Safe Al for CPS

(Invited Paper)

Nathan Fulton
Carnegie Mellon University
Computer Science Department
nathanfu@cs.cmu.edu

Abstract—Autonomous cyber-physical systems — such as self-
driving cars and autonomous drones — often leverage artificial
intelligence and machine learning algorithms to act well in
open environments. Although testing plays an important role
in ensuring safety and robustness, modern autonomous systems
have grown so complex that achieving safety via testing alone
is intractable. Formal verification reduces this testing burden by
ruling out large classes of errant behavior at design time. This
paper reviews recent work toward developing formal methods
for cyber-physical systems that use Al for planning and control
by combining the rigor of formal proofs with the flexibility of
reinforcement learning.

I. INTRODUCTION

The automotive and aeronautical industries have continu-
ally improved the efficiency, safety, comfort and automation of
vehicles. Achieving these improvements required substantially
increasing the size and complexity of vehicle software. The
growing use of software in these safety-critical settings in-
spired the development of testing, verification, and validation
technologies for control systems. Today’s self-driving cars,
for example, have become so complex that it is completely
infeasible to establish their (statistical) safety by testing [1].

Building highly-trustworthy autonomous control systems
is particularly difficult because of the interaction between
uncertain sensing, discrete computation, physical motion, and
real-time interaction with other agents. Verification can help
reduce this seemingly intractable burden by ruling out entire
classes of errant behavior.

In order to reach the highest mathematical standard for
a correct development, developers of safety-critical systems
should construct a model of the system under control and
then write a formal, computer-checked proof that their control
software satisfies key safety properties with respect to the
underlying model. For example, a developer might construct
a system of differential equations describing how a car drives
and then prove that a piece of control software prevents the
car from entering an unsafe state. Formal proofs of relevant
safety properties ensure that a system is verifiably safe.

The demand for formal safety guarantees about control
systems led to the development of model checkers and the-
orem provers for dynamical systems with both discrete and
continuous-time dynamics. Hybrid systems provide a fruitful
formalism for stating and proving safety properties about
traditional control systems that combine discrete computation
with continuous control [2], [3], [4], [5], [6], [7].

Paper Al 1.2
978-1-5386-8382-8/18/$31.00 (©2018 IEEE

André Platzer
Carnegie Mellon University
Computer Science Department
aplatzer@cs.cmu.edu

Autonomous systems, however, increasingly make use of
functionality beyond low-level control problems. Software
systems not only help control the engine and the brakes,
but also make high level decisions about where and how a
vehicle should move in the first place. Advanced driver-assist
systems are already deployed, and most major automobile
manufacturers are experimenting with fully autonomous vehi-
cles. Designers of planes and trains are also deploying partially
autonomous vehicles and experimenting with fully autonomous
systems. The future of mobility is autonomous.

Autonomous systems make use of artificial intelligence
(AI), including reinforcement learning for planning/control
and machine learning for perception [8], [9]. Designing safe
autonomous systems requires developing formal methods for
systems that use reinforcement learning and other optimization
techniques for control, but traditional verification approaches
do not explain how to obtain safety guarantees for these types
of algorithms.

The most fundamental mismatch comes from the following
discrepancy. Formal verification benefits from simplicity in
order to enable strong and comprehensive predictions about
all possible behaviors of a system. Artificial intelligence tech-
niques, instead, are lauded for their flexibility in even handling
unpredictable situations, which, however, makes it harder to
predict the exact behavior of an Al algorithm. Enabling safe
advanced autonomy requires the strong predictions that formal
methods provide alongside the strong flexibility that the use
of Al provides.

Low-Level Controls Local Path Planning Behavioral Decisions Global Route Planning

Action

Perception
Sensor Processing

Localization ‘ ‘ Mapping ‘

‘ Sensor Fusion

[Hardware }

Fig. 1. A high-level overview of an autonomous vehicle’s software stack.
This diagram is inspired by Paden et al. [8], the Apollo project documentation
[10], Pendelton et al [9], and others.

As a prototypical concrete example, Figure 1 illustrates a
common decomposition of autonomous systems. The controls
& planning layer is composed of a hierarchy of components,
each of which solves problems at different levels of abstraction.
At the highest level, a global route planner selects a route (e.g.,
through a road network) from the vehicle’s current location to

INTERNATIONAL TEST CONFERENCE 1

its destination.

Executing the global route plan requires recognizing and
switching between various contexts (e.g., navigating intersec-
tions or changing lanes). The behavioral decision-making layer
is responsible for recognizing and switching between these
contexts.

This paper reviews our approach toward obtaining formal
safety proofs for the planning & controls portion of this
software stack. We begin in SectionIl by explaining how
theorem provers establish safety properties about control soft-
ware for physical processes. Sectionlll explains how low-
level control safety properties are lifted in order to provide
formal guarantees for reinforcement learning and path planning
algorithms. Finally, SectionIV shows how safety properties
about reinforcement learning algorithms can be used to obtain
safety guarantees for behavioral decision making.

Perhaps the most important take-away from this paper
is that by starting within the right logical foundations, one
can systematically extend verification results about low-level
control software up the planning & controls software stack.

After reviewing one holistic approach toward obtaining
safe guarantees for planning & controls software, we discuss
alternative approaches for each layer of this stack. The pa-
per concludes with a discussion of recent work on formal
guarantees for perception and a discussion of future directions
toward unifying safety arguments about perception with safety
arguments for planning & controls.

II. VERIFICATION OF MODEL-BASED CONTROLLERS

The lowest level of the controls & planning software stack
uses (an estimation of) the current state to choose actuator
inputs. Low-level controllers are designed with respect to a set
of differential equations that model the environment. For over a
century, control theorists and roboticists have paid considerable
attention to safety, robustness, stability, and optimality of
control.

Work toward formalizing the rich theory of control in
mechanized, computer readable proofs is relatively new. Our
approach is based on hybrid programs [4], [6], [11], a program-
ming language that captures the essence of how computation
and physics interact in control systems. Hybrid programs are
defined by the following grammar, where x ranges over real-
valued variables and 6 over the terms of real arithmetic:

a,B = x:=0|x:=x|aUB || a* |2 =0&

The first four syntactic forms provide a simple program-
ming language for expressing nondeterministic imperative pro-
grams. The assignment program z := 6 assigns to z the
value #. The nondeterministic assignment = := x* assigns
any arbitrary real number to z. The nondeterministic choice
program « U 3 executes either o or 3. The test program 7¢
evaluates the formula ¢ and aborts program execution if ¢ is
false. The nondeterministic repetition program «* repeats «
zero or more times. Hybrid programs are hybrid because they
combine these discrete programs with continuous programs,
i.e., systems of differential equations 2’ = 6 subject to an
evolution domain constraint ¢, which is a formula describing
the region that the system is not allowed to leave while

Paper Al 1.2

following this differential equation. More details are in the
literature [12].

Example 1 (Safety specification for straight-line car model):
The following program models a car moving along a straight
line subject to actuator disturbance. The car may choose
to accelerate (if safe) or to brake at each time step (at
the latest after reaction time 7) and the car’s physical
movement is subjected to an arbitrary bounded disturbance
dmin é d é dmax-

2
accel = ?(er M +Tv) >
(v +T(A+dmaz))®\
_2(_B + dmaaﬁ) >7a o A

brake=a:= —-B
dist =d:= * ?dmin S d S dmaz
plant = {p'=v, v'=a+d,t' =1&v > 0At < T}

({accel Ubrake};dist;t:= O;plant)*

controller

Differential dynamic logic (d£) [4], [6], [11], [12] is a
logic for specifying and proving properties of hybrid programs.
Each hybrid program « is associated with modal operators
[a] and (@), which express state reachability properties of
the parametrizing program. The formula [a]¢ states that the
formula ¢ is true in all states reachable by the hybrid program
«. Similarly, ()¢ expresses that the formula ¢ is true after
some execution of . The d formulas are generated by the
grammar

¢ =t by | =g | ONY [OVY [o= |Veg|Txe
| [e]¢ | (a)¢

where 6; are arithmetic expressions over the reals, ¢ and v are
formulas, o ranges over hybrid programs, and - is a compar-
ison operator =, #, >, >, <, <. The quantifiers quantify over
the reals. We denote by - P the fact that P has a proof in the
dZ proof calculus [6], [11], [12].

Example 2 (Safety specification for straight-line car model):
The following specification states the car’s position (p) must
stay behind the position of a static obstacle (o) even when
its choices of acceleration are subjected to some bounded
disturbance d00 < d < dipas-

constBounds = A >0AB>0Adnmin <d<dpme: < B
brakingDist =o0—p > 2

v?)
-B + dmax
(¢ = constBounds AbrakingDist

© — [({accel Ubrake};dist;t:= O;plant)*}p <o
——

post cond.

Proving that - ¢ — [{ctrl; ode}*]t for arbitrary control
programs or differential equations is undecidable, meaning that
developers must construct these proofs using a combination
of manual effort and heuristic automation. The KeYmaera X
system is a theorem prover that provides a language called
Bellerophon for scripting proofs of dC formulas [13], [14].

INTERNATIONAL TEST CONFERENCE 2

The next two sections of this paper show how theorem
proving for dL provides a foundation for obtaining safety
results for cyber-physical systems that use Al algorithms for
control. We achieve this goal by lifting safety specifications
such as Example?2 to the local path planning and behavioral
decision making layers of of the controls software stack.

III. VERIFIED MODEL-BASED LOCAL MOTION
PLANNING

Model-based local motion planning takes as input a high-
level but local goal — such as navigating a left-hand turn or
changing lanes — and produces as output a set of inputs to
the low-level control software. Verifiably safe local motion
planning can be characterized in terms of either safe planning
or safe reinforcement learning. In both cases, the goal is to
achieve a high-level but local objective (e.g., stay-in-lane, turn
left, etc.) without violating system safety constraints.

A. Verifiably Safe Reinforcement Learning

Reinforcement learning (RL) is one approach toward solv-
ing the local motion planning problem [15]. RL algorithms
learn to maximize a reward signal by taking actions and
observing the effects of these actions. A a reinforcement
learning or RL model (S, A, R, E) consists of a finite set S of
states, a finite set A of actions, a numerical reward function
R: S xAxS — R for transitioning from s; € S via an
action a € A to s;41 € 5, and a function £ : S x A — §
characterizing what state the system transitions to when an
action a € A is taken in a given state s € S.

Since RL algorithms need to assume that the response
they observed from an action in a state is related to the
response they might expect in the future, they assume that
any underlying uncertainty is resolved according to the fixed
probability distributions of a Markov Decision Process, which
provide the mathematical milieu for reinforcement learning. In
that case F(s,a) defines, for each state ¢, the probability of
transitioning from s to ¢ after taking action a.

Reinforcement Learning algorithms search for policies’
that maximize the long-term cumulative value obtained via
the reward signal. In this section we abstract away from any
particular reinforcement learning algorithm. Our interface to
the learning process is just a pair of functions choose and
update. The update function selects the next control action
to be executed based upon the current high-level goal, and
the update function changes the algorithm’s internal state in
response to observed state transitions and rewards.

Unless probabilistic safety answers suffice, the safety anal-
ysis is best done using a possibilistic interpretation, where all
possible outcomes are considered (by corresponding nondeter-
ministic choices for example). For example, the safety analysis
of the obstacle avoidance problem from Example2 should
consider all possible values of the disturbance d, not just the
more likely values. There is no safe argument to ignore, say,
disturbances that only happen with probability 5%, because
they still might happen at some point during an extended drive.

Justified Speculative Control (JSC) [16] is an approach
toward verifiably safe reinforcement learning based upon this

'mappings from states to actions

Paper Al 1.2

observation about the relationship between safety for proba-
bilistic systems and reachability for nondeterministic systems.
JSC leverages formal proofs to guarantee that a reinforcement
learning algorithm avoids unsafe states. JSC uses dL safety
specifications to obtain safety guarantees for policies obtained
via reinforcement learning. We begin by discussing the role of
monitoring in safe RL and then introduce the algorithm that
uses these monitors to lift control-level safety properties to the
planning layer.

B. ModelPlex Monitors

Approaches toward safe control require runtime monitor-
ing; i.e., the ability to check, at runtime, whether or not
the current state of the system can be explained by the
model of a dZ formula. The KeYmaera X theorem prover
provides a mechanism for translating a dC formula of the
form P — [a*]@ into a formula of real arithmetic, which
checks whether the present behavior of a system fits to this
model. The resulting arithmetic condition is checked at runtime
and is accompanied by a correctness proof. This algorithm,
called ModelPlex [17], can be used to extract provably correct
monitors that check compliance with the model as well as with
the controller. If non-equivalence transformations have been
used in the ModelPlex monitor synthesis proofs, the resulting
monitor may be conservative, i.e. raise false alarms. But if the
monitor formula evaluates to true at runtime, the execution is
guaranteed to be safe.

ModelPlex controller monitors are boolean functions that
monitor whether or not the controller portion of a hybrid
systems model has been violated. The monitor takes two inputs
— a “pre” state and a “post” state. If the controller monitor
returns true, then there is an execution of the ctrl fragment of
the program that maps the previous state to the current state.
For example, the controller monitor for Example 2 is:

(apost = A Ndmin < dpoxt <dmaz NT>20AN0v >0 A

_ (A dimaa) T (v + T(A+ dpa))*
0 (“ “2(—B + dmaz)

2
T)>
5 +1v

A dpost =dA Upost = U A Ppost = P A tpost =0A Opost = 0)
2

V (@post =-BAO—p > 5 AT >0

(_B + dmaz)
A dpin < dpoxt < dmaz N Upost = U A Ppost = P A Opost = O)

This control monitor is a disjunction between a monitor for
the acceleration case accel in Example2 and a monitor for
the braking case brake. In each case, the monitor checks that
control guards are enforced and that variables which should not
change remain constant (e.g., Vpos = v states that the controller
should not change the value of the velocity variable).

ModelPlex can also produce full model monitors, which
check that the entire system model is accurate — including the
model of the system’s physics — for each round of a control
loop. If the full model monitor returns true, then the controller
for the system chose a control action that is allowed by the
model of the system and also the observed physics of the
system correspond to the differential equations describing the

INTERNATIONAL TEST CONFERENCE 3

}

10

system’s physical dynamics.

OpostZO/\dpost:d/\"'/\

A+ d)t?
(apost = A A ppost = (%-F’Ut—‘rp A
Vpost = (A+d)t+v AN (A+d)t+v>0) VvV
—B + d)t?
(apost = 'B/\ppost = % + tv + pA

Vpost = (B +d)t +vA (=B +d)t +v > 0)

Portions of the model monitor are elided for concision, but
the salient aspects of the monitor for Example 2 are presented
above. The monitor checks that constants do not change, and
checks that each variable comports with the solution to the
differential equations. By relating a dC model to runtime
monitoring constraints, we can leverage formal guarantees to
obtain safety results for a reinforcement learning algorithm.

C. The Justified Speculative Control Algorithm

The JSC algorithm explains how to leverage ModelPlex
monitors to lift control-level safety guarantees to the planning
layer. JSC achieves this goal by modifying a generic reinforce-
ment learning algorithm with runtime monitors that restrict the
set of actions available to the agent. A formal proof connecting
these runtime monitors to an original dC model ensures that
the learning agent only takes actions that will be safe in the
underlying environment model.

The Justified Speculative Control algorithm takes as in-
put an initial state, an RL model, a reinforcement learning
algorithm characterized in terms of its choose and update
functions, a characterization done of terminal states, and
runtime monitors (a control monitor CM and a model monitor
MM). When the environment is accurately modeled (i.e., MM
returns true) the control monitor CM is used to constrain the
learning algorithm’s choice of available actions to a known safe
subset of available actions. However, when the environment is
not accurately modeled, the RL agent’s choice of actions is not
constrained, because it evolves outside known safe actions.

JSC uses runtime monitors to constrain the set of available
actions. Lines 5 and 6 specify that if the environmental model
is accurate according to a runtime monitor MM for the model,
then the learning agent may only select actions that the
controller runtime monitor CM designates as proven safe.

The JSC algorithm guarantees that if the differential equa-
tions describing the environment E are accurate, then the
learned controller will never enter a state where the post-
condition of the original dC specification is violated. This
Safe Learning theorem [16, Thm. 1] also implies that policies
extracted from the reinforcement learning algorithm are safe.

Justified S ve Control Learni

JsC(init, (S,A,R,E), choose, update, done, CM, MM) {
prev := curr := init;
a0 := NOP;
while (!done(curr)) {

if (MM(prev, a0, curr))

u := choose({a €A | CM(a,curr)});

else

u := choose (A);
prev := curr;
curr := E(u, prev);

Paper Al 1.2

INTERNATIONAL TEST CONFERENCE

update (prev, u, curr);

}

D. Off-Model Safety

JSC guarantees, if we use runtime monitors that provably
correspond to a proved dC formula init — [{ctrl; plant}*]safe
in order to sandbox a reinforcement learning algorithm, then
the safety constraint (safe) is maintained for any learned policy
as long as the differential equations plant are accurate.

JSC goes beyond mere sandboxing in a best-effort attempt
to deal with the problem of guaranteeing safety even when
modeling constraints are violated. Lines 5-8 of Listing III-C
allow any action whenever the model monitor evaluates to
false. A refined version of the algorithm [16] refines choose
to depend on whether MM evaluated to true in the previous
time step. When the model monitor MM is false, we introduce
a new reward signal that leverages insights from our formal
specification in order to direct reinforcement learning. We
use a quantified version of the original model monitor MM,
effectively rewarding the system for minimizing the error
between the model’s prediction of what should have happened
and the sensor’s observations of what actually happened. This
was experimentally observed to have the effect of driving the
agent back into known safe portions of the state space quickly.

Local path planning problems are often characterized in
terms of a Markov Decision Process whose states and actions
correspond to the states and actions used for low-level verified
control software. When this is the case, the JSC algorithm
transfers safety results to learned policies whenever the model
is accurate, and extensions to JSC can leverage information
from the verified model to direct path planning even when the
environment was not accurately modeled?.

IV. MODEL-BASED BEHAVIORAL DECISION MAKING

JSC uses verified monitors to extend verification results
about low-level control software to learned behaviors for
achieving high-level but local goals, such as navigating an
intersection or optimally following a leader car. The next
level up in the autonomous vehicle software stack tackles the
problem of choosing and switching between multiple available
behavioral models.

Paden et al. illustrate this layer of the stack in Figure 2 [8].
As this graphic demonstrates, the task of switching between
these tasks depends on a combination of the global route
planning goals of the system and the behavior of other agents
in the system. For example, lane switching might be triggered
by the behavior of drivers in the vehicle’s current lane or by
the global route planner prescribing a left turn.

Behavioral decision making includes two subtasks: identi-
fying which behavioral mode the system should be operating in
and then controlling safely within that mode. We achieve these
two goals by adding an outer loop that performs falsification
over a set of feasible models and then performs JSC with the
currently feasible models. We call this combination of runtime
falsification with JSC model update learning.

Zalthough safety guarantees are, obviously, not retained unless model
deviations are bounded [17]

Negotiate
Intersection

Parking
Maneuve

Unstructured
Environmen

Fig. 2. The Behavioral Decision Making problem [8]

We define our model update learning algorithm (u-
learning) in terms of feasible (i.e., currently unfalsified) mon-
itored models. A modeled monitor is simply a model together
with its control monitor and model monitor.

Definition 1: A monitored model is a tuple (m, CM, MM)
where:

e m is a (proved) d formula of the form init —
[{ctrl;plant}*]safe where ctrl is a loop-free dis-
crete program and the entire formula m contains exactly
one modality.

e The formulas CM and MM are the control monitor and
model monitor corresponding to m.

The p-learning algorithm takes as input an environment
env, discrete action space A, an initial state init, choose
and update functions as in JSC, and a finite set of monitored
models M each with a method models which implements
the model monitor and safe which implements the controller
monitor.

The key property of this algorithm is that it always enforces
the runtime controller monitors for all models that have not
been ruled out by the observed data. This, combined with the
assumption that there exists a distinguished model m* € M
that accurately models env, ensures that the safety properties
of the JSC algorithm extend to the behavioral layer whenever
selecting a single behavioral model from a set of available
models.

Listing 1. Basic y-learning

imulearn(init, env, choose, update, done, M) {

prev := curr := init;

act := None;
4+ while (!done(curr)) {

if (act != None) {

6 M := {m € M : m.models (prev,act,post) };
7 }
8 avail := {a € A : Vm € M. m.safe(a)};
9 act := choose(avail);
10 prev := curr;
11 curr, reward := env(curr, act);

12 update (prev, act);

14}

a) Active Experimentation: One downside of pu-
learning is the conjunctive constraint on lines 6 and 7. This
constraint is often restrictive because we may only take ac-
tions that are safe for every model. However, if each model

Paper AI 1.2

additionally has a prediction method m.predict, then pu-
learning can be extended to always choose actions that are
active experiments, in the sense that they eliminate at least
one of the currently feasible models. A perhaps surprising
fact about active experimentation is that it does not always
guarantee convergence to an optimal set of models.

The p-learning algorithm extends formal safety guarantees
from the local planning layer to the behavioral layer by com-
bining verified reinforcement learning with online falsification
to choose among a set of possible behavioral models.

A. Off-Model Decision Making

Standard p-learning assumes that a distinguished accurate
model m* already is in the monitored models M. This assump-
tion may be relaxed in several ways.

First, we can introduce systematic updates to the environ-
mental model (i.e., the ODEs or the non-control portion of
the discrete dynamics) with corresponding proof-preserving
updates to the control model. We call this type of update a
verification-preserving model update.

Definition 2 (VPMU): A verification-preserving model up-
date (VPMU) is a pair of mappings modelUpdate and
proofUpdate which take as input an initial dZ formula ¢
with an associated Bellerophon proof e of ¢, and produce
as output a new dC formula modelUpdate(y) and a proof
proofUpdate(e) of modelUpdate(yp).

VPMUs preserve verification results while also expanding
the set of available models beyond what the system designers
initially anticipate. This combination of features is attractive
— the system designer can carefully state safety specifications
and some ways that the system’s behavior might change over
time, and then iteratively apply all available VPMUs to all
available models out to some finite horizon. This approach
increases the class of behaviors under which the system can
act safely. Formally, our assumption that m* € M relaxes to
an assumption that there is sequence of VPMUs vy ... v, and
an initial model mg € M such that the accurate model m*
can be obtained from m by this sequence of VPMUs, i.e.,

on(-+ (vo(mo))) = m”".

A second and much broader way of relaxing the m* as-
sumption is to consider model updates that are not verification
preserving. This approach is analogous to off-model learning
in JSC. Once we realize the there is no accurate verified
behavioral model (i.e., M is empty), we can then consider
whether there is any model — verified or not — that might give
us reasonable behavior despite not having a formal proof. Just
as in JSC, switching to an unverified model should only happen
as a last resort when there is no available verified model that
accurately characterizes observed reality.

V. ALTERNATIVE APPROACHES TOWARD SAFE Al FOR
PLANNING & CONTROL

JSC and p-learning provide an approach toward obtaining
verifiably safe Al for planning & control. These approaches
leverage d_ to characterize safety properties about random sys-
tems in terms of reachability constraints on nondeterministic
systems. The model monitor synthesis algorithms implemented

INTERNATIONAL TEST CONFERENCE 5

in KeYmaera X are enabling technology for both of these safe
Al algorithms.

There are several alternative approaches toward hybrid
systems verification, including §-decision procedures [18], [7]
and model checking of hybrid automata [5]. They can justify
the safety of a model but lack dC’s ModelPlex ability for
synthesizing runtime monitors that are accompanied by a priori
correctness proofs. The combination of both, safety proof and
runtime monitor proof, is used to build safe Al for CPS.

Alshiekh et al. and Hasanbeig et al. each introduce ap-
proaches toward safe RL based upon temporal logics [19],
[20]. Unlike JSC, these approaches do not use a logic capable
of expressing hybrid system dynamics, and, thus, are missing
one important ingredient for CPS control. Alshiekh et al. use
deterministic safety work automata to abstract over the MDP’s
dynamics and Hasanbeig et al. construct Limit Deterministic
Biichi Automata from LTL specifications. The use of LTL
and non-hybrid automata limits the applicability of these ap-
proaches in cyber-physical systems, but does succinctly capture
many constraints on discrete or discretized planning and op-
timization problems. The combination of online learning with
safety has also been proposed for Hamilton-Jacobi equation
solving [21], [22], experimentally demonstrating the potential
of mixing learning and verification for quadrotor flight.

Although verifiably safe Al is a new research field, existing
approaches suggest three important criteria in the context of
safety-critical controls & planning software.

e Approaches toward safe Al for CPS should provide
simple and familiar representations of environmental as-
sumptions (preferably ODEs and imperative programs,
the lingua franca of classical control). Environmental
models are the key to lifting safety guarantees about local
planning to safety guarantees about behavioral decision
making. Explicit environmental models are also the only
lifeline available when model deviation occurs. Detecting
model deviation and finding ways to correct for deviation
is impossible unless an explicit environmental model is
available.

e Environmental assumptions should be easy to compose
into hierarchical decision making frameworks.

e Approaches toward safe Al for CPS should provide for-
mal proofs, not just formal specs. Therefore, approaches
must provide a way of relating monitoring conditions,
safety specifications, and environmental assumptions via
formal proof. This should be possible even for the non-
linear systems important in applications.

VI. VERIFIED PERCEPTION

Applying formal methods to perception is inherently dif-
ficult because formally specifying correctness for perception
algorithms remains an open problem.

The predictor/verifier framework of Dvijotham et al. [23]
introduces an approach toward obtaining proofs that neural
networks are robust to adversarial perturbations. The VeriVis
methodology of Pei et al. characterizes safety in terms of
explicit attacker capabilities [24].

One obvious next step toward safe Al for CPS is to
obtain end-to-end safety guarantees by composing approaches

Paper AI 1.2

toward safe perception with approaches toward safe control.
To facilitate this, approaches toward safe Al for CPS should
build on a multi-dynamical and extensible logical foundations
so that safety guarantees about perception can be incorporated
into safety arguments for controls and planning.

VII. FUTURE WORK

Existing approaches toward verification of model-based
planning/optimization incorporate formal guarantees into the
learning/optimization process by synthesizing monitors from
some combination of explicit safety constraints on actions,
environmental models, and synthesized monitors. We call this
family of approaches formally constrained learning/optimiza-
tion in model space because the constraints are stated in a
formal language and safety guarantees apply only as long as
the environmental model is accurate.

Future work on safe Al for planning and control will focus
on moving beyond these table stakes by: 1) providing safety
and optimality guarantees for continuous state and action
spaces; 2) providing safety and optimality guarantees outside
of model space; i.e., when the environment model is not
accurate or unavailable (this is discussed at greater length in
Section IV-A); 3) extending approaches that provide unverified
formal constraints with formal mechanized proofs that action
constraints are safe with respect to the environmental model;
and 4) incorporating formal guarantees for learning into ver-
ified pipelines such as VeriPhy [25], which maps high-level
hybrid systems models down to provably correct machine code
implementations of model monitoring constraints. This could
be done by leveraging existing mechanized proofs about MDPs
[26].

VIII. CONCLUSION

This paper demonstrates one approach toward obtaining
safety guarantees for the control portion of an Al-enabled
autonomous vehicle using a combination of hybrid systems
theorem proving, monitor synthesis, monitor-constrained rein-
forcement learning, and runtime falsification. This particular
approach uses the KeYmaera X theorem prover’s implementa-
tion of differential dynamic logic, but many of our ideas and
algorithms generalize to any other future technology capable of
verifying and generating runtime monitors for hybrid dynami-
cal systems with correctness proofs. The requisite capabilities
in dZ stem from its ability to mix [a] and («) modalities for
all and some runs of a hybrid system «.

The future of Safe AI research will focus on expanding
existing methodologies to obtain guarantees for off-model
learning and on combining formal safety specifications for
perception with formal safety proofs for planning and control.

ACKNOWLEDGMENT

We thank the ITC conference for the kind invitation to
present this work. This research was sponsored by the Defense
Advanced Research Projects Agency (DARPA) under grant
number FA8750-18-C-0092, and by the Future of Life Institute
(futureoflife.org) FLI-RFP-AI1 program, grant #2015-143867.

INTERNATIONAL TEST CONFERENCE 6

[1]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

(10]

[11]

[12]

[13]

[14]

Paper Al 1.2

REFERENCES [15] R.S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
N. Kl d4S. M. Paddock. “Driving to safetv — h il ¢ Cambridge, MA: MIT Press, 1998.
. Kalra and S. M. Paddock, “Driving to safety — how many miles o B . . .
driving would it take to demonstrate autonomous vehicle reliability?” [16] N. Fulton and A. Platzer, Safe reinforcement lear.“m§ v formal
RAND Corporation, Tech. Rep., 2016. methods: Towa‘rd safe control through proof and lear.mn-g, in Pr.()ceed-
. . . ings of the Thirty-Second AAAI Conference on Artificial Intelligence,
R. Alur, C. Courcoubetis, T. A. Henzinger, and P. Ho, “Hybrid automata: February 2-7, 2018, New Orleans, Louisiana, USA., S. Mcllraith and
An algorithmic approach to the specification and verification of hybrid K. Weinberger, Eds. AAAI Press, 2018, pp. 6485-6492.
:izte; gi{lézhlzl}jbézii:g)\)/;tle m7s%,6R]E; egirr(l):sssn;ir:l, gi;, Ifg;gc’i;pAz(l)’giazvgn ’ [17] S. MiFsch and A. Pl.atzer, “ModelPlex: ”Veriﬁed runtime validation
) of verified cyber-physical system models,” Form. Methods Syst. Des.,
A. Nerode and W. Kohn, “Models for hybrid systems: Automata, vol. 49, no. 1, pp. 33-74, 2016, special issue of selected papers from
topologies, controllability, observability,” in Hybrid Systems, R. L. RV’ 14.
](;;}ros'sr.nan, »A' Nerode, A. P. Ravn, and H. Rischel, Eds., vol. 736. [18] A.Eggers, M. Friinzle, and C. Herde, “SAT modulo ODE: A direct SAT
erlin: Springer, 1992, pp. 317-356. . o . L
. approach to hybrid systems,” in Automated Technology for Verification
A. Platzer, “Differential dynamic logic for hybrid systems.” J. Autom. and Analysis, 6th International Symposium, ATVA 2008, Seoul, Korea,
Reas., vol. 41, no. 2, pp. 143-189, 2008. October 20-23, 2008. Proceedings, S. D. Cha, J. Choi, M. Kim, 1. Lee,
G. Frehse, C. L. Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, and M. Viswanathan, Eds., vol. 5311. Berlin: Springer, 2008, pp.
R. Ripado, A. Girard, T. Dang, and O. Maler, “SpaceEx: Scalable verifi- 171-185.
cation of hybrid systems,” in 23rd CAV, 2011, ser. LNCS, G. Gopalakr- 1191 M. Alshiekh, R. Bloem, R. Ehlers, B. Konighofer, S. Niekum, and
ishnan and S. Qadeer, Eds., vol. 6806. Springer, 2011, pp. 379-395. U. Topcu, “Safe reinforcement learning via shielding,” in Proceedings
A. Platzer, “Logics of dynamical systems,” in LICS. IEEE, 2012, pp. of the Thirty-Second AAAI Conference on Artificial Intelligence, New
13-24. Orleans, Louisiana, USA, February 2-7, 2018, S. A. Mcllraith and K. Q.
S. Kong, S. Gao, W. Chen, and E. M. Clarke, “dReach: §-reachability Weinberger, Eds. AAAI Press, 2018.
analysis for hybrid systems,” in Tools and Algorithms for the Construc- [20] M. Hasanbeig, A. Abate, and D. Kroening, “Logically-correct reinforce-
tion and Analysis of Systems - 21st International Conference, TACAS ment learning,” CoRR, vol. abs/1801.08099, 2018.
2015, Held as Part of the European Joint Conferences on Theory and [21] J. H. Gillula and C. J. Tomlin, “Guaranteed safe online learning via
Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. reachability: tracking a ground target using a quadrotor,” in IEEE
Proceedings, ser. LNCS, C. Baier and C. Tinelli, Eds., vol. 9035. International Conference on Robotics and Automation, ICRA 2012, 14-
Springer, 2015, pp. 200-205. 18 May, 2012, St. Paul, Minnesota, USA. IEEE, 2012, pp. 2723-2730.
B. Paden, M. Cdp, S. Z. Yong, D. S. Yershov, and E. Frazzoli, “A [22] J. F. Fisac, A. K. Akametalu, M. N. Zeilinger, S. Kaynama, J. H.
survey of motion planning and control techniques for self-driving urban Gillula, and C. J. Tomlin, “A general safety framework for learning-
;81;2:165’” IEEE Trans. Intelligent Vehicles, vol. 1, no. 1, pp. 33-55, based control in uncertain robotic systems,” CoRR, vol. abs/1705.01292,
: 2017.
S. D. Pendleton, H. Andersen, X. Du, X. Shen, M. Meghjani, Y. H. Eng, [23] K. Dvijotham, S. Gowal, R. Stanforth, R. Arandjelovic, B. O’Donoghue,
D. Rus, and M. H. Ang, “Perception, planning, control, and coordination J. Uesato, and P. Kohli, “Training verified learners with learned veri-
for autonomous vehicles,” Machines, vol. 5, no. 1, p. 6, 2017. fiers” CoRR, vol. abs/1805.10265, 2018.
The Apollo Project, “ApolloAuto: An open autonomous driving [24] K. Pei, Y. Cao, J. Yang, and S. Jana, “Towards practical verification of
platform,” 2018. [Online]. Available: https:/github.com/ApolloAuto/ machine learning: The case of computer vision systems,” CoRR, vol.
apollo abs/1712.01785, 2017.
A. Platzer, “A complete uniform substitution calculus for differential [25] B. Bohrer, Y. K. Tan, S. Mitsch, M. O. Myreen, and A. Platzer,
dynamic logic,” J. Autom. Reas., vol. 59, no. 2, pp. 219-265, 2017. “VeriPhy: Verified controller executables from verified cyber-physical
——, Logical Foundations of Cyber-Physical Systems. Switzerland: system models,” in PLDI, D. Grossman, Ed. ACM, 2018, pp. 617-630.
Springer, 2018. [26] J. Hoélzl, “Markov chains and Markov decision processes in Is-
N. Fulton, S. Mitsch, J.-D. Quesel, M. Volp, and A. Platzer, “KeYmaera abelle/HOL,” Journal of Automated Reasoning, vol. 59, no. 3, pp. 345—
X: An axiomatic tactical theorem prover for hybrid systems,” in CADE, 387, 2017.
ser. LNCS, A. P. Felty and A. Middeldorp, Eds., vol. 9195. Springer, [271 R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel, Eds., Hybrid
2015, pp. 527-538. Systems, vol. 736. Berlin: Springer, 1993.
N. Fulton, S. Mitsch, B. Bohrer, and A. Platzer, “Bellerophon: Tactical
theorem proving for hybrid systems,” in /TP, ser. LNCS, M. Ayala-
Rincén and C. A. Muiioz, Eds., vol. 10499. Springer, 2017, pp. 207—
224.
INTERNATIONAL TEST CONFERENCE 7

