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ABSTRACT
We applied quantified differential-dynamic logic (QdL) to
analyze a control algorithm designed to provide directional
force feedback for a surgical robot. We identified problems
with the algorithm, proved that it was in general unsafe,
and described exactly what could go wrong. We then ap-
plied QdL to guide the development of a new algorithm that
provides safe operation along with directional force feedback.
Using KeYmaeraD (a tool that mechanizes QdL), we created
a machine-checked proof that guarantees the new algorithm
is safe for all possible inputs.

Categories and Subject Descriptors
F.3.1 [Logics and the Meaning of Progams]: Speci-
fying and Verifying and Reasoning about Programs; I.2.9
[Artificial Intelligence]: Robotics

Keywords
Quantified differential dynamic logic, medical robotics, for-
mal verification

1. INTRODUCTION
Imagine an operating room in the near future where a sur-

geon works diligently to excise a tumor at the base of a pa-
tient’s skull. The physician might employ newly developed
robotic technology to more clearly visualize the surgery and
more precisely guide the surgical instrument to make the
incisions. The ultimate goal: surgery that is safer and more
effective than before, providing better patient outcomes.

The robotic machinery to make this future a reality are
slowly being developed, but the systems are complex, and
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can be prone to subtle, unexpected errors. It is easy to see
how safety critical such systems are; a bug in the implemen-
tation or error in the algorithm that controls the surgical
tool might cause it to make the wrong incision, with devas-
tating consequences for the patient.

The usual approach today for ensuring the safety of com-
plex systems is careful design, thoughtful examination of the
algorithms, and testing. This approach was applied in [16],
where the authors built the system and tested the final prod-
uct with a surgical procedure on a cadaver. Testing is useful,
but only shows the presence of bugs, not their absence.

This paper describes the analysis of one safety property
of a skull-base surgery (SBS) robot algorithm, described
in [16], to help ensure its safe and predictable operation.
Rather than taking a testing approach, we apply formal
methods to analyze the control algorithm of interest. This
rigorous analysis ensures that the algorithm and the hard-
ware that it controls behave predictably and safely for all
possible inputs, rather than only for finitely many test cases.
The guarantee we seek is much more comprehensive, and can
lead to much safer and more predictable systems.

The contribution of this work is that it helps explore
how to usefully apply newly developed formal approaches
to practical systems. This has two benefits: first, it helps
guide the development and refinement of logics and tools,
by identifying what is necessary to put these techniques into
widespread use; second, it helps the development of practi-
cal robotic systems by introducing new formal methods as
a powerful and maturing set of design tools.

2. BACKGROUND
The SBS robot in [16] restricts movement of a surgical

tool to be within a preoperatively defined surgical site (see
Fig. 1), provides force feedback to the surgeon, to indicate
when he or she is approaching these boundaries, and aids in
fine control of the tool by damping small movements.

To configure this robot, a surgeon describes an operating
volume in which to work by a series of planes oriented and
positioned in space, called “virtual fixtures.” Each planar
boundary extends infinitely, and the intersection of the vol-
ume on the “safe” side of each plane is designed to exclude
the areas of anatomy with which the surgeon does not wish
to interact. We are considering planar boundaries because
that is what was used in the original work.

During surgery, the surgeon holds the tool, (think of it



Figure 1: Cooperatively controlled robot enforcing virtual
fixtures to restrict a tool-tip to moving within a small vol-
ume.

as a scalpel, even though it may be another tool with the
same form factor) and applies it to the surgical task at hand,
moving it about. The robot is attached to the tool through a
rigid mechanical linkage, so as the surgeon exerts forces and
torques on the tool, the robot can sense them, and can also
exert forces on the tool opposing or aiding the surgeon’s
movements. This interaction between the SBS robot and
surgeon is called cooperative control.

The control algorithm provides three behaviors through
different modes of operation: within the center of the safe
volume it allows free movement of the tool; close to the sur-
face at the edge of the safe volume it creates an increasing
resistance to movement that lets the surgeon know that he
or she is close to a virtual boundary; and at the bound-
ary it opposes the movement of the tool, preventing it from
crossing the boundary.

Qualitatively, this will produce an invisible boundary that
feels soft or mushy. As the tool pushes towards the bound-
ary, the resistance will become progressively firmer; eventu-
ally the tool will slow to a stop and “stick” when it reaches
the limit of its allowed movement.

The “physics” of the robot are created by an admittance
control design, a circuit that converts sensed forces and
torques to velocity through a multiplicative factor. If the
surgeon exerts force f̄ on the tool tip, located at Cartesian
position p̄, the control circuit translates the input force into
a velocity p̄′ at the tool tip, given by:

p̄′ =K(p̄)G(f̄)f̄ (1)

where overbars indicate vectors, prime ′ indicates a deriva-
tive with respect to time, and K and G are 3 × 3 matrices
(when just the position is controlled).

A more detailed version of the admittance control equa-
tion can be found in [16], but for our purposes this is an
adequate model. G is the scale factor, which in the ac-
tual system is a matrix with non-linear (exponential) terms
described in [7]. It allows the surgeon to switch between
moving rapidly over large areas, and doing precise work in a
small area with fine control, without interrupting the work-
flow. In our study, we simplify G and consider it a constant.
K(p̄) is a gain term, used to provide force feedback and

enforce the “virtual fixtures” as described above. Its ele-
ments change form abruptly depending on the position of
the tip of the tool, p̄.

Regions of movement are defined in terms of D, a design
parameter that indicates a cutoff distance from the bound-
ary in its safe direction, as in Fig. 2. In the free region,
i.e., the points whose distance d from the boundary sat-
isfy d > D, K is the identity matrix. In the slow region,
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Figure 2: The robot determines which mode it is in depend-
ing on the distance from the virtual fixture boundary.

where 0 ≤ d ≤ D, the system provides force feedback op-
posing movement in proportion to how close the tool is to
the boundary. Past the edges of the boundary in the unsafe
zone, K becomes zero; our tool should not reach past the
boundary during normal operation, if our algorithm is safe.

During the experiments [16], Eqn. 1 was effective in pre-
venting the tool from penetrating the safety boundary, but
had the undesirable property that once the tool was near
the boundary, motion in all directions was attenuated, in-
cluding motions away from the boundary. This led to the
development of a new control law, where in the slow region
(0 ≤ d ≤ D), the velocity of the tool is attenuated by sub-
tracting a fraction of the component in the direction normal
to the boundary. The amount subtracted is proportional to
how close to the boundary the tool is at any given point. So
if the velocity of the tool is p̄′, the distance from the bound-
ary is d, and the unit normal to the boundary is n̂1, the final
velocity p̄′1 is given in [5] as:

p̄′1 = p̄
′
− (1 −

d

D
) (p̄′ ⋅ n̂1)n̂1 (2)

where ⋅ is the dot product of two vectors. The force feedback
from each region is applied sequentially, using the attenuated
velocity remaining from prior steps. The designers of this
algorithm recognize that there is an irregularity in the com-
putation for acute angles, but were not sure what practical
effect it had on the system’s behavior.

The goal of this research is to ensure that the algorithm
safely restricts movement to stay within the virtual fixture
boundaries, so that the robot will not adversely impact the
safety of the overall system or otherwise unnecessarily en-
danger the patient.

3. RELATED WORK
There are a number of papers related to the use of virtual

fixtures for surgery, such as [10, 1]. The closest to the cur-
rent work are [4, 9], which take a constrained optimization
approach to enforcing more complicated boundaries that are
generated by anatomy, and providing an approach that can
guide a tool successfully through a specific path. The cur-
rent work is focused on somewhat orthogonal concerns of
improving the fidelity of the model of the interface between
discrete program and robotic machinery, (i.e. accurately rep-
resenting the control mechanism by incorporating realistic
delay), and using this improved model to prove safety for all
possible inputs, helping to improve the maturity of formal
methods. It would be interesting in the future to explore
the benefits of applying a formal approach to proving the
safety of the more complicated algorithms.



Algorithmic verification approaches such as [2, 3] exist,
but they are not appropriate for this work because they
could only show safety for a specific number of boundaries,
n, i.e. we cannot quantify over elements in the structure in
our model. We wish to use one proof to show safety for all
possible configurations of any number of boundaries, i.e. ∀n,
where n is the number of boundaries configured.

At the intersection of formal methods and surgical robotic
systems, the authors of this work have also produced related
work certifying surgical robot systems in [8, 6], but this prior
work is different because it is focused on certifying program
implementation for concurrent software, rather than algo-
rithm design for hybrid systems.

4. FORMAL APPROACH
Like all formal methods, the approach we employ has three

components: a method for creating a model of the algo-
rithm and the physics of the system, a language for writ-
ing a precise specification of its behavior, and a strategy
to rigorously prove that the model has exactly the behav-
ior described in the specification. We used two closely re-
lated hybrid logics to help us formally verify the safe be-
havior of the control algorithm used to enforce virtual fix-
tures: differential-dynamic logic (dL) [11, 12], and quantified
differential-dynamic logic [13, 14] (QdL). Both of these log-
ics use the same approach to modeling the system, specifying
behavior, and proving properties.

Modeling a hybrid system in QdL and dL is done via a hy-
brid program (HP). The hybrid program looks a bit like an
imperative programming language, with real numbers and
discrete sets comprising its primitive types. The statements
available within a hybrid program are: instantaneous, si-
multaneous assignment of values θi to program state vari-
ables xi, e.g. x1 ∶= θ1, . . . , xn ∶= θn; enforcing a logical as-
sertion χ on program state, i.e. ?χ; composing program α
with β, i.e. α;β; nondeterministically choosing to execute
one of two programs α and β, i.e. α∪β; repetition of a pro-
gram α some nondeterministic number of times, i.e. α∗; and
continuous evolution of a set of differential equations, i.e.
x′1 = θ1, . . . , x

′
n = θn&χ. The last type of statement is the

most interesting: it represents the evolution of continuous
time in the hybrid system according to the given differential
equations, satisfying the first order constraint, χ. The state
variables xi and those contained in terms θi, evolve contin-
uously in response to this statement and stop at any time
before leaving χ.

Specifying behavior in QdL and dL is done using first-
order logic with the usual logical connectives, i.e. φ ∧ ψ,
φ ∨ ψ, ¬φ, φ → ψ, and quantifiers, i.e. ∀xφ, and ∃xφ. The
specification language also contains box and diamond modal
operators [α]φ and ⟨α⟩φ; the former is satisfied when φ holds
after all runs of α, and the latter is satisfied if φ holds after
at least one run of α.

The proof strategy for these logics depends on applying a
set of sound inference rules to transform pieces of the goal
into tautologies in real arithmetic.

QdL is a generalization of dL, designed to allow quantifi-
cation of variables used as arguments to other functions, and
continue to ensure that the resulting arithmetic is decidable.
Decidability is important because when working with these
logics the leaves of proof trees are systems of equations de-
void of hybrid program constructs; solving them proves or
disproves that branch of the proof tree. Quantification over

variables used as arguments to other functions becomes use-
ful when we model multiple boundaries.

We are fortunate that there is a mechanization of QdL,
described in [15], that allows us to model and mechanically
prove properties of a hybrid system using this new logic.

5. DEVELOPING A SPECIFICATION
We are interested in proving the following critical safety

property for our system:

For any configuration of virtual fixture bound-
aries, if the surgeon starts the tool at a safe place,
for all possible uses of the robot, at each point in
time, the tool remains in a safe place.

There are many cases where developing a specification is
difficult, because the behavior we want is complicated, or the
language we use to describe it is not sufficiently expressive.
Neither of these is the case for our particular problem. The
property is simple, and our logic is sufficiently expressive.
The challenge is how to prove it.

If we call the model of our control algorithm“ctrl,” and we
have a single boundary i with a unit normal to the boundary
n̂i pointing in the safe direction, a point r̄i on the boundary,
then a tool at position p̄ would be safe if (p̄− r̄i) ⋅ n̂i ≥ 0. We
will call the preceeding expression safei.

Thus for the ith boundary, our safety property would be
expressed as:

safei → [ctrl]safei (3)

An implication with a precondition in the implicant, and a
modality in the implicand is a common idiom in differential
dynamic logic used to represent safety properties. Our safety
property says if we start in the safe location for boundary
i, and you run the robot using ctrl, then at every point in
time, you will also be in a safe location.

If the surgeon specifies 3 virtual fixtures, we could state
the safety property as (safe1 ∧ safe2 ∧ safe3)→ [ctrl](safe1 ∧
safe2∧safe3). In fact, we considered and verified such proper-
ties of the SBS system with a fixed number of virtual fixtures
in KeYmaera. But the surgeon can specify any number of
virtual fixtures as input, so we would then have to reverify
the system if the surgeon ever decided to use 4 or more fix-
tures. The same problem arises if we consider 10 boundaries
or any other fixed number instead.

In QdL, however, we can develop a single model for an ar-
bitrary number of boundaries represented, e.g., as a linked
list. We can traverse boundaries of interest with an uninter-
preted function next(), that when applied consecutively to
its result, identifies a list of boundaries, and a hybrid pro-
gram that iterates over the different boundaries in that list:
[i ∶= first; (i ∶= next(i))∗]((i ≠ end) → safei). Unlike most
hybrid programs, which represent a model of a hybrid sys-
tem, this one’s sole purpose for existence is to span the list
provided to us by the next() function and terminated by a
constant symbol end (satisfying next(end) = end).

For a finite, end-terminated list of boundaries defined by
next(), we are interested in proving the following property
saying that ctrl safely respects all boundaries always:

[i ∶= first; (i ∶= next(i))∗] ((i ≠ end)→ safei)→
[ctrl] [i ∶= first; (i ∶= next(i))∗] ((i ≠ end)→ safei)

(4)

What remains is developing the model ctrl and proving
that it matches this specification.



6. DEVELOPING A MODEL
In this section, we describe the different steps we took

to create an accurate model of the system. This means we
will start with simplifying assumptions, create a model of
our control algorithm, and show how we refine our model to
eventually prove the safety of our system.

Why not simply jump straight to the final result? Because
the process of developing and refining a model helps identify
problems in the design and can lead to changes in the control
algorithm we are modeling. Describing the modeling process
illustrates the strategy we use to create these models, and
provides general lessons that are applicable to many other
hybrid system modeling and verification tasks.

Model development is an integral part of formal verifica-
tion, and how to get to the right model is not always ob-
vious. For this modeling effort we are not sure what the
final model will look like, so we will step back and break
the problem into two pieces: first, we must create the model
of the control algorithm for the safety and force feedback
of a single boundary, and second, we must add code to our
single-boundary control model that applies that control to
many boundaries sequentially, and produces a combined ef-
fect that ensures safety for a finite collection of boundaries.

6.1 Event-Driven Continuous Control
The first attempt at modeling our SBS system is a direct

translation of the continuous equations in Eqn. 1. This equa-
tion implicitly assumes a sort of continuous control, where
our system responds infinitely fast and infinitely often; it
will lead to what is sometimes called an event-driven sys-
tem, since it responds instantaneously to events.

There are many analog control circuits that do exhibit
behavior that is nearly continuous control. In fact, the un-
derlying control circuit that implements admittance control
for the SBS robot is one example, assuming its step response
is sharp and its settling time is short compared to the other
time scales in the system.

Because the admittance control circuit can be modeled
by continuous control, it may be tempting to think that a
continuously controlled, event-driven model is a good rep-
resentation for the virtual fixture control algorithm. It is
not. The virtual fixture control algorithm cannot be practi-
cally implemented as an analog circuit, because K must be
set in a manner consistent with both the current geometric
state, but also the currently configured set of virtual fixture
boundaries. This means the part of our system that com-
putes K will be digital, and can introduce a significant delay
in our response.

This is a very general lesson for anyone who is developing
complex control algorithms. The lower level control circuits
may be analog, and often can be modeled and analyzed very
well by continuous control, and the control and circuit the-
ory that we have available in our toolbox. But when build-
ing up more complicated control behaviors at higher levels of
system abstraction, those behaviors may require more com-
putation, and it may only be practical to implement them
using digital components. In this case, modeling the control
algorithm using continuous, event-driven control is a poor
approximation that may lead to inaccurate conclusions.

Regardless, this sort of approximation is useful because it
provides a quick sanity check of our basic concept under ideal
conditions; if our control algorithm does not work correctly
under continuous control, we cannot expect it to work under

a more realistic model that incorporates delay. We will il-
lustrate the utility of this initial step for model development
by creating a model of control for a single boundary. At-
tempting to apply formal methods to this model will force
us to refine the model, and eventually identify a problem
with our initial control system design.

Our initial modeling attempt begins by writing pseudo
code for a hybrid program that represents our control algo-
rithm. There will be a section of code that assigns values
to state variables in the system, and we can call this block
“input.” It is followed by a non-deterministic choice of dif-
ferent statements describing continuous evolution according
to a system of differential equations directly taken from the
admittance control equation. Each statement corresponds
to a mode of operation, describing that mode’s continuous
behavior, as well as constraints that must hold in that case.
Our pseudo-code looks like this:

ctrl ≡ (input;
( (mode 1 diff eqn & mode 1 constraints) ∪
(mode 2 diff eqn & mode 2 constraints) ∪
(mode 3 diff eqn & mode 3 constraints) ∪
...
(mode n diff eqn & mode n constraints)))∗

This defines an event-driven controller, because it will
switch from one mode to the other as described by the event
of moving from one evolution domain constraint to another.
The semantics of QdL are nondeterministic, such that the
system can switch between overlapping evolution domain
constraints at any time. In our system, all evolution do-
main constraints are disjoint except for their overlapping
mode boundaries, so that the system switches over to the
other modes exactly at those boundary events.

We can now convert this pseudo-code into an algorithm
by adding details. For simplicity, we will first model the
controller in two dimensions, and fix a single virtual fixture
boundary to the x-axis, with the safe side being quadrants
one and two of our cartesian coordinate system, where y is
positive. Next, we will fill in the details for “input.” From
the physician’s perspective, the interaction with the system
is via simple hand motions, exerting force on the tool to
move it around. We model this motion using the nondeter-
ministic assignment to the derivative of the force, creating
a piecewise linear model of the force. We use f̄p = (fxp, fyp)
to represent the derivative of force with respect to time, and
write fxp ∶= ∗ and fyp ∶= ∗ to indicate non-deterministic as-
signment. (Because our mechanization does not have any
way to represent vector quantities, we have to decompose
our system into scalar equations.) We relate these quan-
tities to the force by including the appropriate differential
equations f ′x = fxp, f

′
y = fyp during continuous evolution of

our system. Finally, we fill in the differential equations us-
ing the basic physics of our admittance control circuit and
damping mechanism, given in Eqs. 1 and 2. As in Eqn.
1, p̄ represents the position of the tooltip, p̄′ is its deriva-
tive with respect to time, and f̄ represents the force that
the surgeon exerts on the system at a given point in time.
The logical constraints that are provided during continuous
evolution distinguish the different input cases. The refined
hybrid program is given in Table 1.

In this simple model, we can see the different cases that
our robot controls for, to make a single boundary safe. For



ctrl1 ≡ (fxp ∶= ∗; fyp ∶= ∗;
/* free zone */
(p′x = Gfx, p

′
y = Gfy, f

′
x = fxp, f

′
y = fyp&(py ≥D))∪

/* slow zone */
(p′x = Gfx, p

′
y = G

py
D
fy, f

′
x = fxp, f

′
y = fyp&

((0 ≤ py ≤D) ∧ (fy ≤ 0)))∪
(p′x = Gfx, p

′
y = Gfy, f

′
x = fxp, f

′
y = fyp&

((0 ≤ py ≤D) ∧ (fy ≥ 0)))∪
/* past boundary */
(p′x = 0, p′y = 0, f ′x = fxp, f

′
y = fyp&((py ≤ 0) ∧ (fy ≤ 0)))∪

(p′x = 0, p′y = Gfy, f
′
x = fxp, f

′
y = fyp&((py ≤ 0) ∧ (fy ≥ 0))))

∗

Table 1: Simple, event-driven model exhibiting continuous
control for a single virtual fixture in two dimensions.

example, there are two cases in the slow zone, one for moving
towards the boundary, and one for moving away from it.

For this system, safety means that we do not move past
the virtual fixture boundary. We state our safety property
as ensuring that the tool tip, located at p̄, will never go into
the bad region below the x-axis, so safe1 = (py ≥ 0). We also
define some sanity requirements for our system, sane = (G >
0) ∧ (D > 0) to formalize assumptions about the different
parameters.

Theorem 1. The event-driven SBS control system in Ta-
ble 1 is safe for a single boundary in two dimensions, i.e.,
the following dL formula is provable:

safe1 ∧ sane→ [ctrl1]safe1 (5)

We were able to mechanize and prove the safety of this sys-
tem, using KeYmaera, a mechanization of dL.

It is tempting to stop our modeling exercise here, because
it seems obvious that this algorithm will be safe for multiple
boundaries. Here, we ended up reusing a continuous model
appropriate for the design of linear, time-invariant systems,
for formal verification of a high level control algorithm that
is a hybrid system. For this system, the assumption of con-
tinuous control is not appropriate.

Generalizing to Multiple Boundaries.
When we try to extend our formal model to include an

arbitrary but finite number of multiple boundaries, we fail;
this modeling approach can (with difficulty) be scaled to a
higher number of boundaries, but it cannot represent the
general case of any number of boundaries in a single model.

To use this modeling approach for an arbitrary number
of boundaries, we would have to embed a looping program
within different modes describing the continuous dynamics
of the system, in order to control for all of the boundaries
and their overlapping regions. The semantics of QdL and dL
do not allow this, because it would represent the execution of
a discrete program instantaneously at every instant of time;
this is more than physically impossible to implement.

In the process of formalizing an accurate model of our
system, we discover something inaccurate about our model
that is dangerous to our conclusions of its safety; our mod-
eling language tells us so by prohibiting what we are trying
to do. As discussed above, we have implicitly extended the
assumption of continuous control to the implementation of
the gain term K(p̄), which contains discrete aspects of the

system that switch its form, giving the system its hybrid fla-
vor. This system needs a more accurate modeling approach
to correctly ensure its safety.

6.2 Improved Delayed-Response Control
To relax the idealized assumptions of the event-driven

model, and allow us to represent an arbitrary but unspeci-
fied number of boundaries in our system, we will model the
control algorithm with delay in the control loop. When we
create the software that implements this control algorithm,
it will contain a loop that senses its state and the current
inputs, makes a decision, and then sends commands to the
robotic machinery to respond. This cycle of decision-making
introduces some finite (possibly variable) delay, with an up-
per bound we call ε, in the response of the robot. Modeling
this delay is appropriate because it more closely matches the
system behavior, in that the robot takes some action, and
then cannot react again to the external world for some pe-
riod of time up to ε; see Figure 3. For the robot system used
in [16], ε = 18.2 msec.

Time

Event-Triggered Control

Robot responds infinitely fast
at every time instant

Time

Robot responds within epsilon

ε

Delayed-Response Control

Figure 3: Event-triggered vs. Delayed-Response Control

Converting our event-triggered model to one with a de-
layed response requires the opposite of what we contem-
plated doing in the previous section. Rather than embedding
a looping program into the continuous dynamics to repre-
sent discrete behavior, we must refactor the hybrid program,
rewriting it so that the differences in the modes are expressed
in the discrete program at the beginning of each continuous
evolution. This refactoring is illustrated in Fig. 4.

Once this is done, there will only be one set of differential
equations that describes the continuous evolution of our sys-
tem, and it will simply represent the physics of the system

Event-triggered Delayed-Response
ctrl ≡ ctrl ≡
(discrete; (discrete;

( mode1 dyn )∪ (mode1discrete ∪

( mode2 dyn )∪ mode2discrete ∪

( mode3 dyn ) )∗ mode3discrete);

t ∶= 0; ( dyn , t′ = 1 & t ≤ ε) )∗

Figure 4: Converting a model that uses event-triggered con-
trol into a model that has a delayed response. Refactoring
differences between different modes into a discrete program
component, leaving our model with a single term describing
the continuous evolution of the system with an extra clock
t bounded by ε.



and the behavior of our lower-level admittance controller,
which should not change regardless of the mode the system
is in or the damping decision made by the control algorithm.

6.2.1 First Iteration: Immediate Control
We rewrite Eqn. 1 to match Eqn. 2, the implementation

described in [5], for which we wish to prove safety:

p̄′(t) = G(f̄(t) − kn̂) (6)

In doing so, we define a state variable k that will be used
to describe the amount of force-feedback in the direction
normal to the boundary. The value of k is computed and set
at each step by the discrete program, and used as a constant
in the ODE during continuous evolution. Incidentally, this
rewriting of Eqn. 1 will become a problem, as it changes
the functional form of our equation, and prevents us from
generalizing to multiple boundaries.

For our first iteration, we write a discrete program to set
the value of g according to the current value of the force
and position at the beginning of each step, implement the
differential equation above, and use the approach described
in Fig. 4 to allow up to ε time to elapse before our next
control decision. This approach runs into immediate prob-
lems, which are evident even without doing a formal proof:
Since the system may now be delayed by up to ε, we have
introduced the possibility that the tool moves so quickly
that it crosses the buffer of size D in some time less than ε.
Whether this occurs in practice will depend on the values of
D, ε, and the maximum velocity the robot allows. We can
prove this if it is not sufficiently obvious.

6.2.2 Second Iteration: Predictive Control
To solve this problem, we must redesign the algorithm

so that it anticipates the motion in the time step of dura-
tion ≤ε, so that it can avoid violating the safety conditions.
Rather than reacting only in the fixed forced-feedback zone,
we will anticipate, based on the tool’s position, its velocity,
and its acceleration, whether we need to oppose its motion
to prevent it from exceeding the virtual fixture we have de-
fined. Force feedback can be applied if and when the tool
is safe, in the slow (force-feedback) zone, and moving slowly
enough to provide useful feedback to the user. At this point,
our redesign is focused on safety only, since we need to get
this right before we add force feedback.

The rest of this section describes the details of this design,
which requires: computing the characteristics of the path the
tool takes during the time step that represents the robot’s
delay; enumerating input cases, and computing k so that the
robot’s behavior remains safe; and proving that the design
does in fact ensure the safety we expect.

Calculating the Tool’s Path.
In order to create a predictive version of the algorithm,

we must calculate the path of the tool with respect to the
boundary. The force exerted on the tool at a point in the
time step can be written as the initial force at the beginning
of a step (subscript 0), plus the derivative of the force times
time, and each of these can further be broken into x and y
coordinates:

f̄(t) = f̄0 + f̄pt = (fx0 + fxpt)x̂ + (fy0 + fypt)ŷ (7)

where x̂ and ŷ are unit normals in the x and y directions.

By calculating force components normal to the boundary,
we can relate these quantities to the frame of reference of the
boundary, and more easily model a boundary at an arbitrary
location and an arbitrary orientation. We can write fn, the
force normal to the boundary, as the initial normal force fn0
plus the derivative fnp of the normal force times time

fn(t) = f̄(t) ⋅ n̂ = (f̄0 ⋅ n̂) + (f̄p ⋅ n̂)t = fn0 + fnpt (8)

By solving the ODE in Eqn. 6, we find the position p̄ of the
tooltip at any time t during the step, and then we can use
this to find the distance d(t) from the boundary:

p̄(t) = p̄0 +G(f̄0 − kn̂)t +
1
2
Gf̄pt

2

d(t) = (p̄(t) − r̄) ⋅ n̂
= d0 +G(fn0 − k)t +

1
2
Gfnpt

2.
(9)

We need to look at the undamped case to know whether
we need the robot to apply damping. The discriminant of
the quadratic describing the distance will tell us whether our
parabolic trajectory without damping intersects the bound-
ary we are interested in; if disc = (Gfn0)

2 − 2Gfnpd0 is posi-
tive, we know that we may intersect the virtual fixture dur-
ing the next ε time step.

Calculating Safe k for Different Input Conditions.
Now we need to use Eqn. 9 to calculate a k that ensures

safety throughout the time step of duration ≤ε. We want
to damp it safely, but not unnecessarily, depending on the
specifics of the motion that is being made. For example, if
the tool’s motion is away from a boundary, we don’t need
any damping, unless the acceleration eventually reverses its
direction and has it intersecting the boundary during this
time step, in which case we do. There are various cases for
this type of motion, and we have to compute a safe value of k
for each case, and then use the results during the execution
of our hybrid program.

The cases are shown in Fig. 5, and the calculations for k
used in the model for each case follow. How do we know that
we have safely addressed all of the cases? This is one of the
benefits of a formal approach. We think carefully about the
cases, enumerate them, and then calculate a safe k depend-
ing on the behavior we seek. Then, we attempt to prove the
safety property. If we have missed any cases, or miscalcu-
lated k, the proof will fail and lead to a counterexample of
whatever cases we have missed. In this way, verification can
support the design process for this control algorithm.

There are four cases where the robot should not do any-
thing, because we will not hit the boundary during this time
step. These four cases correspond with the subfigures a–d
in Fig. 5, and for these cases, the robot will not add any
damping; we represent this in our model by setting k ∶= 0
for these cases.

(a) We are moving away from the boundary (fn0 ≥ 0), and
accelerating away from the boundary (fnp ≥ 0).

(b) We are moving towards the boundary (fn0 ≤ 0), but
accelerating away from the boundary (fnp ≥ 0), so that
we turn around before we reach it (disc ≤ 0).

(c) We are moving towards the boundary (fn0 ≤ 0), but
accelerating away from the boundary (fnp ≥ 0) so that
we will intersect it (disc ≥ 0), but not during this time
step (d(ε) ≥ 0 and fn(ε) ≤ 0), so no action is necessary
yet.
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0 ε
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0 ε
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0 ε

(f)

0 ε

(g)

Figure 5: Each subfigure represents a movement scenario in which the skull-base surgery robot must enforce safety. The y-axis
of each subfigure represents the distance of the closest approach of the tool to a single virtual fixture boundary, i.e. d(t). The
x-axis of each subfigure represents the progression of time, with a zero-reference being assigned to the beginning of a step,
progressing to the maximum delay, ε. The final, safe version of the realistic controller contains each of these scenarios as an
explicitly controlled case.

(d) We are accelerating towards the boundary (fnp ≤ 0)
but we never reach it during our step (d(ε) ≥ 0).

There are three cases where the robot must interfere, to
prevent the tool-tip from crossing the virtual fixture. These
remaining three cases correspond with the subfigures e–g in
Fig. 5. The logic and calculations for k follow for each case:

(e) We are accelerating towards the boundary (fnp ≤ 0),
and we would reach it or exceed it at the end of our
time step (i.e. [k ∶= 0]d(ε) ≤ 01) unless additional
damping is applied.

Since we are accelerating towards the boundary, we
know the furthest we can reach past the boundary
will be at time ε. To ensure that we do not cross the
boundary, we find a damping value that just slows us
enough so that we touch but do not cross the bound-
ary at this time, by solving d(ε) = 0 for k. We find

k ∶= fn0 +
(d0+ 1

2
Gfnpε

2)
(Gε) to ensure safety, so we set that

value as k at the beginning of the step for this case.

(f) We are moving towards the bounday (fn0 ≤ 0) but
accelerating away from the boundary (fnp ≥ 0), and
we will still intersect it (disc ≥ 0) during this time
step. We know this because the trajectory has turned
around (fn(ε) ≥ 0) and reached its minimum.

Here, we need to ensure that the minimum value just
touches the boundary, so that no part of the path
actually crosses it. We compute the time where our
parabolic trajectory reaches its minimum, tm = −fn0

fnp
;

this is the furthest past the boundary that our path
reaches. Now we can require that the discriminant
of the resulting quadratic equation be zero, and solve
for the damping that would be required to create that

path. We find k ∶= fn0 −
√

2fnpd0
G

would be the damp-
ing required to keep this safe.

(g) We are moving towards the bounday (fn0 ≤ 0) but
accelerating away from the boundary (fnp ≥ 0), but
we will still intersect it (disc ≥ 0) during this time
step. We know this because even though the trajectory

1We use notation from differential dynamic logic to indicate
the setting the state variable k to a value in the following
calculations. So [k ∶= 0]d(ε) ≤ 0 is the assertion that with
the value of k set to zero, evaluating the equation d(ε) yields
a value less than zero.

is still downward, (fn(ε) ≤ 0), we have exceeded the
boundary by the end of the step ([k ∶= 0]d(ε) ≤ 0).

This trajectory is monotonic during our step and mov-
ing towards the boundary. The position [k ∶= 0]d(ε)
thus represents the furthest possible distance we can go
past the boundary during the step, without damping.

By applying damping and opposing the downward tra-
jectory, the minimum will move to an earlier time.
Without damping, the time at which our parabolic
trajectory reaches a minimum is beyond our time step,
tm ≥ ε, but by changing the damping k, we may find it
has moved so that tm < ε. If the tm occurs during our
ε step, we need to produce a force that ensures that
the minimum point is raised so that our path does not
intersect the boundary. We must solve d(tm) = 0 for

k, and in this case, we find that k ∶= fn0 −
√

2fnpd0
G

is
a safe damping coefficient, as in case f. If the k com-
puted above still leaves tm ≥ ε, then this correction
is more than is necessary. We can solve d(ε) = 0 for
k, and exactly as in case e we find that a damping of

k ∶= fn0 +
(d0+ 1

2
Gfnpε

2)
(Gε) keeps our trajectory safe.

Proving (Un)Safety.
We have been able to quickly produce a design that accu-

rately represents lag in the controller and the linear damping
described in [16, 5], and can be applied to multiple bound-
aries. The modeling effort and our formal approach has led
us to make some modifications to the control algorithm to
improve safety, namely we redesigned the algorithm so that
it damps its movements predictively, taking into account
time lag in the system.

We are able to use KeYmaera to prove the safety of this
design for a single boundary, but when we implement mul-
tiple boundaries in KeYmaeraD, this algorithm is in general
unsafe, and we can prove it with a counterexample. We will
present an informal proof by constructing a description of an
algorithm that depends upon sequential application of Eqn.
2 for each boundary, and pointing out that any algorithm
that makes these assumptions produces a counterexample
when one tries to prove its safety.

Consider a set of boundaries, C. For each boundary i ∈ C,
there is a a normal n̂i, and a distance of the tool to the
closest point on that boundary di. We write an assertion,



Qi, that encodes what it means to be safe for boundary i:

Qi(w̄, v̄) ≡ (−w̄ ⋅ n̂i ≤ −v̄ ⋅ n̂i
di
D

) ∨ (w̄ ⋅ n̂i ≥ 0) (10)

In this assertion, the quantity v̄ represents the velocity of
the tool tip before we exert any control, and w̄ represents
the velocity of the tool tip, after we have exerted control.
The satisfaction of Qi(w̄, v̄) describes the exerting of safe
control for boundary i, when the initial velocity without
control would have been v̄, by modifying the final velocity
to be w̄. In other words, Qi(w̄, v̄) is satisfied when both
w̄ and v̄, have components normal to the boundary i that
are towards the boundary, and w̄’s normal component is
attenuated in proportion to its distance from the boundary,
or when w̄ has its component normal to the boundary going
away from the boundary.

We assume Cs is a proper subset of C, and w̄ is a velocity
such that ∀i ∈ Cs,Qi(w̄, v̄). This means that all forces have
been attenuated properly for the boundaries indexed in Cs.

We wish to construct an algorithm which when given v̄,
and w̄, computes a new velocity x̄ for each index j ∈ C ∖Cs
such that,

∀i ∈ Cs,Qi(x̄, v̄) ∧Qj(x̄, v̄). (11)

By induction, such an algorithm could then be applied to
each successive boundary to compute the resulting, force-
feedback velocity that is safe for all virtual fixture bound-
aries.

An example of an algorithm that makes these assumptions
follows:

x̄ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w̄ + [(
dj
D
v̄ − w̄) ⋅ n̂j] n̂j if w̄ ⋅ n̂j ≤ 0 ∧ v̄ ⋅ n̂j ≤ 0∧

(−w̄ ⋅ n̂j ≥ −v̄ ⋅ n̂j
dj
D

)

w̄ if w̄ ⋅ n̂j ≤ 0 ∧ v̄ ⋅ n̂j ≤ 0∧

(−w̄ ⋅ n̂j ≤ −v̄ ⋅ n̂j
dj
D

)

w̄ if w̄ ⋅ n̂j ≥ 0
w̄ − (w̄ ⋅ n̂j)n̂j if w̄ ⋅ n̂j ≤ 0 ∧ v̄ ⋅ n̂j ≥ 0

(12)
The first case simply subtracts out the component of tool
velocity normal to the boundary that would be necessary
to attenuate it proportional to how close the tool is to the
boundary. The second and third cases do nothing, as the
normal is already attenuated due to transformations from
other boundaries. The fourth case represents conditions
where other boundaries are producing attenuating velocity
in opposition to what is necessary to attenuate the normal
component of velocity with respect to the current boundary.

When attempting a safety proof for this algorithm, we
have to prove Eqn. 11 by showing the safety of different
cases in Eqn. 12. We ended up disproving one of the cases
by finding a counterexample during an attempt to complete
the safety proof using KeYmaera. In particular, we found a
counterexample in the fourth case where:

{Qi(w̄, v̄), w̄ ⋅ n̂j ≤ 0, v̄ ⋅ n̂j ≥ 0, n̂i ⋅ n̂j ≤ 0} ⊬
Qi(x̄, v̄) ∧Qj(x̄, v̄),

(13)

violating our specification. The term n̂i ⋅ n̂j ≤ 0 describes the
subset of the fourth case where the counterexample occurs.
The counterexample occurs when boundaries intersect each
other at acute angles, and the dot product of their normals
is a negative quantity, i.e., they partially face each other.

The existence of this counterexample means that there
are geometric configurations of multiple boundaries where

the correction introduced by the system for one boundary
can push the tool past another virtual fixture boundary into
an unsafe location. This means that the tool can “slip” past
a virtual fixture boundary, through the edge formed by the
intersection of two different virtual fixtures. This also means
that for large velocity movements, the process of enforcing
one virtual fixture boundary can violate another, sufficiently
closely spaced boundary.

For multiple, arbitrarily configured boundaries, an algo-
rithm based on these assumptions is not in general safe.

6.2.3 Third Iteration: Non-linear Damping
We wish to make our system safe, yet produce a direc-

tional damping so that motions away from the boundary are
not attenuated. Because of the problems described above,
we revert back to damping the system with a multiplicative
factor as in Eqn. 1. Multiplicative damping ensures that
damping from one boundary will not be reversed by further
damping from another. Still using the notation from Eqns.
7–8, we will revisit the design using the formal approach we
have adopted, which will help us ensure safety as we design
the directional damping we seek. As before, we start with

p̄′ =K(p̄)G(f̄)f̄ (14)

but we choose a form for K appropriate to non-linear damp-
ing, K = (Kx 0

0 Ky
).

The rest of this section follows the structure of Section
6.2.2, computing the characteristics of the path the tool
takes during the time step, enumerating input cases, and
computing safe damping coefficient, and finally proving that
the design does in fact ensure the safety we expect.

Calculating the Tool’s Path.
We can now compute the position of the tool-tip during

each step and its distance from a boundary, as before, first
solving Eqn. 14, and then computing the distance during the
time step as before.

p̄(t) = p̄0 +G(Kxfx0x̂ +Kyfy0ŷ)t+
1
2
G(Kxfxpx̂ +Kyfypŷ)t

2

d(t) = (p̄(t) − r̄) ⋅ n̂
= d0 +G(Kxfx0nx +Kyfy0ny)t+

1
2
G(Kxfxpnx +Kyfypny)t

2

(15)

In this case, the discriminant will tell us whether our
parabolic trajectory intersects the boundary we are inter-
ested in. The discriminant is given by disc = G2(Kxfx0nx +
Kyfy0ny)

2 − 2G(Kxfxpnx +Kyfypny)d0. The turn-around

point for this trajectory is at tm =
−(Kxfx0nx+Kyfy0ny)
(Kxfxpnx+Kyfypny) as

long as (Kxfxpnx +Kyfypny) ≠ 0.

Calculating Safe k for Different Input Conditions.
We go through the exercise of computing the control for

each input scenario in Fig. 5, as in Sec. 6.2.2. We assume
k =Kx =Ky. The only differences are in cases e, f, and g.

(e) Solving for d(ε) = 0, we find k ∶= − d0
G

(fnε +
1
2
fnpε

2)
−1

.

(f) For our system, the minimum point is thus at tm =
−(Kxfx0nx+Kyfy0ny)
(Kxfxpnx+Kyfypny) . With Kx = Ky, tm = −fn0

fnp
. We

can require that the the discriminant of the resulting
quadratic equation be zero, and solve it, finding that

k ∶=
2fnpd0
Gf2

n0
provides appropriate damping to guarantee

a safe trajectory.



(g) In general, the trajectory reaches its minimum point

at tm = −fn0
fnp

. It is sufficient to ensure d(ε) = 0 exactly

as in case e. We find k ∶= − d0
G

(fnε +
1
2
fnpε

2)
−1

safely
damps the system, as before.

We also add force feedback into this design, as described
in [16], defining a slow zone that is between the virtual fix-
ture boundary, and up to a distance D away. We attenuate
the tool’s movement by a factor proportional to how far
into the slow zone the tool has progressed, measured by its
distance from the boundary divided by the total thickness

of the slow zone, i.e. d(t)
D

. The tool will slow down more
and more as it approaches the boundary. We apply force
feedback only when the tool’s path primarily moves towards
the virtual fixture, and when its starting point is within the
slow zone. If after applying attenuation that provides force
feedback, we would cross a virtual fixture boundary, we can
add further attenuation to those cases, as described above,
to ensure that the system remains safe.

Careful modeling of our robot and the application of for-
mal methods have led us to a design of a single-boundary
control algorithm that satisfies our original requirements,
accurately represents lag, predictively enforces safety, and is
composable so that it can be applied to multiple boundaries
in sequence, and still ensure a safe system.

We can now complete the model of our redesigned con-
trol algorithm by taking the single-boundary control pro-
gram and embedding it in two loops, one nested inside the
other. The outer loop models the controller’s interaction
with the physical world, describing force input from the sur-
geon, and the evolution of continuous time after the control
algorithm has provided force feedback and enforced safety.
The nested inner loop models the control algorithm being
applied successively to each boundary; each iteration of the
inner loop computes and applies force feedback for, and en-
forces the safety of, a single arbitrarily oriented boundary.
The nested inner loop iterates over all of the boundaries.
The final model is given in Table 2.

Safety Proof.
After our careful modeling effort, we were able to mecha-

nize the safety proof in KeYmaeraD.2

Theorem 2. The SBS controller in Table 2 is safe for
an arbitrary number of arbitrarily oriented and positioned
boundaries in three dimensions, i.e., the following QdL for-
mula is valid:

(G > 0) ∧ (e > 0) ∧ (D > 0) ∧ (k ≥ 0) ∧ (next(end) = end)∧
(∀i ∶ B, ∣n̂(i)∣2 = 1) ∧ (∀(h g ∶ B), (next(h) ≠ end)→
(h ≠ g)→ (next(h) ≠ next(g)))∧
[i ∶= first; (i ∶= next(i))∗] ((i ≠ end)→ safei)→

[ctrl2] [i ∶= first; (i ∶= next(i))∗] ((i ≠ end)→ safei)

The proof is structured the same way as the model: with
two inductive steps, one nested inside the other. Both induc-
tive reasoning steps have the three branches: one represent-
ing their base cases, one for the inductive step, and the last
for the postcondition. The middle “inductive step” of the
first application of induction leads to the second application
of loop induction. (This is the location of the nesting.) The

2The final models and proofs are available online at http:
//symbolaris.com/pub/medrobot-examples.zip

second “inductive step” of the second application of induc-
tive reasoning breaks out into one hundred and forty differ-
ent branches, each representing slightly different conditions
of force feedback and safety enforcement.

To see where the branches come from, we can examine the
final model in Table 2. For each time step, the system: com-
putes a damping coefficient to provide force feedback (ten
cases); independently computes a damping coefficient to en-
sure safe operation enforcement of virtual fixture boundaries
(seven cases discussed in Fig. 5); and then compares the
damping coefficients and makes a decision whether to ap-
ply safety damping depending on their relative magnitudes.
Each of these actions is shown in the model, and the product
of these cases, 10 × 7 × 2 = 140, gives us the total number of
major subcases in the proof.

The main idea of the quantified proof is to show that for
each branch in the inner inductive step, the application of
damping for a given boundary, either by leaving the origi-
nal damping in place, or in applying additional damping to
provide force feedback or ensure safety, successfully ensures
safety of that boundary. The proof must also show that
when additional multiplicative damping factors are added,
that additional damping does not impair the safety of the
other boundaries that have been controlled-for so far.

The final, completed safety proof has 156,024 proof steps.
The proof steps are described by a manually created proof
script, that allows the user to describe the structure of the
proof. The script is like a program that describes how
to conduct the proof, detailing individual steps in parts
of the proof, and automating the proving process in other
parts, re-using proof strategies as appropriate. On a laptop,
the 2D version of the model takes around two minutes to
machine-check the proof, confirming its truth, while the full
3D version takes 70 minutes to complete, mostly waiting to
automatically solve the arithmetic for certain unoptimized
branches of the proof tree.

7. FUTURE WORK
One avenue of future work might be to explore how to ad-

dress more complicated boundaries. The current approach
could be extended by designing a control algorithm that dy-
namically adds and removes boundaries depending on where
you are in the allowed operating volume. Boundaries can be
safely removed at any time, and boundaries can be safely
added at the beginning of a time step, providing that the
tool tip is in a safe location with respect to the new bound-
ary when it is added. One can conceive of extensions to the
current algorithm that would simulate surfaces with convex
topologies and cusps, by selectively adding and removing
planar boundaries at appropriate times to stay inside one
convex connected component at a time. This would be an
interesting verification challenge.
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f ′x = fxp, f
′
y = fyp, f

′
z = fzp, t

′ = 1&t ≤ e))
∗

Table 2: A complete time-triggered model of a redesigned
control algorithm that enforces the safety of an arbitrary
number of arbitrarily oriented and positioned virtual fixture
boundaries, in three dimensions. This model is realistic,
provides directional force feedback, and is proven to be safe.

[3] G. Frehse, C. L. Guernic, A. Donzé, S. Cotton,
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