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Abstract. Hybrid systems are models for complex physical systems and
have become a widely used concept for understanding their behavior.
Many applications are safety-critical, including car, railway, and air traf-
fic control, robotics, physical-chemical process control, and biomedical
devices. Hybrid systems analysis studies how we can build computerised
controllers for physical systems which are guaranteed to meet their de-
sign goals. The continuous dynamics of hybrid systems can be modeled
by differential equations, the discrete dynamics by a combination of dis-
crete state-transitions and conditional execution. The discrete and con-
tinuous dynamics interact to form hybrid systems, which makes them
quite challenging for verification.

In this tutorial, we survey state-of-the-art verification techniques for hy-
brid systems. In particular, we focus on a coherent logical approach for
systematic hybrid systems analysis. We survey theory, practice, and ap-
plications, and show how hybrid systems can be verified in the hybrid
systems verification tool KeYmaera. KeYmaera has been used success-
fully to verify safety, reactivity, controllability, and liveness properties,
including collision freedom in air traffic, car, and railway control systems.
It has also been used to verify properties of electrical circuits.

1 Introduction

Hybrid systems are a common model for systems where both discrete and con-
tinuous behavior are important [2,8, 10, 20]. Hybrid systems arise, for instance,
when a computer controls a physical process. Then the computer will cause dis-
crete transitions and digital switching at various discrete points in time, while
the physical process keeps evolving continuously.

As a common mathematical model for such complex physical systems, hybrid
systems are dynamical systems [28] where the system state evolves over time
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according to interacting laws of discrete and continuous dynamics [1,9, 10, 16,
20, 43].

One canonical example is a train driving on a railway track. The train moves
continuously on the track while its behavior is controlled by several computer
control systems supporting the train conductor even up to full automation. One
of the most crucial safety-critical correctness properties of a train is that we
want to ensure that the train controller prevents all train collisions. A study of
the correctness of the train cannot be split into an isolated study of the software
and an isolated study of the mechanical parts. They work together and need
to be verified together. We cannot determine whether a software controller for
a part of a train is correct unless we understand enough of the physics of the
train that it controls. We cannot fully understand how a train moves physically
without understanding how its digital controllers, control programs, sensors, and
actuators affect its behavior. We need to look at both, i.e., the hybrid system
dynamics, to find out.

Hybrid systems are equally important in the automotive, aviation, railway,
and robotics industry for instance. They occur in factory automation problems
and biological, chemical, and physical process control. Most of these applications
are safety-critical, because badly controlled processes can have a huge impact on
the system environment, especially when the processes operate close to humans.
Hybrid systems verification is a very challenging but important problem for
which a range of techniques have been developed [10,12-14, 16, 17,20-22, 24—
26,41, 42].

In this tutorial, we survey a number of state-of-the-art verification techniques
for hybrid systems, especially a logical approach for hybrid systems analysis [30—
32]. This approach forms the basis for the differential invariants as fixed points
procedure [37] that computes the invariants and differential invariants required
for verification in a fixed point loop. This logic-based verification approach has
been implemented in the verification tool KeYmaera! for hybrid systems [39].
KeYmaera has been used successfully to verify several safety-critical properties,
including collision freedom, of the cooperation protocol of the European Train
Control System [40] and of aircraft roundabout maneuvers [31] and the flyable
aircraft roundabout maneuver [38]. More details about the hybrid systems ver-
ification techniques surveyed in this tutorial can be found in the book Logical
Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics?® [32).

The approach presented in this tutorial and the verification tool KeYmaera is
also very instructive for teaching hybrid systems verification and the use of logic
and formal methods for complex physical systems. The sophisticated graphical
user interface of KeYmaera makes it easier to work with the system and learn
how hybrid systems verification works. It also makes it easier to understand
proofs that KeYmaera found automatically. KeYmaera’s interaction capabilities,
which are based on those of KeY [4], also help solving very complex verification
questions and system design questions interactively that are still beyond the ca-

! http://symbolaris.com/info/KeYmaera.html
% http://symbolaris.com/lahs/
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pabilities of today’s automation techniques. The author has taught two graduate
courses on hybrid systems verification using the approach presented here. Course
material is available at the web page? of the book [32].

Even though we do not focus on these extensions in this tutorial, the ap-
proach taken in this tutorial can be extended to logic and verification techniques
for distributed hybrid systems [33,34], i.e., systems that are both distributed
systems and hybrid systems. These distributed hybrid systems include multi-
agent hybrid systems, reconfigurable hybrid systems, and hybrid systems with
an evolving and unbounded number of agents. The approach also extends to
logic and verification techniques for stochastic hybrid systems [35].

2 Hybrid Systems

There is a range of models for hybrid systems [2,5-7,10, 15,20, 27, 30, 31, 43].
We focus on hybrid programs [30, 32], and the related model of hybrid automata
(2, 20].

Hybrid system models allow the user to specify the continuous dynamics
by differential equations. Continuous dynamics results, e.g., from the continuous
movement of a train along the track (train position z evolves with velocity v along
the differential equation z’ = v where 2’ is the time-derivative of z) or from the
continuous variation of its velocity over time (v' = a with acceleration a). Other
behavior can be modelled more naturally by discrete dynamics, for example, the
instantaneous change of control variables like the acceleration (e.g., the changing
of a by setting a := —b with braking force b > 0) or change of status information
in discrete controllers. Both kinds of dynamics interact, e.g., when measurements
of the continuous state affect decisions of discrete controllers (the train switches
to braking mode when velocity v is too high). Likewise, they interact when the
resulting control choices take effect by changing the control variables of the con-
tinuous dynamics (e.g., changing the acceleration control variable a in 2" = a).
The combination of continuous dynamics with analog or discrete control causes
complex system behavior, which can neither be verified by purely continuous
reasoning (because of the discontinuities caused by discrete transitions) nor by
considering discrete change in isolation (because safety depends on continuous
states).

2.1 Undecidability of Numerical Image Computation

Verification of hybrid systems is a very challenging problem. The verification
problem is the problem to decide whether a given hybrid system satisfies a
given correctness property (e.g., safety, liveness, and so on). Unfortunately, this
problem is undecidable even for very simple hybrid systems [11, 20].

Even for absurdly limited models of hybrid systems, the verification problem
is neither semidecidable nor co-semidecidable numerically, even for a bounded
number of transitions and when tolerating arbitrarily large error bounds in the
decision [36]. The numerical image computation problem plays a role that is
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almost as central as that of the halting problem for Turing machines. We refer
to the literature [36] for a formal statement and proof. The basic intuition behind
the undecidability result for the numerical image computation problem is shown
in Fig. 1. Suppose an algorithm could decide safety of a system numerically by
evaluating the value of the system flow ¢ at points.
If the algorithm is a decision algorithm, it would
have to terminate in finite time, hence, after eval-

B .
uating a finite number of points, say 1,2, x3 in N
Fig. 1. But from the information that the algorithm o ¢
has gathered at a finite number of points, it cannot /e 7.{|
distinguish the good behavior ¢ (solid flow safely /: X3

outside B) from the bad behavior g (dashed flow ! ig
reaching bad region B). The same undecidability
result still holds even when restricting the flow ¢ to  Fig. 1. Indistinguishable
very special classes of functions and when assuming that its derivatives could
be evaluated and even when tolerating arbitrarily large error bounds in the de-
cision [36]. There is a series of extra assumptions and bounds that make the
problem (approximately) decidable again by imposing extra constraints on the
system; see [36]. Yet, by the general undecidability result, these extra bounds
(and several other bounds that have been proposed in related work) cannot be
computed numerically. Because of this strong numerical undecidability result,
it is surprisingly difficult but not impossible to get hybrid systems verification
techniques sound [17,41].

Consequently, sound verification of hybrid systems needs some symbolic part.
In the remainder of this tutorial, we focus on a purely symbolic and logical
approach that is formally sound, i.e., the verification result is always correct.

2.2 Hybrid Programs

Hybrid programs are program models for hybrid systems and are formed using
the statements and operations in Table 1.

Discrete jump sets. Discrete transitions are represented as instantaneous as-
signments of values to state variables. They can express resets like a := —b or
adjustments of control variables like a := A. To handle simultaneous changes

Table 1. Statements and effects of hybrid programs (HPs)

HP Notation Operation Effect
x1:=601,...,xn:=6, discrete jump simultaneously assign 6; to variables z;
i =01,25 =04, .. continuous evo. differential equations for x; within

e T =0, &H evolution domain H (first-order formula)
TH state test test first-order formula H at current state
a; B seq. composition  HP f starts after HP « finishes
alUp nondet. choice choice between alternatives HP a or HP 8

a” nondet. repetition repeats HP « n-times for any n € N
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of multiple variables, discrete jumps can be combined to sets of jumps with
simultaneous effect. For instance, the discrete jump set a:=a + 5, A := 2a>
expresses that a is increased by 5 and, simultaneously, variable A is set
to 2a?, which is evaluated before a receives its new value a + 5.

Differential equation systems. Continuous evolution in the system dynam-

ics is represented using differential equation systems as evolution constraints.
For example the (second-order) differential equation z”/ = —b describes de-
celeration with braking force b and 2’ = v,v’ = —b& v > 0 expresses that the
evolution only applies as long as the speed is v > 0. This is an evolution along
the differential equation system 2z’ = v, v’ = —b that is restricted (written &)
to remain within the evolution domain region v > 0, i.e., to stop braking be-
fore v < 0. Such an evolution can stop at any time within v > 0, it could
even continue with transient grazing along the border v = 0, but it is never
allowed to enter v < 0. The second-order differential equation z” = —b itself
is equivalent to the first-order differential equation system 2z’ = v,v' = —b ,
in which the velocity v is explicit.

Control structure. Discrete and continuous transitions—represented as jump

sets or differential equations, respectively—can be combined to form a hybrid
program with interacting hybrid dynamics using regular expression opera-
tors (U, *,;) of regular programs [19] as control structure. For example, the
hybrid program q:= accelU 2" = —b describes a train controller that can
choose to either switch to acceleration mode (q:= accel) or brake by the
differential equation z” = —b, by a nondeterministic choice (U). The non-
deterministic choice q:= accelU 2" = —b expresses that either ¢:= accel or
2" = —b happens, nondeterministically. The system can choose one of the
two options. The sequential composition a:= —b; 2" = a, instead, expresses
that first, the acceleration a is updated by a := —b, and then the system fol-
lows the differential equation z” = a with the updated acceleration (hence
brakes). In conjunction with other regular combinations, control constraints
can be expressed using tests like 7z > SB as guards for the system state.
This test will succeed if, indeed, the current state of the system satisfies
z > SB; otherwise the test will fail and execution cannot proceed. In that
respect, a test is like an assert statement in conventional programs and cuts
the system run if the test is not successful.

Other control structures can easily be defined from the basic operations in

Table1l. See Table2 for a list of common additional statements that can be
defined [32] from those in Table 1. For instance,

if H then « else = (?H;a) U (7=H; j5)

Ezample 1 (Natural hybrid program for simple train). As a much simplified ex-
ample of a train controller, consider the following hybrid program:

(72 < 8B; a:=A) U (a:=-b)); 2 =v,v' =akv 20)* (1)
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Table 2. Additional statements and control structures definable as abbreviations

HP Notation Operation Effect

T =% nondet. assign. assigns any real value to x

if H then « else 8 if-then-else executes HP « if H holds, otherwise HP

if H then a if-then executes HP « if H holds, otherwise no effect

while H do « while loop repeats « if H holds, stops if =H holds at end
repeat « until H  repeat until repeats a (at least once) until H holds at end
skip do nothing no effect and does not change the state space

abort aborts run blocks current run and allows no transition

First, the discrete controller executes and then, after the sequential composi-
tion (;), the train follows the differential equation system z’ = v,v’ = a that is
restricted to (written &) the evolution domain v > 0. The discrete controller
consists of a nondeterministic choice (U) between two options. The left option
performs a test (?z < SB) to check whether the current position is left of the
start braking point SB and then, after the left-most sequential composition (;),
assigns the positive acceleration A to a by a:= A. The right option does not
perform a test, but just assigns the braking force —b to the acceleration a by
a:=—b. In particular, the first control option (acceleration) is only available
when the train has not yet passed the start braking point SB, while the sec-
ond control option (braking) is always available. The train would choose between
both options nondeterministically when both are possible. Otherwise, it can only
choose the options that successfully pass their respective tests (the right option
in (1) is always available because it has not tests). Finally, the repetition opera-
tor (*) at the end of hybrid program (1) expresses that the controller-plant-loop
can repeat indefinitely. This pattern (ctrl; plant)™ is a very common use case for
hybrid programs, but by far not the only useful form of a system model.

The effect of the discrete jump set x1 :=64,...,x, =80, is to simultaneously
change the interpretations of the z; to the respective 6; by a discrete jump in
the state space. The new values 0, are evaluated before changing the value of
any variable x;. The effect of 2} = 61,..., 2], = 6,, & H is an ongoing continuous
evolution respecting the differential equation system z} = 61,...,2], = 6,, that
is restricted to remain within the evolution domain region H. The evolution
is allowed to stop at any point in H. It is, however, required to stop before it
leaves H. For unconstrained evolutions, we write 2’ = 6 in place of 2’ = 0 & true.

The test action or state check ?H is used to define conditions. Its semantics is
that of a no-op if the formula H is true in the current state; otherwise, like abort,
it allows no transitions. That is, if the test succeeds because formula H holds
in the current state, then the state does not change, and the system execution
continues normally. If the test fails because formula H does not hold in the
current state, then the system execution cannot even continue. Thus, the effect
of a test action is similar to an assert statement in Java.

The nondeterministic choice aU 3, sequential composition «; 3, and non-
deterministic repetition a* of programs are as in regular expressions but gen-
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eralised to a semantics in hybrid systems. Choices o U 8 are used to express
behavioral alternatives between the transitions of o and . That is, the hybrid
program « U 3 can choose nondeterministically to follow the transitions of the
hybrid program «, or, instead, to follow the transitions of the hybrid program .
The sequential composition «; 8 says that the hybrid program  starts executing
after a has finished (8 never starts if o does not terminate). In «; 3, the transi-
tions of « take effect first, until a terminates (if it does), and then 8 continues.
Repetition o is used to express that the hybrid process a repeats any num-
ber of times, including zero times. When following o*, the transitions of hybrid
program « can be repeated over and over again, any nondeterministic number
of times (>0). Hybrid programs form a regular-expression-style Kleene algebra
with tests [23].
The formal transition semantics of hybrid programs is defined in [30, 32].

2.3 Hybrid Automata

Hybrid automata are an automaton representation of hybrid systems [2, 20]. The
basic idea is to have one differential equation per mode of continuous evolution
of the system with an automaton structure on top that defines how and under
which condition the system switches between the various modes.

A hybrid automaton is a finite directed graph with a set of nodes V and a
set of edges F, where

— Z1,...,Z, are the continuous state variables and n is the (fixed) dimension
of the continuous state space.

— Each node v € V is labeled with a differential equation z} = 61, .., 2z, = 6,
and an evolution domain constraint H, which is a quantifier-free formula of
real arithmetic. The differential equation specifies how the variables x4, ..., z,
evolve while the system is in node v and the evolution domain constraint H
has to be true all the time while in mode v.

— Each edge e € E is labeled with a guard H, which is a quantifier-free formula
of real arithmetic, and a discrete jump set x1 :=¥64,...,z, :=0,. The guard
H determines when edge e can be taken. The discrete jump set (called reset)
x1:=01,...,x,:=0, determines how the variables are reassigned when the
system follows edge e.

Each of the transitions of a hybrid automaton is either a discrete or a continu-
ous transition. A continuous transition within one node is a continuous evolution
along the differential equation of that node without leaving the evolution domain
constraint. A discrete transition along an edge is possible if the guard H is satis-
fied in the current state and then the state will be reset according to the discrete
jump set x1 :=01,...,x, =0, when following the edge. The hybrid automaton
itself repeats discrete and continuous transitions indefinitely. See, e.g., [20, 32],
for a formal definition of the transitions of a hybrid automaton.

We examine the relationship between hybrid programs and hybrid automata
in the following example where we consider hybrid automaton and hybrid pro-
gram side by side.
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Ezample 2 (Hybrid automata versus hybrid programs). With the operations in
Table 1, hybrid systems can be represented naturally as hybrid programs. For
example, the right of Fig.2 depicts a hybrid program of an (overly) simplified
train control. The hybrid automaton on the left of Fig. 2 shows a corresponding
hybrid automaton. Line 1 represents that, in the beginning, the current node ¢

z>SB q := accel; /* initial mode is node accel */
> elicce/ ﬂ lzrake ( (?q=accel; 2 =v,v" =a)
Z, r o Z, 7 U (?q = accel Nz > SB; a:=—b; q:= brake; 7v > 0)
Y <sp. .24 U (?q = brake; 2’ =v,v' =a&v>0)
/EA/ vz0 U(?q=brake Nz < SB; a:=A; q:= accel))*

Fig. 2. Hybrid automaton and hybrid program for a much simplified train control

of the system is the initial node accel. We represent each discrete and continuous
transition of the automaton as a sequence of statements with a nondeterministic
choice (U) between these transitions. Line 4 represents a continuous transition
of the automaton. It tests if the current node g is brake, and then (i.e., if the test
was successful) follows the differential equation system 2z’ = v, v’ = a restricted
to the evolution domain v > 0. Line 3 characterises a discrete transition of the
automaton. It tests the guard z > SB when in node accel, and, if successful,
resets a:=—b and then switches ¢ to node brake. By the semantics of hybrid
automata [1, 20], an automaton in node accel is only allowed to make a transition
to node brake if the evolution domain restriction of brake is true when entering
the node, which is expressed by the additional test 7v > 0 at the end of line 3.
Observe that this test of the evolution domain region generally needs to be
checked as the last operation after the guard and reset, because a reset like
v:=v — 1 could affect the outcome of the evolution domain region test. In order
to obtain a fully compositional model, hybrid programs make all these implicit
side conditions explicit. Line 2 represents the continuous transition when staying
in node accel and following the differential equation system 2’ = v, v’ = a. Line 5
represents the discrete transition from node brake of the automaton to node
accel.

Lines 2-5 cannot be executed unless their tests succeed. In particular, at
any state, the nondeterministic choice (U) among lines 2-5 reduces de facto to
a nondeterministic choice between either lines 2-3 or between lines 4-5. At any
state, ¢ can have value either accel or brake (assuming these are different con-
stants), not both. Consequently, when ¢ = brake, a nondeterministic choice of
lines 2-3 would immediately fail the tests in the beginning and not execute any
further. The only remaining choices that have a chance to succeed are lines 4-5
then. In fact, only the single successful choice of line 4 would remain if the sec-
ond conjunct z < SB of the test in line 5 does not hold for the current state.
Note that, still, all four choices in lines 2-5 are available, but at least two of
these nondeterministic choices will always be unsuccessful. Finally, the repeti-
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tion operator (*) at the end of Fig.2 expresses that the transitions of a hybrid
automaton, as represented by lines 2-5, can repeat indefinitely, possibly taking
different nondeterministic choices between lines 2-5 at every repetition.

The hybrid program on the right of Fig. 2 directly corresponds to the hybrid
automaton on the left of Fig. 2. This translation is simple and systematic. The
same translation principle works for all hybrid automata and can represent them
faithfully as hybrid programs [32], just like finite automata can be implemented
in a conventional while-programming language. This direct translation, however,
blows up the representation. A much more natural hybrid program can usually
be found when directly representing the hybrid system as a hybrid program
right away. More natural representations also have computational advantages
for verification. This is the preferred way for designing systems.

Ezample 3 (Natural hybrid program corresponding to Fig. 2). The natural hybrid
program corresponding to the system in Fig. 2 is the following hybrid program:

((if(z > SB)a:=—belsea:=A); 2/ =v,v' =a&kv >0)" (2)

This hybrid program is almost identical to that in (1), except that it has an
extra test specifying that the braking option can only be chosen if the position z
is after the start braking point SB. Contrast the natural hybrid program in (2)
with the hybrid program on the right of Fig.2 that has been constructed from
a hybrid automaton. The natural hybrid program has the same behavior as the
hybrid automaton and its corresponding hybrid program, but the natural hybrid
program in (2) is significantly easier to understand and also simplifies verifica-
tion. Finally, the natural hybrid program in (2) is the same as the following
hybrid program when resolving abbreviations according to Table 2.

(((?z2>8B; a:=-b) U (72 < SB; a:=A)); z’:v,v’:a&:vZO)*

This representational flexibility gives hybrid programs an edge over hybrid
automata. The same system can be represented in many ways and a represen-
tation that is most natural to a problem often makes the verification easier. It
should be noted that there is more than one hybrid automaton describing the
same hybrid system, too. Nevertheless, the representation of hybrid systems as
hybrid programs is more flexible, because discrete, continuous, and switching
dynamics are not restricted to a specific pattern, but can be combined freely
using regular expression style operators.

3 Logic for Hybrid Systems

Hybrid programs are a flexible behavioral model for hybrid systems. As a spec-
ification and verification language for hybrid systems, we have introduced the
differential dynamic logic dC [29, 30, 32]. In d, operational models of hybrid sys-
tems are internalized as first-class citizens, so that correctness statements about
the transition behavior of hybrid systems can be expressed as formulas. That
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is, correctness statements about systems can be combined into bigger formu-
las with arbitrary propositional operators or quantifiers, and even into nestings
of formulas. As a basis, dC includes (nonlinear) real arithmetic for describing
concepts like safe regions of the state space. Further, dC supports real-valued
quantifiers for quantifying over the possible values of system parameters or du-
rations of continuous evolutions. For talking about the transition behavior of
hybrid systems, dC provides modal operators such as [a] or («) that refer to the
states reachable by following the transitions of hybrid program «. The logical
operators of dC are summarized in Table 3.

Within a single specification and verification language, dC combines oper-
ational system models with means to talk about the states that are reachable
by system transitions. The logic d£ provides parametrized modal operators [«
and (a) that refer to the states reachable by hybrid program « and can be placed
in front of any formula. The formula [a]¢ expresses that all states reachable by
hybrid program « satisfy formula ¢. Likewise, ()¢ expresses that there is at
least one state reachable by « for which ¢ holds. These modalities can be used
to express necessary or possible properties of the transition behavior of « in
a natural way. They can be nested or combined propositionally. The d logic
supports quantifiers like Ip [a](B)¢ which says that there is a choice of parame-
ter p (expressed by Jp) such that for all possible behaviors of hybrid program «
(expressed by [a]) there is a reaction of hybrid program g (i.e., (8)) that en-
sures ¢. Likewise, Ip ([a]¢ A [B]1) says that there is a choice of parameter p that
makes both [a]¢ and [B]y) true, simultaneously, i.e., that makes the conjunction
[a]¢ A [B]Y true, saying that formula ¢ holds for all states reachable by a exe-
cutions and, independently, ¢ holds after all 5 executions. This gives a flexible
logic for specifying and verifying even sophisticated properties of hybrid systems,
including the ability to refer to multiple hybrid systems at once.

The semantics of differential dynamic logic and more details about it can be
found in [30, 32].

Ezample 4 (Safety in train control). Let train denote the hybrid program for the
simple train control dynamics in (2). Consider the following d£ formula

v>0Az<m — [train]z <m (3)

It expresses that, when the system starts in an initial state where v > 0A 2z < m
is true, i.e., with nonnegative velocity and with a train position z within the
movement authority limits m, then, when following the dynamics of the hybrid
program train, then the system will always be a in a state where z < m is true.

It turns out that formula (3) is a bit naive and needs additional assumptions
on the parameters to be valid. For instance, the train will not remain safe, even
if it starts safely within z < m if its initial velocity is so high that it cannot
brake in time before leaving z < m. Similarly, the start braking point parameter
SB in (2) needs to be chosen carefully to ensure that (3) is valid. But under
corresponding additional constraints, the following d£ formula can be proven to
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Table 3. Operators of differential dynamic logic for hybrid systems (dC)

Notation Operator Meaning

01 = 02 equality value of 01 is equal to that of 62

01 > 02 comparison value of 0; is greater or equal that of 0
01 > 63 comparison value of 0, is greater than that of 0

01 <02 comparison value of 01 is less or equal that of 65

01 < 02 comparison value of 0 is less than that of 02

- negation/not true if ¢ is false

¢ NP conjunction/and true if both ¢ and ¢ are true
¢V  disjunction/or true if ¢ is true or if v is true

¢ — 1  implication true if ¢ is false or ¢ is true

¢ <> equivalence true if ¢ and 1 are both true or both false
V¢ for all quantifier true if ¢ is true for all values of variable x
dx ¢ exists quantifier  true if ¢ is true for some values of variable x
[a]o [[] modality true if ¢ true after all runs of HP «

() () modality true if ¢ true after at least one run of HP «

be valid, i.e., true under all interpretations for all the variables and parameters:

02 <2(m—2)Ab>0ANA>0 —

2 A A
[(SB:=m — % - (3 + 1)(562 +ev); if(z > SB)a:=—belsea:=A4;

ti=0; 2 =v,0 =a,t' =1&v>0At <) ] (z<m) (4)

Variable t is a clock that evolves by ' = 1. The bound ¢ < ¢ gives an upper
bound on the time of the continuous evolution until the discrete controllers have
a chance to react to situation changes again. See [32,40] for details.

4 Compositional Deductive Verification

The verification problem for hybrid systems is a very challenging problem. It is
not even semidecidable numerically [36]. In the fully symbolic domain of differ-
ential dynamic logic, however, we can do better. There is a sound compositional
proof system that works fully symbolically [30, 32]. It can be used to prove inter-
esting properties of hybrid programs including safety, reactivity, controllability,
and liveness. The fact that this proof system is compositional is also important
for scalability purposes. Because it proves properties of complex hybrid systems
by reducing them to properties about simpler systems, this compositional veri-
fication approach can scale to complex systems.

Furthermore, the proof system is a complete axiomatization of hybrid systems
relative to differential equations [30]. That is, every true statement about a
hybrid system can be proven from elementary properties of differential equations.

Theorem 1 (Relative completeness [30]). Hybrid systems can be arioma-
tized completely relative to differential equations.
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The proof of this theorem is a tricky 15page proof, but the theorem has im-
portant consequences. It proves that all true properties of hybrid systems can
be decomposed successfully into properties of their parts. This theorem also ex-
plains the practical verification successes with this approach in air traffic [38]
and railway control [40] and shows that other systems can be verified with the
approach. The reason is that the decomposition of the entire verification prob-
lem into elementary properties of the dynamical aspects makes the verification
problem tractable.

Theorem 1 has another important consequence. It gives a formal reason why
the handling of differential equations is at the heart of hybrid systems verifica-
tion. Moreover, the proof calculus in [30,32] completely lifts every verification
technique for differential equations to a verification technique for hybrid systems.
In general, it may not always be clear how verification techniques for continu-
ous systems generalize to hybrid systems. But Theorem 1 gives a formal proof
showing that and how to generalize any verification technique for differential
equations to full hybrid systems completely.

A prime example of such advanced and powerful verification techniques are
differential invariants for differential equations [31]. Differential invariants have
been instrumental in enabling the verification of complex hybrid systems, includ-
ing air traffic control [38], train control with disturbances in the dynamics [40],
and electrical circuits [32]. Differential invariants turn the
following intuition into a formally sound proof procedure.

If the vector field of the differential equation always points —F E

into a direction where the differential invariant F', which is

a logical formula, is becoming “more true” (see Fig. 3), then

the system will always stay save if it initially starts save. This

principle can be understood in a simple but formally sound

way using the logic dC [31,32]. Differential invariants have pig. 3. Differen-
been introduced in [31] and later refined to a procedure that tia] invariant F
computes differential invariants in a fixed-point loop [37].

5 Verification Tool KeYmaera

The approach surveyed in this tutorial is implemented in KeYmaera?®, which is
a hybrid verification tool for hybrid systems. KeYmaera has a very powerful
graphical user interface for conducting proofs and for looking at the proofs that
KeYmaera found automatically; see Fig. 4. This user interface is based on that of
the prover KeY [4], from which KeYmaera also inherits its name?. KeYmaera has
powerful automatic proof procedures that have been used to prove a number of
interesting collision avoidance properties in systems including air traffic control
and railway control fully automatically [37]. These automation procedures and
fixedpoint loops for generating invariants and differential invariants are described
in detail in [32, 37].

3 http://symbolaris.com/info/KeYmaera.html
KeYmaera is pronounced similar to the hybrid Chimaera from Greek mythology.



40 André Platzer

Ao KeYmaera -- Prover
” P start | |4, Prune Proof | ¥ Reuse | ” O 7 7 Proof closed
v = ] Property proved!
[ Proof | Hybrid Strate Goals »! ' ""Tef Noce = ! SIEECE: I
Y gy vi<=2+b* (m- z), / Nodes: 54
Proof g z_ g: Branches: 4 |
2 @8 Invariant Initially Valid M , i
& 9:Closed goal (SB := (V'/(2*Db) + (A/b+1)*(A/2*ep +ep*V));
= B Use Case ‘?ra“ f:_;: BB 7
& 16:Eliminate Universal Quantifiers .+t (m-z =8B
= @8 Body Preserves Invariant a :=A) ;
B @ Case 1 te=0: L B N .
& 40:Eliminate Universal Quantifiers \]{2 - ;' vi=a, t' =1, v>=0,t<=ep})
B [ Case 2
& 54:Eliminate Universal Quantifiers Node Nr 5
e R S R e I Ji
Upcoming rule application: I
[ § ) a >

Kﬁ)’ Strategy: Applied 53 rules (1.4 sec), closed 4 goals, 0 remaining

Fig. 4. KeYmaera verification tool for hybrid systems

Nevertheless, the possibility of interacting with KeYmaera can be extremely
powerful for verifying complex systems that cannot be handled automatically
by any verification tool yet. A good practice for complex physical systems is to
combine automatic proof search in KeYmaera with selective user guidance af-
ter inspecting the intermediate stage of a partial proof that KeYmaera found
in its graphical user interface. KeYmaera also supports annotations such as
@invariant (F) and @candidate(F,G) to annotate problems with possible proof
hints about invariant and/or differential invariant formulas F,G that could help
KeYmaera in finding computationally difficult proofs.

The KeYmaera notation for the d formula (4) is shown in Fig. 5. The second
line declares the variables ep,b,A, SB, a, v, z, t, m of type real. The annota-
tion @invariant(2xb%(m—z)—v"2>0) gives a proof hint that KeYmaera should
use 2b(m — z) —v? > 0 as a loop invariant. This proof hint is unnecessary, be-
cause KeYmaera will automatically discover an invariant that proves the formula
in Fig. 5 anyhow.
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