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Abstract. We introduce dLι, which extends differential dynamic logic
(dL) for hybrid systems with definite descriptions and tuples, thus en-
abling its theoretical foundations to catch up with its implementation
in the theorem prover KeYmaera X. Definite descriptions enable partial,
nondifferentiable, and discontinuous terms, which have many examples
in applications, such as divisions, nth roots, and absolute values. Tuples
enable systems of multiple differential equations, arising in almost every
application. Together, definite description and tuples combine to support
long-desired features such as vector arithmetic.
We overcome the unique challenges posed by extending dL with these
features. Unlike in dL, definite descriptions enable non-locally-Lipschitz
terms, so our differential equation (ODE) axioms now make their conti-
nuity requirements explicit. Tuples are simple when considered in isola-
tion, but in the context of hybrid systems they demand that differentials
are treated in full generality. The addition of definite descriptions also
makes dLι a free logic; we investigate the interaction of free logic and the
ODEs of dL, showing that this combination is sound, and characterize its
expressivity. We give an example system that can be defined and verified
using these extensions.

Keywords: dynamic logic, definite description, hybrid systems, theo-
rem proving, uniform substitution, partial functions

1 Introduction

Cyber-physical systems (CPSs) such as self-driving cars, trains, and airplanes
combine discrete control and continuous physical dynamics and are often safety-
critical because they operate around humans. Thus, it is essential to achieve
the highest possible confidence in their correctness, e.g., using formal methods
with strong theoretical foundations. Differential dynamic logic (dL) [18,22,23] is a
logic for formal verification of hybrid systems [10], widely-used models of CPSs
that incorporate both their discrete and continuous behaviors. Among formal
methods for CPSs, dL is notable both for its case studies [12,15,16] using the
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KeYmaera X [9] theorem prover, and for its strong foundations, as evidenced by
its completeness results [18,22,23,25] and a formal proof of soundness in both
Isabelle/HOL and Coq [4].

However, there is a tension between the goals of practical applicability and
rigorous foundations. In practice, theorem prover implementations often de-
mand new features which were not anticipated in theory. Formalizations of KeY-
maera X [5], Coq [2], and NuPRL [1] all omit or simplify whichever practical
features are most theoretically challenging for their specific logic: discontinu-
ous and partial terms in KeYmaera X, termination-checking in Coq, or context
management in NuPRL. When formalizations of theorem provers do succeed in
reflecting the implementation [13], they owe a credit to the generality of the
underlying theory: it is much more feasible to formalize a general base theory
than to formalize multiple ad-hoc extensions as they arise.

This paper introduces dLι, a new, generalized foundation for dL where definite
description ιx φ denotes the unique x for which φ holds, enabling practical exten-
sions like divisions θ1/θ2, roots n

√
θ, and the functions min(θ1, θ2), max(θ1, θ2),

and |θ|, while pairs (θ1, θ2) enable differential equation (ODE) systems. Useful
new features like trigonometric functions and vectors are also definable, and
existing features like differentials (θ)′ have elegant new axiomatizations in dLι.

The term ιx φ is the definite (i.e., requiring unique existence) counterpart of
Hilbert’s choice εxφ; both have seen success in HOL-style theorem provers [17,26].
We chose definite ιx φ over εxφ because uniqueness significantly simplifies con-
tinuity and differential reasoning. In adopting definite descriptions and tuples in
dL, we solve the novel challenges of integrating them with differential equations,
dL’s distinguishing feature. Definite descriptions allow partiality, discontinuity,
and nondifferentiability, all of which interact subtly with sound ODE reason-
ing. Multidimensional systems, enabled by tuples, demand a general treatment
of differentials and expose subtle variable dependencies in some advanced ODE
reasoning principles.

An example demonstrates the power of definite description: definite descrip-
tions allow non-polynomial terms and thus non-polynomial ODEs, which need
not have unique solutions. While non-polynomial ODEs (and all of dLι) are
reducible to dL in theory, the reduction of ιx φ is completely impractical [3].
Expressivity comes with deep semantic changes: supporting partiality makes dLι
a free logic, for which we adopt a 3-valued  Lukasiewicz semantics. We show this
profound change in foundations needs only small changes to the proof calculus
with additional definedness conditions. We develop the theory of dLι, show that
the proof calculus is sound and show the nontrivial reduction from dLι to dL.

2 Syntax

We present the core syntax of dLι, which extends dL with definite descriptions
and tuples. We describe the constructs informally here, deferring formal seman-
tics to Sec. 3. As a free logic [8], dLι contains terms that do not denote and
formulas whose truth values are unknown (truth is indicated ⊕, falsehood by
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	, and unknown by �); a major point of difference between our semantics and
proof calculus vs. those of dL. Our calculus uses uniform substitution [6, §35,§40],
where symbols ranging over predicates, programs, etc. are explicitly represented
in the syntax, because it has simplified the construction of dL calculi [23], imple-
mentations [9], and machine-checked correctness proofs [4]. This will ease imple-
menting dLι and mechanizing the soundness proof in future work. The syntax of
dLι is divided into terms, programs, and formulas, whose definitions, unlike in
dL, are all mutually recursive. The terms θ of dLι extend the terms of dL with
definite descriptions, pairs, and reductions:

θ ::= q | x | f(θ) | θ + θ | θ · θ | (θ)′ | ιxφ | (θ, θ) | red(θ, s θ, lr θ)

for literal q ∈ Q and variable x ∈ V, where V is the set of all variable names,
f is a function symbol, and φ is a formula. The first six cases, polynomials,
differentials, and function symbols, are as in dL. Variables are flexible: they are
modified by quantifiers and programs. Variables x always denote some value
and so assignments succeed only when the RHS denotes a value. In contrast,
f(θ) is an uninterpreted function f applied to term θ, but both θ and f(θ) are
allowed to be non-denoting. While function symbols f rarely appear in theorem
statements, they are essential for the axioms of Sec. 5. The definite description
ιx φ denotes the unique value of x that makes formula φ true, if exactly one such
value exists, else it does not denote (since description is definite). Pairs (θ1, θ2)
can be nested to arbitrary finite depth, so their eliminator is primitive recursion
on binary trees with values at the leaves. Reduction red(θ1, s θ2, lr θ3) reduces
every leaf t ∈ R to θ2

t
s and reduces every pair a, b of recursive results to θ3

a
l
b
r,

where eyx is the capture-avoiding substitution of y for every x in e. For example,
if θ1 = ((−1, 2),−3), then the reduction red(θ1, s s

2, lr (r, l)) is the elementwise
square of the reverse tree, (9, (4, 1)).

The programs α, β of dLι are hybrid programs, a program syntax for hybrid
systems combining discrete and continuous dynamics. Hybrid programs of dLι are
identical to those of dL with the exception that any formula or term contained
therein is again any formula or term of dLι, not necessarily just dL. For any
starting state, a program α might transition to zero, one, or many final states.
Whenever a program transitions to zero states, we say it aborts.

α, β ::= x := θ | x′ = θ&ψ | ?φ | α ∪ β | α;β | α∗ | a

Assignments x := θ assign the value of term θ to variable x, if θ denotes a value,
else they abort. Tests ?φ abort execution if formula φ is not true, else they are
no-ops. Nondeterministic choices α ∪ β behave as either α or β, nondetermin-
istically. Sequential composition α;β performs β in any state resulting from α.
Loops α∗ repeat α sequentially any number of times, nondeterministically. The
defining construct of hybrid programs are the differential equations x′ = θ&ψ,
which continuously evolve x according to the differential equation x′ = θ for any
duration such that term θ denotes and formula ψ is true throughout. Note the
core syntax of dLι need only contain systems of a single variable x: in Sec. 4 we
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will derive systems with multiple variables from systems of one variable. Unin-
terpreted program constants a range over programs. We parenthesize programs
α as {α} with braces for disambiguation and readability. The formulas φ, ψ of
dLι are defined inductively:

φ, ψ ::= φ ∧ ψ | ¬φ | ∀xφ | θ1 ≥ θ2 | [α]φ | p(θ)

Conjunctions φ ∧ ψ, negations ¬φ, and quantifiers ∀xφ are as is standard in
first-order  Lukasiewicz [14] logic. The quantifier ∃xφ is also as in first-order
 Lukasiewicz logic and can be derived ∃xφ ≡ ¬∀x¬φ. In comparing θ1 ≥ θ2,
if terms θ1 and θ2 both denote reals, those reals are compared, if they both
denote tuples they are compared elementwise, in all other cases the result is
unknown (�). The defining construct of dynamic logics is [α]φ, which says φ
holds in all states reachable by running α. Its dual, 〈α〉φ, says there exists a state
reachable by running α where φ holds, and can be derived by the equivalence
〈α〉φ ≡ ¬[α]¬φ. Uninterpreted predicate symbols p expect terms θ, which are
also allowed not to denote, as arguments, and are allowed truth value unknown
(�). We write P,Q for predicates which take all variables as arguments. We
sometimes write the implication φ→ ψ as ψ ← φ for emphasis on ψ.

Example 1 (Robot Water Cooler). The textbook examples of non-Lipschitz ODEs
are those of form h′ = k·

√
h for constant k. In dLι, in contrast to dL, non-Lipschitz

terms simplify describing a hybrid system with such ODEs, which we base on
Hubbard’s leaky bucket [11, §4.2]. Consider a water cooler of height h and an
opening of surface area a in its bottom of surface area A, where g is acceleration
due to gravity. Suppose an enterprising student has equipped the cooler’s valve
with robotic control. We could then model the cooler as:

αB ≡
{{
{?h > 0; a := 1} ∪ a := 0

}
;h′ = −

√
2gh

a

A
&h ≥ 0

}∗
This says that so long as there is water in the cooler (?h > 0) we can choose
to open the valve (a := 1), but we can always close the valve (a := 0). Then
the water drains out the cooler at a rate proportional to the square root of the
current volume by Torricelli’s Law [7], or rate 0 if the valve is closed. This control
process repeats arbitrarily often. The constructs

√
2gh (root) and a

A (division)
are not core dL, but we can rewrite αB using definite descriptions:{{
{?h > 0; a := 1} ∪ a := 0

}
;h′ = −(ιy y2 = 2gh ∧ y ≥ 0)(ιz zA = a) &h ≥ 0

}∗
This example is representative because the ODE is non-Lipschitz: the solution
is unique at h = 0 only within the constraint h ≥ 0. The terms

√
2gh and a

A are
also both partial : defined only assuming gh ≥ 0 and A 6= 0, respectively. The
interactions between partiality, uniqueness, and the constraint combine to make
the proof subtle, even if short.

Common dL (and likewise, dLι) theorems include safety assertions of the form
φ→ [α]ψ which say that if φ holds initially, then ψ will necessarily hold after α.
For example, we might wish to prove the final water height of αB never exceeds
the initial height, so it is actually leaky (or at least is not filling up):
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Proposition 1 (Leakiness). This is valid (definitely true ⊕ in all states):

g > 0 ∧ h = h0 ∧ h0 > 0 ∧A > 0→ [αB ](h ≤ h0)

We will prove Prop. 1 after we have introduced a proof calculus for dLι in Sec. 5.

3 Denotational Semantics

We now formally define the semantics of dLι terms, formulas, and programs. Due
to the presence of definite descriptions ιx φ(x), not every dLι term denotes in
every state, i.e., dLι is a free logic [8]. We write ⊥ for the interpretation of a
term that does not denote any value. When a term denotes, it denotes a finite,
binary tree with real values at the leaves: a scalar denotes a singleton tree, while
(arbitrarily nested) pairs denote non-singleton trees. We refer to the set of all
real trees as Tree(R), where for any S, Tree(S) is the smallest set such that:
i) S ⊆ Tree(S), and ii) for any l and r ∈ Tree(S), (l, r) ∈ Tree(S). Typing
is extrinsic, i.e., we do not make typing distinctions between R and Tree(R)
in the semantics; typing constraints will be expressed explicitly as predicates.
To account for non-denoting terms, formulas can take on three truth values: ⊕
(definitely true), � (unknown), and 	 (definitely false). Thus dLι is a 3-valued
logic, and first-order connectives use the  Lukasiewicz [14] interpretation.

The interpretation functions are parameterized by state ω : V → Tree(R)
mapping variables to values, and by an interpretation I mapping function sym-
bols, predicate symbols, and program constants to their interpretation, including
the possibility of not denoting a value. Writing S for the set of all states, we
have I(f) : (Tree(R)∪⊥)→ (Tree(R)∪⊥), I(p) : (Tree(R)∪⊥)→ {⊕,�,	},
and I(a) : ℘(S × S), where ℘(U) is the power set of a set U . Below, ωtx is the
state that is equal to ω except at x, where ωtx(x) = t.

Definition 1 (Term semantics). The denotation of a term is either a tree or
undefined, i.e. Iω[[θ]] : Tree(R) ∪ {⊥}, and is inductively defined as:

Iω[[q]] = q Iω[[x]] = ω(x) Iω[[f(θ)]] = I(f)(Iω[[θ]])

Iω[[θ1 + θ2]] = Iω[[θ1]] + Iω[[θ2]] if Iω[[θ1]], Iω[[θ2]] ∈ R
Iω[[θ1 · θ2]] = Iω[[θ1]] · Iω[[θ2]] if Iω[[θ1]], Iω[[θ2]] ∈ R

Iω[[ιx φ]] =

{
t if a unique t ∈ Tree(R) has Iωtx[[φ]] = ⊕
⊥ otherwise

Iω[[(θ1, θ2)]] = (Iω[[θ1]], Iω[[θ2]]) if Iω[[θ1]], Iω[[θ2]] 6= ⊥
Iω[[red(θ1, s θ2, lr θ3)]] = Fold(Iω[[θ1]], s θ2, lr θ3, Iω) if Iω[[θ1]] 6= ⊥

Iω[[(θ)′]] =
∑
x∈V

ω(x′)
∂Iω[[θ]]

∂x
if I[[θ]] totally differentiable at ω

Iω[[θ]] = ⊥ in all other cases
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where ω(x′)∂Iω[[θ]]∂x abuses notation: when ω(x) is a tuple, the partial is taken
w.r.t. each leaf in x, scaled by the corresponding component of x′; the subtleties
of semantics for differentials are discussed at greater length in the companion
report [3]. In previous formalisms for dL [23] the semantics of (θ)′ do not explicitly
require that θ is totally differentiable because all pure dL terms are already
smooth, thus totally differentiable. In contrast, not all dLι terms are smooth,
thus we require total differentiability explicitly, as it is required for soundness
(specifically of DI≥, Sec. 5). If differentiability conditions are not met, then
Iω[[(θ)′]] = ⊥. Reductions Fold(t, s θR, lr θT , Iω) recurse on t:

Fold(t , s θR, lr θT , Iω) = Iωt
s[[θR]] when t ∈ R

Fold((L,R), s θR, lr θT , Iω) = IωKl
S
r [[θT ]] where

K = Fold(L, s θR, lr θT , Iω), S = Fold(R, s θR, lr θT , Iω)

That is, they reduce singletons t by binding s to t in θR, and reduce node (L,R)
by binding l, r to the reductions of the respective branches in θT .

Definition 2 (Formula semantics). The formula semantics are 3-valued:

Iω[[φ ∧ ψ]] = Iω[[φ]] u Iω[[ψ]] Iω[[¬φ]] = Iω[[φ]]

Iω[[∀xφ]] =
l

t∈Tree(R)

Iωtx[[φ]] Iω[[[α]φ]] =
l

(ω,ν)∈I[[α]]

Iν[[φ]]

Iω[[θ1 ≥ θ2]] = Geq(Iω[[θ1]], Iω[[θ2]]) Iω[[p(θ)]] = I(p)(Iω[[θ]])

Geq(r1, r2) = r1 ≥ r2 if r1, r2 ∈ R
Geq((l1, r1), (l2, r2)) = Geq(l1, l2) u Geq(r1, r2)

Geq(v1, v2) = � otherwise

p u q q = ⊕ � 	
p = ⊕ ⊕ � 	
p = � � � 	
p = 	 	 	 	

p p = ⊕ � 	
	 � ⊕

p→ q q = ⊕ � 	
p = ⊕ ⊕ � 	
p = � ⊕ ⊕ �
p = 	 ⊕ ⊕ ⊕

p↔ q q = ⊕ � 	
p = ⊕ ⊕ � 	
p = � � ⊕ �
p = 	 	 � ⊕

Implication p → q can be intuited as p ≤ q, (where 	 < � < ⊕) so (p → q)
is ⊕ even when p = q = �. Conjunction p u q takes the minimum value of the
arguments, and is unknown � when the least conjunct is �. Equivalence p↔ q is
reflexive (even (� ↔ �) is ⊕), but is � in all other cases where some argument is
�. We say a formula φ is valid if Iω[[φ]] = ⊕ for all ω and I. Comparisons θ1 ≥ θ2
are taken elementwise and are unknown (�) for differing shapes. Predicates p are
interpreted by the interpretation I. The meaning of quantifiers ∀xφ and [α]φ are
taken as conjunctions uS over potentially-uncountable index sets S. The value
of uS is the least value of any conjunct, one of {	,�,⊕}.

Definition 3 (Program semantics). Program semantics generalize those of
dL as conservatively as possible so that verification finds as many bugs as possible:
e.g. assignments of non-denoting terms and tests of unknown formulas abort. The
denotation of a program α is a relation I[[α]] where (ω, ν) ∈ I[[α]] whenever final
state ν is reachable from initial state ω by running α.
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I[[x := θ]] = {(ω, ωIω[[θ]]x ) | Iω[[θ]] 6= ⊥} I[[?φ]] = {(ω, ω) | Iω[[φ]] = ⊕}
I[[α ∪ β]] = I[[α]] ∪ I[[β]] I[[α;β]] = I[[α]] ◦ I[[β]]

I[[α∗]] = I[[α]]
∗

=
⋃
n∈N

I[[α; · · · ;α︸ ︷︷ ︸
n times

]]

I[[x′ = θ&ψ]] = {(ω, ν) | ω=ϕ(0) on {x′}{ and ν=ϕ(r) for some ϕ : [0, r]→ S

which solves x′ = θ&ψ, i.e., for s ∈ [0, r],
∂ϕ(t)(x)

∂t
(s) = ϕ(s)(x′)

and Iϕ(s)[[x′ = θ ∧ ψ]] = ⊕ and ϕ(s) = ϕ(0) on {x, x′}{}

where X{ is the complement of set X. ODEs x′ = θ&ψ are initial value prob-
lems: (ω, ν) ∈ I[[x′ = θ&ψ]] if some solution ϕ of some duration r ∈ R≥0 takes ω
to ν while satisfying ψ throughout. A solution ϕ must satisfy x′ = θ as an equa-
tion, satisfy constraint ψ, and assign the time-derivative of each x to each x′.
The initial value of x′ is overwritten and variables except x, x′ are not changed.
Assignments x := θ are strict: they store the value of θ in variable x, or abort
if θ does not denote a value. Tests ?φ succeed if φ is definitely true (⊕); both
the unknown (�) and definitely false (	) cases abort execution. Likewise, the
domain constraint ψ of a differential equation x′ = θ&ψ must be definitely-true
(⊕) throughout the entire evolution and the term θ implicitly must denote values
throughout the evolution, since Iϕ(s)[[x′ = θ ∧ ψ]] = ⊕.

4 Derived Constructs

A key benefit of dLι is extensibility: Many term constructs can be defined with
definite descriptions ιx φ and tuples which otherwise require unwieldy encodings
as formulas. In this section we reap the benefits of extensibility by defining such
new term constructs.

Arithmetic Operations. In practice, we often wish to use arithmetic operations
beyond the core dL operations. Fig. 1 demonstrates basic arithmetic operations
which have simple definitions in dLι but not as terms in dL: Of these, max, min,
and | · | preserve Lipschitz-continuity but not differentiability. Roots

√
θ can vi-

olate even Lipschitz-continuity and both roots and divisions are non-total. In
practice (as in Ex. 1), these operators are used in ODE models, making their
continuity properties essential. Since pure dL requires smooth terms [23], even
functions max and min would be encoded as formulas in pure dL.

Tuples. We make tuples first-class in dLι to simultaneously simplify the treat-
ment of ODEs compared to prior work [18] and provide support for data struc-
tures such as vectors, widely used in physical computations. In contrast to
the flexible function symbols (think: unbounded arrays) of QdL [20], they are
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(if(φ)(θ1)else(θ2)) = ιx (φ ∧ x=θ1) ∨ (¬φ ∧ x=θ2)

max(θ1, θ2) = ιx (θ1 ≥ θ2 ∧ x = θ1) ∨ (θ2 ≥ θ1 ∧ x = θ2)

min(θ1, θ2) = ιx (θ1 ≥ θ2 ∧ x = θ2) ∨ (θ2 ≥ θ1 ∧ x = θ1)

|θ| = max(θ,−θ)
√
θ = ιx (x2=θ ∧ x ≥ 0) θ1/θ2 = ιx (x · θ2=θ1)

(sin θ, cos θ) = ιz [t := 0; s := 0; c := 1; s′=c, c′=−s, t′=1; ?t=θ]z=(s, c)

Fig. 1. Derived arithmetic operations (for fresh x, t, c, s, z)

equipped with a primitive recursion operator, making it easier to write sophis-
ticated functional computations. These structures can be used in systems with
non-scalar inputs, for example a robot which avoids a list of obstacles [16].

While pairs (θ1, θ2) are core dLι constructs, the left and right projections π1θ
and π2θ are derivable, as are convenience predicates inR(θ) and isT(θ) which
hold exactly for scalars and tuples, respectively:

π1θ ≡ ιl ∃r (θ = (l, r)) π2θ ≡ ιr ∃l (θ = (l, r))

inR(θ) ≡ (red(θ, s 1, lr 0) = 1) isT(θ) ≡ (red(θ, s 1, lr 0) = 0)

When combined with the reduce operation on trees, these operations can be
used to implement a variety of data structures. Fig. 2 shows an example library
of operations on lists. Lists are represented as nested pairs, with no special
terminator. We name an argument L to indicate its intended use as a list rather
than an arbitrary tree. Lists are trees whose left-projections are never pairs.
Additional data structures are shown in the report [3].

Systems of ODEs. Tuples reduce ODE systems to individual ODEs, e.g.:

{x′1=θ1, x
′
2=θ2} ≡

(
z := (x1, x2); {z′ = (θ1

πjz
xj
, θ2

πjz
xj

)}; x1 := π1z; x2 := π2z
)

While this encoding is simple, it will enable us in Sec. 5 to support systems
of any finite dimension in axiom DG, which implementation experience [9] has
shown challenging due to the variable dependencies involved.

map2(T, f(x, y)) = red(T, s s, lr if(inR(r))(f(l, r))else{(f(π1l, π2l), r)})
snoc(L, x) = red(L, s (s, x), lr (π1l, r)) rev(L) = red(L, s s, lr snoc(r, l))

zip(L1, L2) = π1red(rev(L1), s ((s, π1L2), π2L2), lr (((π1π1l, π1π2r), π1r), π2π2r))

(L1+L2) = map2(zip(L1, L2), x+ y)

L1·L2 = red(map2(zip(L1, L2), x · y), s s, lr l + r)

Fig. 2. Example vector functions
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Types and Definedness. Many of the operations in dLι expect, for example, reals
or terms that denote values. For simplicity, we make these type distinctions
extrinsically: core dL terms are untyped, and proposition inR(θ) says θ belongs
to type R. Typed quantifiers are definable, e.g., ∀x :R φ ≡ ∀x (inR(x) → φ).
Whether a term denotes is also treated extrinsically. Formula E(θ) ≡ D(θ = θ)
only holds for terms that denote, where D(φ) says φ is definitely true, which has
truth value ⊕ when φ has truth value ⊕ and has value 	 otherwise. We give its
truth table and a definition:

p ⊕ � 	
D(p) ⊕ 	 	 D(φ) ≡ ¬(φ→ ¬φ)

That is, D(φ) collapses � into 	. These constructs are used in the axioms of
Sec. 5. In the same spirit, we sometimes need to know that a function f(x) (of
any dimension) is continuous, but derive this notion. We write Con(f(x)) to say
that f(x) is continuous as x varies around its current value:

Con(f(x)) ≡ D(∀ξ ∃δ ∀y (0 < ‖y − x‖ < δ → ‖f(y)− f(x)‖ < ξ))

Note that when Con(f(x)) holds, the shape of f(x) is constant in a neighborhood
of x, since the Euclidean norm ‖f(y)− f(x)‖ does not exist when f(y) and f(x)
differ in shape. Likewise, Con(f(x)) requires only continuity on y whose shape
agrees with that of x, since the Euclidean norm ‖y−x‖ does not otherwise exist.

5 dLι Axioms

Our proof system is given in the Hilbert style, with a minimum number of
proof rules and larger number of axioms, each of which is an individual concrete
formula. The core proof rule is uniform substitution [23][6, §35,§40]: from the
validity of φ we can conclude validity of σ(φ) where the uniform substitution σ
specifies concrete replacements for some or all predicates, functions, and program
constants in a formula φ:

US
φ

σ(φ)

The soundness side-conditions to US about σ are non-trivial, and make up much
of its soundness proof in Sec. 6. The payoff is that uniform substitution enables
a modular design where such subtle arguments need only be done once in the
soundness proof of the US rule, and every axiom, which is now an individual
concrete dLι formula, is significantly simpler to prove valid and to implement.

Fig. 3 gives axioms and rules for the discrete programming constructs, which
are generalizations of corresponding axioms [23] for dL to account for non-
denoting terms and unknown formulas. Axioms are augmented with definedness
conditions whenever multiple occurrences of terms or formulas differ in their
tolerance for partiality. The conclusion (in canonical usage) of each axiom is
highlighted in blue, while any difference from the dL axioms is highlighted in red.
Recall the operator D(φ) says φ is definitely true. For example, axiom [?] says
that a test ?Q succeeds when Q is definitely true. The induction axiom I requires
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[·] 〈a〉P ↔ ¬[a]¬P

[:=] ([x := f ]p(x)↔ p(f))← E(f)

[?] [?Q]P ↔ (D(Q)→ P )

[∪] [a ∪ b]P ↔ [a]P ∧ [b]P

[; ] [a; b]P ↔ [a][b]P

[∗] [a∗]P ↔ P ∧ [a][a∗]P

∀i (∀x p(x))→ (E(f)→ p(f))

∀→ ∀x (p(x)→ q(x))→ ∀x p(x)→∀x q(x)

K [a] (P → Q)→ ([a]P → [a]Q)

I [a∗]D(P → [a]P )→D(P → [a∗]P )

V p→ [a]p

G
P

[a]P

∀
p(x)

∀x p(x)

MP
P → Q P

Q

V∀ p→ ∀x p

Fig. 3. Discrete dL axioms

the inductive step proved definitely true, but concludes definite truth. The other
axioms for program constructs ([·],[∪],[; ][∗]) carry over from dL without mod-
ification, since partiality primarily demands changes when mediating between
formulas and programs or between terms and program variables. As is standard
in free logics, axiom ∀i says that since quantifiers range over values, they must
be instantiated only to terms that denote values. Assignments [:=] require the
assigned term to denote a value, since program variables x range over values.

Fig. 4 gives the dLι generalizations of dL’s axioms for reasoning about dif-
ferential equations: DC is generalized by analogy to [?] to require definite truth
and DG is generalized to require continuity, otherwise the axioms carry over
unchanged. DW says the constraint of an ODE always holds as a postcondi-
tion. DC says any postcondition which is proven (definitely) true may be added
to the constraint. DE says the ODE holds as an equation in the postcondi-
tion. DI≥ is the differential induction [19] axiom for proving nonstrict inequal-
ities f(x) ≥ g(x) follow from their differential formula (f(x))′ ≥ (g(x))′. The
strict case f(x) > g(x) is analogous; axioms for equality, inequality, conjunction,
and disjunction can be derived from these. Note the assumptions in DI≥ hold
only when f(x) and g(x) are totally differentiable within the constraint, as re-
quired for soundness. DG allows extending a system with an additional ghost
dimension, and is used for everything from solving systems to reasoning about
exponentially-decaying systems [25]. The new dimension is required to be Lip-
schitz so that solutions exist and is required to be linear in the new variables
so that the solutions of the extended system exist as long as those of the initial
system. DS says the solution of a constant ODE system is linear. To solve multi-
dimensional systems with DS, interpret x+fs and x+ft as pairwise vector sums
per Fig. 2. Axiom (θ)′ expands a differential (f(x))′ according to the definition
of total differential. It assumes E((f(x))′) because equalities are not allowed to
hold between non-denoting terms; proving these assumptions is enabled by ax-
iom E(′). In practice, axioms are derived from E(′) for each case and applied
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DW [x′ = f(x)&q(x)]q(x)

DC
(
[x′ = f(x)&q(x)]p(x)↔ [x′ = f(x)&q(x) ∧ r(x)]p(x)

)
← D([x′ = f(x)&q(x)]r(x))

DE [x′ = f(x)&q(x)][x′ := f(x)]p(x, x′)↔ [x′ = f(x)&q(x)]p(x, x′)

DI≥

(
[x′ = h(x)&q(x)]f(x) ≥ g(x)↔ [?q(x)]f(x) ≥ g(x)

)
← [x′ = h(x)&q(x)](f(x))′ ≥ (g(x))′

DG
∀x (q(x)→ Con(a(x)) ∧ Con(b(x)))

→
(
[x′ = f(x)&q(x)]p(x)↔ ∃y :R [x′=f(x), y′ = a(x)y + b(x)&q(x)]p(x)

)
DS

(
∀t :R ((∀0≤s≤t q(x+ fs))→ [x := x+ ft]p(x))

)
→ [x′ = f & q(x)]p(x)

(θ)′
(f(x))′ = x′ · ιM ∀ξ>0 ∃δ ∀yD(0<‖y−x‖<δ→ f(y)−f(x)−M(y−x)<ξ‖y−x‖)

← E((f(x))′)

E(′) E((f(x))′)←E(ιM ∀ξ>0 ∃δ ∀yD(0<‖y−x‖<δ→ f(y)−f(x)−M(y−x)<ξ‖y−x‖))

Fig. 4. Differential equation axioms and differential axioms

recursively to automatically prove existence, for example:

E((f(x))′) ∧ E((g(x))′)→ E(((f + g)(x))′)

is used to show differentials of sums exist. Likewise, axiom (θ)′ is long-winded for
practical proving, so we will use it to implement simpler special-case axioms in
Ex. 2. The definition of (θ)′ above only supports real-valued x and f(x), because
scalar differences f(y)− f(x) and y−x only denote a value when x, y, f(x), and
f(y) are reals. The report [3] discusses its generalization to tree-valued functions
of tree-valued arguments.

ι p(ιz p(z))↔ ∃x
(
p(x) ∧ ∀y (p(y)→ y = x)

)
=T l1=l2 ∧ r1=r2 ↔ (l1, r1)=(l2, r2)

QE
∗(∧

x∈V(φ) inR(x)
)
→ φ

(where φ is valid in first-order real arithmetic)

redT red((L,R), s f(s), lr g(l, r)) = g
(
red(L, s f(s), lr g(l, r)), red(R, s f(s), lr g(l, r))

)
redR inR(r)→ red(r, s f(s), lr g(l, r)) = f(r)

TreeI D
(
p(ιx 0 = 1) ∧ ∀s

(
inR(s)→ p(s)

)
∧ ∀lr

(
p(l) ∧ p(r)→ p((l, r))

))
→ D(p(t))

Fig. 5. Axioms for datatypes

Fig. 5 gives axioms for definite descriptions and tuples. Axiom ι fully char-
acterizes definite descriptions, and it is used to derive axioms for defined term
constructs like those in Ex. 2. Axiom =T enables comparisons on tuples. Quan-
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tifier elimination rule QE uses that first-order real arithmetic, a fragment, is
decidable [27]. Since variables of dLι may range over tuples, which are not part
of first-order arithmetic, it must first check that all variables of the formula
(written V(φ)) are indeed real-valued. Axioms redT and redR evaluate reduc-
tions when their shape is known, and axiom TreeI allows proving a property
of an arbitrary value by induction on its shape, including a second base case
p(ιx 0 = 1) where the argument to p does not denote.

Example 2 (Derived axioms). The following are examples of derived axiom schem-
ata that have been proved from those above. Proofs are in the report [3].

π1(l, r) = l π2(l, r) = r inR(f) ∨ isT(f)← E(f) (x)′ = x′

(f(x) + g(x))′ = (f(x))′ + (g(x))′ ← E((f(x))′) ∧ E((g(x))′) (f)′ = 0← E(f)

(f(x) · g(x))′ = (f(x))′ · g(x) + (g(x))′ · f(x)← E((f(x))′) ∧ E((g(x))′)

It is significant that the differential axioms of Ex. 2 are derived : when new term
constructs are added in the future, we expect to derive their differential axioms
as well, so that these extensions lie entirely outside the core dLι calculus. Note
that these axioms also conclude (by applying axiom E(′)) that the differential
of the larger term exists, because it equals something. Thus, these axioms are
suitable both for showing differentials exist and what form differentials take.

Example 3 (Proof of leakiness). Prop. 1 of Sec. 2 is provable in dL.

Proof (Sketch). By axiom I with loop invariant P ≡ (g > 0 ∧A> 0 ∧ 0≤h≤h0).
The first two conditions are trivially invariant by axiom V because g and A are
constant throughout αB . Proceed by cases with axiom [∪]. In each case, show
h ≤ h0 to be an invariant of the ODE by DI≥. Because h ≤ h0 holds initially and
the ODE is locally Lipschitz-continuous given constraint h ≥ 0, it suffices to show
(h)′ ≤ (h0)′ = 0 throughout. Then (h)′ ≤ 0 ⇐⇒ −

√
2gh aA ≤ 0 ⇐⇒

√
h ≥ 0

by algebra and DE, which is true by DW, showing h ≤ h0. ut

6 Theory

Proofchecking is decidable, and provable formulas are valid.

Theorem 1 (Proofchecking decidability). There exists an algorithm which
decides whether a derivation D is a proof of a given dLι formula φ.

Theorem 2 (Soundness of dLι). If φ is provable in dLι, then φ is valid.

The proof of soundness proceeds by induction on the structure of derivations.
That is, we prove each axiom (which is an individual formula) to be valid and
prove every proof rule to be sound (producing valid conclusions from valid pre-
misses). Because dLι supports the formula and program connectives of dL, many
of the axioms are extensions of corresponding dL axioms. The axiom validity
proofs also have a similar flavor to those of dL: each axiom is proven valid by
direct proof, showing truth of the axiom according to the denotational semantics
in an arbitrary state. The full proofs for each axiom and rule are given in the
report [3]; Lem. 1 gives an example.
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Lemma 1 (Assignment axiom is valid). The following formula is valid:
([x := f ]p(x)↔ p(f))← E(f)

Proof. Assume (1) Iω[[E(f)]] = ⊕ for some state ω and interpretation I, then
observe Iω[[[x := f ]p(x)]] = Iω[[p(f)]] by the chain of equalities Iω[[[x := f ]p(x)]] =
d
ν | (ω,ν)∈{(ω,ωIω[[f]]

x )},Iω[[f ]] 6=⊥ Iν[[p(x)]] = Iω
Iω[[f ]]
x [[p(x)]] = I(p)(I(f)) = Iω[[p(f)]]

ut

6.1 Uniform Substitution

The uniform substitution proof rule in dLι is analogous to that in dL:

US
φ

σ(φ)

In dL, the US rule is sound when the substitution σ does not introduce free
references to bound variables, in a sense made precise elsewhere [23]. Such sub-
stitutions are called admissible, a condition which can be checked syntactically.

We show that the same holds of dLι when adding terms ιx φ, (θ1, θ2) and
red(θ1, s θ2, lr θ3) and generalizing dL to a three-valued semantics. As in dL, we
formulate admissibility in terms of U -admissibility (Def. 4) checks.

Definition 4 (Admissible uniform substitution). A substitution σ is U -
admissible for φ (or θ or α) with respect to a set U ⊆ V∪V ′ iff FV(σ|Σ(φ))∩U = ∅
where σ|Σ(φ) is the restriction of σ that only replaces symbols that occur in φ
and FV(σ) =

⋃
f∈σ FV(σf(·)) ∪

⋃
p∈σ FV(σp(·)) are the free variables that σ

introduces, and where V ′ = {x′ | x ∈ V}. The substitution σ is admissible for φ
(or θ or α) if all such checks during its applications hold, per Fig. 6.

Case Replacement Admissible when

σ((θ1, θ2)) = (σ(θ1), σ(θ2))

σ(red(θ1, s θ2, lr θ3)) = red(σ(θ1), s σ(θ2), lr σ(θ3)) σ is {s}-admissible for θ2

σ is {l, r}-admissible for θ3

σ(ιx φ) = ιx σ(φ) σ is {x}-admissible for φ

σ(∀xφ) = ∀xσ(φ) σ is {x}-admissible for φ

σ([α]φ) = [σ(α)]σ(φ) σ is BV(σ(α))-admissible for φ

σ(f(θ)) = f(σ(θ)), if f /∈ σ, else σf(σ(θ))

Fig. 6. Uniform substitution algorithm (selected cases)
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In Fig. 6, σf denotes the replacement for symbol f provided by σ. We give the
new cases of FV(·) here and the full static semantics in the report [3]:

FV((θ1, θ2)) = FV(θ1) ∪ FV(θ2) FV(ιx φ) = FV(φ)\{x}
FV(red(θ1, s θ2, lr θ1)) = FV(θ1) ∪ (FV(θ2)\{s}) ∪ (FV(θ3)\{l, r})

Admissibility checks employ static semantics consisting of free-variable (FV(·)),
may-bound-variable (BV(·)), and must-bound-variable (MBV(·)) computations.
Generally speaking, the free variables of a compound expression θ are the free
variables of its immediate subexpressions, minus any variables that it binds
Formally, FV(θ) (or φ, α) contains all variables that influence meaning:

Lemma 2 (Coincidence). The interpretation of an expression depends only
on the values of its free variables and constants, e.g. for any term θ, any in-
terpretations I and J that agree on the signature (mentioned predicate symbols,
function symbols, and program constants) Σ(θ) of θ, and any states ω and ω̃
that agree on FV(θ), we have Iω[[θ]] = Jω̃[[θ]].

The substitution result for a compound expression is found by substituting in
each immediate subexpression, and is defined so long as all admissibility checks
hold recursively. In general, the admissibility check for each constructor says that
the substitution result must not contain any new occurrences of the variables
bound at that constructor.

Theorem 3 (Uniform substitution). Rule US is sound.

Soundness of the proof system then follows from validity of the axioms and
soundness of US and of the other proof rules.

6.2 Expressive Power

After showing soundness of dLι, we explore its expressive power: can dLι express
formulas that are inexpressible in dL, or is its advantage the ease with which
certain formulas are expressed? Conversely, are all dL formulas expressible in
dLι? Because dLι is an extension of dL, it is unsurprising that it can express all
dL formulas. However, a valid dL formula φ is not always valid in dLι.

Remark 1 (Conservativity counterexample). There exist valid formulas of dL that
are not valid formulas of dLι.

Proof. The formula φ ≡ (x · x ≥ 0) is not conserved, because it is true for all
real values of x, but fails when x is a tuple such as (0, 0), outside the domain of
multiplication. This is why rule QE requires inR(x) for each mentioned x. ut

We transform dL quantifiers to real-valued dLι quantifiers to close the gap:

Theorem 4 (Converse reducibility). There exists a linear-time transforma-
tion T such that for all φ in dL, T (φ) is valid in dLι iff φ is valid in dL.
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The greater challenge is to show that dL also suffices to express all dLι formulas
and thus dL and dLι are equiexpressive:

Theorem 5 (Reducibility). There is a computable T s.t. for all formulas φ,
interpretations I, and states ω in dLι, Iω[[φ]] = ⊕ in dLι iff Iω[[T (φ)]] = ⊕ in dL.

While this result might be misread to suggest that dLι is not truly necessary, def-
inite descriptions enable us to define constructs that have no description as terms
in dL, even if they can be expressed through a sufficiently complex formula trans-
lation. The key is that the reduction from dLι to dL is indeed complex, exploiting
for example Gödel encodings for tuples and continuous functions [24,21]. On the
contrary, the complexity of the reduction shows that native support for definite
descriptions is essential for practical proving. The equiexpressiveness result is of
theoretical interest because it allows us to inherit results from dL [18]:

Theorem 6 (Completeness and decidability). dLι is reducible to dL, and
therefore semidecidable relative to properties of differential equations.

While the reduction gives a semi-decision procedure for dLι in principle, it is
infeasible for implementation, especially since deciding even core dL is hard in
practice. Moreover, this would defeat our purpose: easing implementation of
practical term language extensions in dL, where interactive proof is common.

7 Conclusion and Future Work

In this paper we developed dLι, an extension to differential dynamic logic (dL)
for formal verification of hybrid systems models of safety-critical cyber-physical
systems. The key feature of dLι is definite description ιx φ, which provides a
foundation for defining new term language constructs from their characteristic
formulas. We develop the theory of dLι, including semantics, a proof calculus, and
soundness and expressiveness proofs. We apply dLι to verify a classic example of
a non-Lipschitz ODE, which could not be directly verified in dL.

In particular, we give a novel axiomatization that accounts for the interac-
tions between non-differentiable and partially defined operators with systems of
differential equations, an interaction which does not occur for dL’s simpler lan-
guage where all terms are smooth. More generally, example applications abound:
almost every serious case study of dL employs these constructs in practice; we
give a fully rigorous foundation to these case studies. In future work, imple-
menting dLι in KeYmaera X would enable case studies to soundly employ the
constructs given herein and to define their own. We expect few core changes
would be needed, thanks to our use of uniform substitution, rather the challenge
is to efficiently prove and track the new assumptions on existence and continuity.

Acknowledgments. We thank Martin Giese for discussions on the use of definite
descriptions in theorem provers and the referees for their thoughtful feedback.
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C.A., Tahar, S. (eds.) TPHOLs. LNCS, vol. 5170, pp. 28–32. Springer (2008).
https://doi.org/10.1007/978-3-540-71067-7 6

27. Tarski, A.: A decision method for elementary algebra and geometry. In: Quantifier
Elimination and Cylindrical Algebraic Decomposition, pp. 24–84. Springer (1998)

https://doi.org/10.1093/logcom/exn070
https://doi.org/10.2168/LMCS-8(4:17)2012
https://doi.org/10.1109/LICS.2012.64
https://doi.org/10.1109/LICS.2012.13
https://doi.org/10.1007/s10817-016-9385-1
https://doi.org/10.1007/s10817-016-9385-1
https://doi.org/10.1145/3091123
https://doi.org/10.1145/3209108.3209147
https://doi.org/10.1007/978-3-540-71067-7_6

	: Definite Descriptions in Differential Dynamic Logic

