How to Prove Hybrid Systems and Why that Matters

Abstract for Invited Talk

André Platzer
Logical Systems Lab
Computer Science Department
Carnegie Mellon University
Pittsburgh, USA
aplatzer@cs.cmu.edu

Abstract—This invited talk provides a brief exposition how
hybrid systems proving works, why hybrid systems verification
is an important device to ensure the safety of complex systems,
and gives an idea where that technology is successful.

I. OVERVIEW

Hybrid systems are the most important mathematical model
for embedded systems and are just as relevant for cyber-
physical systems. Developing correct controllers for these
systems is quite challenging but worth the time investment,
because of the benefits that computer control principles can
have on the applications. Verification of hybrid systems pro-
vides a way of obtaining those benefits with guarantees about
the safety and behavior of the system [1]]. The verification tools
KeYmaera [2] and its successor KeYmaera X [3|] implement
differential dynamic logic [4], [5], a logic that is directly
suitable for systematic verification and reasoning for hybrid
systems. These tools have been used for verifying several com-
plex applications, including the Airborne Collision Avoidance
System ACAS X, the European Train Control System ETCS,
several automotive systems, mobile robot navigation with the
dynamic window algorithm, and a surgical robotic system for
skull-base surgery. This invited talk gives a brief exposition of
the approach and shows where and why and how it has been
used successfully in applications.

For more surveys and more details, we refer to the literature
(11, (501191

II. HYBRID SYSTEMS

Hybrid systems [10], [11] are mathematical models that
feature mixed discrete as well as continuous dynamics. Among
other applications, hybrid systems are crucial for understanding
the behavior of embedded systems as well as cyber-physical
systems. Canonically, discrete dynamics comes from decisions
and computer program execution while continuous dynamics
comes from physical motion, e.g., of a car or an aircraft.
Hybrid programs are a programming language for hybrid
systems [4], [S]]. They can be thought of as adding differential
equations as a new form of statements to conventional discrete
programming languages.

Conventional programming languages are the natural
model for describing discrete computer programs but are not
particularly capable when it comes to modeling continuous

© IEEE 2015
2015 International Conference on Complex Systems Engineering (ICCSE).
DOI: 10.1109/ComplexSys.2015.7385983

behaviorﬂ Control theory has found differential equations to
be a powerful language for continuous dynamics, but they are
not a good match for understanding the sudden changes of
discrete computation.

Hybrid programs provide both sources of dynamics, dis-
crete programs as well as differential equations, within a single
programming language. That makes it possible to leverage
the structuring mechanisms and compositionality features of
programming languages without losing the descriptive power
of differential equations for continuous behaviors.

III. FORMAL SPECIFICATIONS

Describing the system models of interest as a hybrid
program is the first step. Precisely specifying the desired
correctness properties is the second step. KeYmaera and KeY-
maera X provide differential dynamic logic [4], [5], [[13]] as
a language for formally specifying and verifying correctness
properties of hybrid systems. For example, formulas of the
form

¢ = [a]y

express that all states reachable by the behavior of the hybrid
program « from initial states satisfying the assumption ¢
satisfy the postcondition . This is a logical formula express-
ing a Hoare-triple {¢}a{v} but for hybrid system « instead
of merely for a conventional discrete program c«. Arbitrary
other combinations of these and other logical connectives are
supported as well that are not expressible as Hoare-triples.

IV. APPLICATIONS

KeYmaera and KeYmaera X have been used for verifying
a number of interesting applications, including Airborne Col-
lision Avoidance System ACAS X [14], [15], roundabout type
aircraft maneuvers [16], the European Train Control System
ETCS [17], several automotive systems (e.g., provably safe
adaptive cruise controllers for cars on highways [18]]), mobile
robot navigation with the dynamic window algorithm [19]], and
a surgical robotic system for skull-base surgery [20].

The Airborne Collision Avoidance System ACAS X, for
example, has been subjected to a formal verification study
[14]], [15] using differential dynamic logic proofs. ACAS X

A surprisingly close connection between discrete and continuous programs
as well as hybrid programs exists regardless [8]l, [12].

https://doi.org/10.1109/ComplexSys.2015.7385983

is a challenging industrial system, a canonical hybrid system
in principle, but—with its half a trillion discrete states—
overwhelmingly large. The verification, thus, consists of two
phases, first identifying and verifying which collision avoid-
ance advisory is safe under which circumstance in the hy-
brid systems model and then comparing the provably correct
generic answer with the concrete ACAS X decisions. The
overwhelming majority of the cases (97.7%) led to a provably
safe collision advisory or unresolvable cases. The remaining
15,160,434,734 cases led to counterexamples, which are cur-
rently being investigated further because some of them can be
resolved by follow-up advisories [15].

V. MODELPLEX

An orthogonal but equally important aspect of KeYmaera
or KeYmaeraX is its support for ModelPlex [21]. ModelPlex
is somewhat similar to Simplex [22] but for models instead of
controllers. It does provide fundamentally stronger guarantees,
though, in the form of fully rigorous proofs. ModelPlex is
a systematic technique to generate provably correct monitor
conditions that, if checked to hold at runtime, are provably
guaranteed to imply that the offline safety verification results
about a CPS model apply to the present run of the actual CPS
implementation. Safety verification for CPS models, e.g., with
hybrid systems models, is indubitably crucial to get complex
systems with subtle interactions safe. Yet, the verification
results about a CPS model only apply to the actual CPS to
the extent that the model was accurate. While more modeling
can help lead to higher fidelity results, this does not ultimately
solve the Gordian Knot of models for models for CPSs. Unless
one uses ModelPlex to cut through the Gordian Knot and
finally translate safety guarantees about CPS models in a
provably correct way to the safety of the particular run of
a CPS implementation. The ModelPlex synthesis procedure
itself is, indeed, also based on a nonclassical use of the proof
procedures of differential dynamic logic.

ACKNOWLEDGMENT

This material is based upon work supported by the Na-
tional Science Foundation under NSF CAREER Award CNS-
1054246, NSF EXPEDITION CNS-0926181, and under Grant
Nos. CNS-1035800 and CNS-0931985, by DARPA under
agreement number FA8750-12-2-0291, by the ONR award
N00014-10-1-0188, by the Army Research Office under Award
No. WI11NF-09-1-0273, and by the German Research Council
(DFG) as part of the Transregional Collaborative Research
Center “Automatic Verification and Analysis of Complex Sys-
tems” (SFB/TR 14 AVACS). These results are also supported
in part by Carnegie Mellon University’s Technologies for Safe
and Efficient Transportation, The National USDOT University
Transportation Center for Safety (T-SET UTC) which is spon-
sored by the US Department of Transportation.

REFERENCES

[11 R. Alur, “Formal verification of hybrid systems,” in EMSOFT,
S. Chakraborty, A. Jerraya, S. K. Baruah, and S. Fischmeister, Eds.
ACM, 2011, pp. 273-278.

[2] A. Platzer and J.-D. Quesel, “KeYmaera: A hybrid theorem prover for

hybrid systems.” in IJCAR, ser. LNCS, A. Armando, P. Baumgartner,
and G. Dowek, Eds., vol. 5195. Springer, 2008, pp. 171-178.

(3]

(4]

(5]

(7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

ANDRE PLATZER

N. Fulton, S. Mitsch, J.-D. Quesel, M. Volp, and A. Platzer, “KeYmaera
X: An axiomatic tactical theorem prover for hybrid systems,” in CADE,
ser. LNCS, A. Felty and A. Middeldorp, Eds., vol. 9195. Springer,
2015, pp. 527-538.

A. Platzer, “Differential dynamic logic for hybrid systems.” J. Autom.
Reas., vol. 41, no. 2, pp. 143-189, 2008.

——, “Logics of dynamical systems,” in LICS. IEEE, 2012, pp. 13-24.

, Logical Analysis of Hybrid Systems: Proving Theorems for
Complex Dynamics. Heidelberg: Springer, 2010.

, “Logic and compositional verification of hybrid systems (invited
tutorial),” in CAV, ser. LNCS, G. Gopalakrishnan and S. Qadeer, Eds.,
vol. 6806. Springer, 2011, pp. 28-43.

, “Analog and hybrid computation: Dynamical systems and pro-
gramming languages,” Bulletin of the EATCS, vol. 114, 2014.

L. Doyen, G. Frehse, G. J. Pappas, and A. Platzer, “Verification of
hybrid systems,” in Handbook of Model Checking, E. M. Clarke, T. A.
Henzinger, and H. Veith, Eds. Springer, 2016, ch. 28.

A. Nerode and W. Kohn, “Models for hybrid systems: Automata,
topologies, controllability, observability,” in Hybrid Systems, ser. LNCS,
R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel, Eds., vol. 736.
Springer, 1992, pp. 317-356.

R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H. Ho, “Hybrid
automata: An algorithmic approach to the specification and verification
of hybrid systems.” in Hybrid Systems, ser. LNCS, R. L. Grossman,
A. Nerode, A. P. Ravn, and H. Rischel, Eds., vol. 736. Springer,
1992, pp. 209-229.

A. Platzer, “The complete proof theory of hybrid systems,” in LICS.
IEEE, 2012, pp. 541-550.

, “A uniform substitution calculus for differential dynamic logic,”
in CADE, ser. LNCS, A. Felty and A. Middeldorp, Eds., vol. 9195.
Springer, 2015, pp. 467-481.

J. Jeannin, K. Ghorbal, Y. Kouskoulas, R. Gardner, A. Schmidt, E. Za-
wadzki, and A. Platzer, “A formally verified hybrid system for the next-
generation airborne collision avoidance system,” in TACAS, ser. LNCS,
C. Baier and C. Tinelli, Eds., vol. 9035. Springer, 2015, pp. 21-36.

, “Formal verification of ACAS X, an industrial airborne collision
avoidance system,” in EMSOFT, A. Girault and N. Guan, Eds. IEEE
Press, 2015, pp. 127-136.

A. Platzer and E. M. Clarke, “Formal verification of curved flight
collision avoidance maneuvers: A case study,” in FM, ser. LNCS,
A. Cavalcanti and D. Dams, Eds., vol. 5850. Springer, 2009, pp.
547-562.

A. Platzer and J.-D. Quesel, “European Train Control System: A case
study in formal verification,” in ICFEM, ser. LNCS, K. Breitman and
A. Cavalcanti, Eds., vol. 5885. Springer, 2009, pp. 246-265.

S. M. Loos, A. Platzer, and L. Nistor, “Adaptive cruise control: Hybrid,
distributed, and now formally verified,” in FM, ser. LNCS, M. Butler
and W. Schulte, Eds., vol. 6664. Springer, 2011, pp. 42-56.

S. Mitsch, K. Ghorbal, and A. Platzer, “On provably safe obstacle avoid-
ance for autonomous robotic ground vehicles,” in Robotics: Science and
Systems, P. Newman, D. Fox, and D. Hsu, Eds., 2013.

Y. Kouskoulas, D. W. Renshaw, A. Platzer, and P. Kazanzides, “Certi-
fying the safe design of a virtual fixture control algorithm for a surgical
robot,” in HSCC, C. Belta and F. Ivancic, Eds. ACM, 2013, pp. 263—
272.

S. Mitsch and A. Platzer, “ModelPlex: Verified runtime validation of
verified cyber-physical system models,” in RV, ser. LNCS, B. Bonakdar-
pour and S. A. Smolka, Eds., vol. 8734. Springer, 2014, pp. 199-214.

D. Seto, B. Krogh, L. Sha, and A. Chutinan, “The Simplex architecture
for safe online control system upgrades,” in ACC, vol. 6, 1998, pp.
3504-3508.

Proceedings of the 27th Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2012, Dubrovnik, Croatia, June 25-28, 2012.
1IEEE, 2012.

A. Felty and A. Middeldorp, Eds., International Conference on Auto-
mated Deduction, CADE’15, Berlin, Germany, Proceedings, ser. LNCS,
vol. 9195. Springer, 2015.

R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel, Eds., Hybrid
Systems, ser. LNCS, vol. 736. Springer, 1993.

	Overview
	Hybrid Systems
	Formal Specifications
	Applications
	ModelPlex
	Acknowledgment
	References

