<F<"EAF=fTAxT =x+Ft AT >0
A>O0NE>tT >O0ANFtT +x>0)
FFE=fTAxT=x+FtTAtT >0Ax>0

ANe>tT >O0AFtt +x>0

QB L vo<i<tT (x+FI>0AT<e)AF = f+
M =x+Friart =¢t

FWELIT>0((VO<T<T (x+Ff > 0AT < €))

AF =fTAxT =x+FTAtT =T))
(fi=F;t:=0)(X = f,' =1 &x>0At <)T
(f:=F)t:=0;(¢ =f,{' =1 & x>0t <)Y
(f:
—1<

L R = FY{pland)T ™

(f: f < B2 A {plan)Y*
(f=F)(1—1<f< = ’()(plamﬂ”r
(f:==F)(?—1 < f<™X:plan)Y+
IF(f=F){?—1 <f< X plant) T+
fi=x <‘771<f<m” N
fi=x2—1< f< "X plan) T+

Proof 2: Analysis of the water tank monitor specification conjecture (plant is an abbreviation
forx =ft'=1&x>0At<¢)

Instantiating existential quantifiers ahead of time. The sequent-style synthesis must instantiate ex-
istential quantifiers when they are met in the synthesis process, even though not all the information about the
exact instance may be available at that time. Opt. 1 below introduces a heuristic to avoid duplicate work when
instantiating existential quantifiers.

42 Stefan Mitsch, André Platzer

By axiom dinst, an existentially quantified variable can be instantiated with an arbitrary term 6, which
is often a new logical variable that is implicitly existentially quantified [29].

Optimization 1 (Instantiation trigger) If the variable is not changed in the remaining ., x; = xl* isinTT

and x is not bound in Y, then instantiate the existential quantifier by axiom Jinst with the corresponding

x;r that is part of the specification conjecture (i. e., 0 = x;r), since subsequent proof steps are going to reveal
_ .t ; P e i ; ; i

0 = x;” anyway. This optimization is most effective in the sequent-style synthesis technique, which spreads F

over many branches.

Otherwise, we introduce a new logical variable, which may result in an existential quantifier in the monitor
specification if no further constraints can be found later in the proof.

Example 10 (Instantiating existential quantifiers) Continuing Example 6, we show the proof without and
with application of Opt. 1. The corresponding steps in the water tank proof use Jinst to instantiate the
resulting existential quantifier 3f (i) with a new logical variable F (without Opt. 1), and (ii) with posterior
variable f (with Opt. 1). The hybrid program plant is an abbreviation for X' = f,t' =1 & x > 0At < €.

(Jinst) ¢(0) — Ix ¢ (x)

F—1<F < ™2 A (plant) Y kwfwooptl F 1< <A (plann) Y
Jinst —2 Jins
U3 (-1 L f < XA (plant)Y) S

with Opt. 1 (anticipate f = f* from Y'")

Re-introducing quantifiers. In the sequent-style analysis, the fragments of the monitor are usually scat-
tered over several branches, since many proof rules split into two or more branches, as Ar after (?) in Proof 2
above. At the same time, sequent-style reasoning has the main goal to make proving properties easy (as op-
posed to synthesis) and thus only works on the top-level operator of a formula, not inside as in the axiomatic-
style synthesis. As a result, the sequent-style prototype cannot postpone instantiating existential quantifiers
until later, so it either must use Opt. | or instantiate with a fresh variable (e. g., ' in Jr in Proof 2 above). In
the latter case, in the final step of sequent-style synthesis we can re-introduce existential quantifiers and look
for additional facts that let us instantiate the quantifier with a more useful variable, see Example 11.

We use the invertible quantifier rule i3 to re-introduce existential quantifiers for the new logical variables
(universal quantifiers for function symbols, see [29] for calculus details). Often, the now quantified logical
variables are discovered to be equal to one of the post-state variables later in the proof, because those variables
did not change in the model after the assignment. If this is the case, we can use proof rule 3o to further
simplify the monitor specification by substituting the corresponding logical variable x with its equal term 6.

Example 11 (Reintroducing existential quantifiers over multiple branches) Proof 2 uses a new logical vari-
able F for the nondeterministic flow assignment f :=x*. After further steps in the proof, the assumptions
reveal additional information F = fT. Thus, we re-introduce the existential quantifier over all the open
branches (iJ) and substitute f* for F (30). The sole open sequent of this proof attempt is the monitor
specification F (x,x") of the water tank model.

I'E3X(A\(Pi =), A
I & FY,A - L& %,A

1

(CE)

1" Among all open branches, free logical variable X only occurs in @;, ¥ in the branches I", ®; - ¥, A

F-1<fm<B2Axt =x4+ TP Ax>0Ae>1T >0AfT1T4x>0
R IF = ft (1 <F <" AxT =x+Frf Ax>0Ae > 1" >0AFtt +x>0)
T 1 <F<PINF=frAxt =x+Frt Ax>0Ae>1" >0AFrt +x>0

D Reasoning in KeYmaera X

In order to illustrate the underlying principle of the synthesize tactic, let us first consider a tactic (:=) for
nondeterministic assignment. The tactic rewrites a formula of the form (x:=)¢ (x) into 3x ¢ (x), and proves
the correctness of this rewriting from the corresponding axiom (x := *)¢(x) <> Ix¢(x). Proof 3 illustrates

ModelPlex: Verified Runtime Validation of Verified Cyber-Physical System Models 43

this principle in more detail. First, the desired outcome is cut in as an equivalence to the current formula.
This equivalence can be shown from the axioms, cf. right-most branch. Once proven correct, propositional
tactics close one direction of the equivalence (left-most branch) and transform the equivalence into the desired
outcome, cf. middle branch.

y Loyra pL0AyEA Togn-yra r'-¢,A , Ira
D Ay a (b T ooyra D ora WD =5 a
wn L4 I¢-A I'-¢,A
WOTrres “rgrea “Trra

- 3xg
WL W (=% F (x:=%)9,
* Ix¢ *
=0, nPF x:i=x)9 LTS =)9,-3x g F (xi=%)0 CE =0 < X
Nix=)o ATxg - (x:=%)¢ NS =4)p A—Txg - (x:=%)@ W (=)0,

o (x:=%)p < IxP - (x:=*)¢ (x:=%)¢ < Ix¢

Fle=9

Proof 3: The steps taken by the tactic procedure of a tactic (:=x) for handling non-
deterministic assignment based on an axiom (x:=x*)¢$ <> Ix ¢

	Introduction
	Differential Dynamic Logic by Example
	ModelPlex Approach for Verified Runtime Validation
	Evaluation
	Related Work
	Conclusion
	Running Example: Water Tank
	Water Tank Monitor Specification Conjecture Analysis
	Sequent-Style Monitor Synthesis
	Reasoning in KeYmaera X

