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Abstract. This invited paper is a passionate pitch for the significance
of logic in scientific education. Logic helps focus on the essential core to
identify the foundations of ideas and provides corresponding longevity
with the resulting approach to new and old problems. Logic operates
symbolically, where each part has a precise meaning and the meaning
of the whole is compositional, so a simple function of the meaning of
the pieces. This compositionality in the meaning of logical operators is
the basis for compositionality in reasoning about logical operators. Both
semantic and deductive compositionalities help explain what happens in
reasoning. The correctness-critical core of an idea or an algorithm is often
expressible eloquently and particularly concisely in logic. The opinions
voiced in this paper are influenced by the author’s teaching of courses on
cyber-physical systems, constructive logic, compiler design, programming
language semantics, and imperative programming principles. In each of
those courses, different aspects of logic come up for different purposes to
elucidate significant ideas particularly clearly. While there is a bias of the
thoughts in this paper toward computer science, some courses have been
heavily frequented by students from other majors so that some transfer
of the thoughts to other science and engineering disciplines is plausible.

Keywords: Education · Logic · Logic of dynamical systems · Construc-
tive logic · Proofs · Programs · Program semantics

1 Introduction

This paper is a passionate pitch for the significance of logic in scientific edu-
cation. Education has multiple important goals that range from practical skills
that enable a student to efficiently solve present challenges met in academic and
industrial practice all the way to the longevity of foundations that influence a
student’s thinking for a lifetime in yet unforeseeable areas. Logic is particularly
good at impacting the latter foundations but also plays a role in the former
practice. The reason for logic’s longevity is its unreasonable effectiveness [18] of
identifying the core essentials of a question and its answer. For example, several
aspects that make a big syntactic difference in a particular application context
still lead to a negligible difference once the phenomenon has been captured with
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logic. Just like proof-based mathematics, its sibling of logic teaches rigorous rea-
soning principles and how to use it to overcome challenges. Logic is crystal clear
on the foundations of reasoning, on what a proof is, which reasoning princi-
ples are correct and why, and is explicit about possible structuring principles
about proofs. There is an obvious and frequently mentioned positive synergy
with experience in proof-based mathematics and experience in logic.

The opinions reflected in this paper are based on the author’s experience
in computer science undergraduate to PhD-level teaching at different research
universities since 2008 as well as engagement in university committees restruc-
turing undergraduate introductory education. While these opinions are influ-
enced from the author’s educational computer science bias, the introductory
Principles of Imperative Computation and the upper-level Logical Foundations
of Cyber-Physical Systems courses he taught were also frequented by students
from several other majors, including mathematics, physics, electrical engineer-
ing, and robotics, so that some generalization of these thoughts to other sciences
and engineering disciplines are plausible.

2 Logic in the Science Curriculum

To give the reader some appreciations for the different aspects of logic that enter
different courses, here is an overview of some of the logic-influences in some of
the courses influenced by what the author taught.1

1. Principles of Imperative Computation is the first computer science course for
computer science undergraduates and many other disciplines originally de-
signed by Frank Pfenning and refined by the author. It combines algorithms
and data structures, imperative programming introduction, and program
contracts for establishing their correctness. Logic enters informally when
reasoning mathematically about preconditions, postconditions, loop invari-
ants, and data structure invariants. This immediate appreciation for the
fundamental aspects of operational and logical reasoning about programs
enables the students in the course to obtain a particularly strong command
of writing reliable imperative programs. In the last homework, the students
showcase their understanding of imperative programming by programming
a virtual machine in C reflecting on the nuances of operational semantics.
About 300–800 students take this course every year.

2. Constructive Logic is a third year undergraduate course for computer sci-
ence but also mathematics and philosophy students designed by Frank Pfen-
ning, also taught by Karl Crary, and refined by the author. It teaches the
logical foundations of functional programming from proofs-as-programs via
the Curry-Howard isomorphism as well as the logical foundations of logic
programming from propositions-as-programs while proving the fundamen-
tal principle of cut elimination and proof search refinements along the way.
About 100 students take this course every year.

1 Lecture material is available at http://lfcps.org/

http://lfcps.org/
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3. Compiler Design is an upper undergraduate level computer science course
designed by Frank Pfenning and the author. It teaches the principles for
designing compilers, where logical proof rules that represent logic programs
are used to capture dataflow analysis, parsing, programming language se-
mantics (via structural operational semantics), compiler optimizations etc.
While logic is not a learning goal of the course, logic is still crucial in con-
cisely communicating the actual idea behind many phases of a compiler.
About 80 students take this course every year.

4. Logical Foundations of Cyber-physical Systems [12, 15] is an upper under-
graduate and/or master’s level computer science course designed by the au-
thor. It teaches what principles one has to know in order to design safe
cyber-physical systems and justify their safety properties. Logic and pro-
gramming languages play central roles in the course as means to identify the
core mathematical challenges and solution techniques especially for justify-
ing safety. The course is supported by a textbook, slides, lecture videos, a
theorem prover, active learning quizzes, and a competition. About 20 stu-
dents take this course every year.

5. Programming Language Semantics is a PhD-level course based on Steve
Brooke’s take on John Reynolds course design [17], but reinterpreted by
the author with more focus on logic. It teaches the principles of program-
ming language semantics, which has a direct link to logic via the axiomatic
semantics of programming languages, as well as clear links with logic via
soundness and relative completeness theorems of the axiomatic semantics
with respect to the denotational or operational semantics. The extensive use
of logic in the author’s version of the course significantly simplifies otherwise
quite demanding and technical semantical challenges making it possible to
teach crucial ideas with minimal technical effort. About 10–20 students take
this course every year.

Some of the insights behind some of these courses with a particular focus
on logic will be reviewed in the sequel. The course in items 1 is a required first
semester undergraduate course. The courses in items 2 and 4 are one of several
different courses satisfying the undergraduate logic requirement. The course in
item 3 is one of several different courses satisfying the systems requirement.
The courses in items 4 and 5 are one of several different courses satisfying the
programming language PhD requirement.

3 Course: Logical Foundations of Cyber-Physical Systems

The Logical Foundations of Cyber-Physical Systems (LFCPS) course2 is accom-
panied by a textbook [15], slides, more than 20 hours of lecture videos3, and
a thorough active learning quiz that enables students to practice and reinforce
the learning goals of every lecture. The course was originally designed for upper

2 http://www.lfcps.org/lfcps/
3 http://videos.lfcps.org/

http://www.lfcps.org/lfcps/
http://videos.lfcps.org/


6 André Platzer

level undergraduate students [12] but has since been opened up to masters and
PhD students. It has been designed and taught by the author at Carnegie Mel-
lon University, ENS Lyon, the University of Braga, and the Karlsruhe Institute
of Technology. Short versions of the course were the basis for several summer
school lectures, including the summer schools in Marktoberdorf, on Automated
Reasoning, on Verification Technology Systems & Applications, and on Cyber-
Physical Systems. The following discussion is based on thoughts expressed in
the LFCPS textbook [15], which also identifies lecture dependencies for courses
based on different subsets of the lectures.

The Logical Foundations of Cyber-Physical Systems textbook and course are
breaking with the myth that cyber-physical systems (CPSs) are too challenging
to be taught at the undergraduate level. CPSs such as computer-controlled cars,
airplanes or robots play an increasingly crucial role in our daily lives. They are
systems that we bet our lives on, so they need to be safe. Getting CPSs safe,
however, is an intellectual challenge, because of their intricate interactions of
complex control software with their physical behavior. Who can design these
notoriously challenging systems with the scrutiny that is required to make sure
they can be used safely? How can students, scientists, and practitioners acquire
the required background in a single course or a single textbook in a way that
meets the demands on rigor required in safe CPS design? In the LFCPS course,
students quickly advance from learning basic concepts underlying CPSs to being
able to prove safety properties about complex CPS.

The Challenge. Teaching CPS-related topics is notoriously challenging, but also
creates an opportunity to discover and explore other areas of science with the
intrinsic motivation it takes to succeed. A few students may have a background
either in engineering physical systems, or in some areas of formal methods, but
almost never in both and, in fact, often in neither of the two. A sharp educational
gap has also been confirmed across the board at the 2013 NSF workshop on CPS
education [3]. This brings up the question of how to best teach the core aspects
of CPS with the rigor that is required to prepare students and professionals
for the challenges that lie ahead in enriching our world with safe and reliable
cyber-physical systems.

The challenge is that CPSs are a cozy topic to take on after background
reading equivalent to the material acquired for a PhD in mathematics, a PhD
in computer science, a PhD in logic, and a PhD in engineering or controls.
The trick is to find out how to enable students to understand CPS gradually
without losing interest and engagement. Besides identifying the easiest and most
intuitive, background-free approach for presenting the various technical concepts,
the biggest educational contribution of this course is the clever out-of-order
arrangement of the topics to overcome the problem that CPSs have such a long
dependency chain of required background. There certainly is a reason for the
acute shortage of rigorous CPS courses for undergraduate students.

There are two primary ways of learning about cyber-physical systems [15],
reprinted here with permission from Springer:



The Significance of Symbolic Logic for Scientific Education 7

Onion Model. The Onion Model follows the natural dependencies of the layers of
mathematics going outside in, peeling off one layer at a time, and progressing to
the next layer when all prerequisites have been covered. This would require the
CPS student to first study all relevant parts of computer science, mathematics,
and engineering, and then return to CPS in the big finale. That would require
the first part of the course to cover real analysis, the second part differential
equations, the third part conventional discrete programming, the fourth part
classical discrete logic, the fifth part theorem proving, and finally the last part
cyber-physical systems. In addition to the significant learning perseverance that
the Onion Model requires, a downside is that it misses out on the integrative
effects of CPSs that can bring different areas of science and engineering together,
and which provide a unifying motivation for studying them in the first place.

Scenic Tour Model. The LFCPS course follows the Scenic Tour Model, which
starts at the heart of the matter, namely CPSs, going on scenic expeditions in
various directions to explore the world around as we find the need to understand
the respective subject matter. The course directly targets CPS right away, be-
ginning with simpler layers that the reader can understand in full before moving
on to the next challenge.

For example, the first layer comprises CPSs without feedback control, which
allow simple finite open-loop controls to be designed, analyzed, and verified
without the technical challenges considered in later layers of CPS. Likewise, the
treatment of CPS is first limited to cases where the dynamics can still be solved
in closed form, such as straight-line accelerated motion of Newtonian dynamics,
before generalizing to systems with more challenging differential equations that
can no longer be solved explicitly. This gradual development where each level is
mastered and understood and practiced in full before moving to the next level
is helpful to tame complexity. It also follows naturally the layers of complexity
in logic. The Scenic Tour Model has the advantage that the students stay on
CPSs the whole time, and leverage them as the guiding motivation for under-
standing more and more about the connected areas. It has the disadvantage that
the resulting gradual development of CPS does not necessarily always present
matters in the same way that an after-the-fact compendium would treat it.4 A
gradual development can also be more effective at conveying the ideas, reasons,
and rationales behind the development compared to a final compendium, which
improve generalizability promises compared to a mere factual presentation.

Computational Thinking for CPS. The approach that the LFCPS course fol-
lows takes advantage of Computational Thinking [19] for CPSs. Due to their
subtleties and the intricate interactions of complex control software with the
physical world, CPSs are notoriously challenging. Logical scrutiny, formaliza-
tion, and thorough safety and correctness arguments are, thus, critical for CPS.
Because CPS are so easy to get wrong, these logical aspects are an integral part
of their design and critical to understanding their complexities.

4 The textbook compensates for this by providing technical summaries and by high-
lighting important results for later reference.
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The primary attention of the course, thus, is on the foundations and core
principles of CPS. The course tames some of the CPS complexities by focusing on
a simple core programming language for CPS. The elements of the programming
language are introduced hand in hand with their reasoning principles, which
makes it possible to combine CPS program design with their safety arguments.
This is important, not just because abstraction is a key factor for success in CPS,
but also because retrofitting safety is not possible in CPS. The CPS programming
language of hybrid programs taught in the textbook pass with flying colors Alan
J. Perlis’ test, who rejected programming languages by the following criterion:

“A language that doesn’t affect the way you think about programming,
is not worth knowing.”
– Alan J. Perlis [7]

Logic to Tame CPS. On account of their technical challenges, programming and
investigating the safety of CPS may be a daunting task. But logic significantly
simplifies this challenge thanks to the principles of logical compositionality in
multi-dynamical systems [11,13,15]. The first step is to make safety statements
about cyber-physical systems a first-level citizen in logic. The resulting differen-
tial dynamic logic (dL) [8–11,14,15] features modalities [α] for hybrid programs
α that describe the possible behavior of a CPS as a program with differential
equations. The dL formula [α]P expresses that after all runs of hybrid program α
the dL formula P is true (safety). It is an ordinary dL formula, so the implication
Q → [α]P expresses that if formula Q is true initially, then all runs of hybrid
program α are such that formula P is true afterwards.

Example 1 (Car acceleration or braking). The following dL formula expresses
that, if a car x is before an obstacle m and its brakes b work, then all ways of
following a hybrid program that first has a nondeterministic choice (∪) to apply
acceleration by assigning a :=A or to apply brake by a :=−b and subsequently
follows the differential equation system with the time-derivative x′ of position
x being velocity v, whose time-derivative is the acceleration a but only while
the velocity v is nonnegative, then all its behaviors keep the position before the
obstacle and the velocity nonnegative:

x ≤ m ∧ b > 0 → [(a :=A ∪ a :=−b); {x′ = v, v′ = a& v ≥ 0}](x ≤ m ∧ 0 ≤ v)

Whether this dL formula is true is a good question, but now this question has a
logically precise rendition and unambiguous answer.

Logic is not just useful for the clear and unambiguous expression of questions
about cyber-physical systems but also for finding the answer. This is where
axioms for cyber-physical systems become useful. For example, the dL axiom [;]
captures that all behavior of the sequence α;β safely satisfies formula P if and
only if all behaviors of the first part α are such that all behaviors of the second
part β satisfy P :

[;] [α;β]P ↔ [α][β]P
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Example 2 (Car motion after car control). Using axiom [;] reduces the dL for-
mula from Example 1 to an equivalent that split off the discrete control from the
differential equation of motion:

x ≤ m ∧ b > 0 → [a :=A ∪ a :=−b][x′ = v, v′ = a& v ≥ 0](x ≤ m ∧ 0 ≤ v)

The advantage of this equivalent decomposition is that it separates the discrete
control actions from the continuous motion such that both can be analyzed
separately. Subsequent logical decompositions of the remaining parts in dL will
ultimately lead to a significantly easier equivalent.

The following dL equivalence can be used to analyze or prove conjunctions
in the safety conditions separately:

[]∧ [α](P ∧Q) ↔ [α]P ∧ [α]Q

Example 3 (Car safety and speed separated). Using axiom []∧ reduces the dL
formula from Example 2 to an equivalent that separately considers the position
safety of x ≤ m and the speed safety v ≥ 0:

x ≤ m ∧ b > 0 →
(
[a :=A ∪ a :=−b][x′ = v, v′ = a& v ≥ 0]x ≤ m

∧ [a :=A ∪ a :=−b][x′ = v, v′ = a& v ≥ 0] 0 ≤ v
)

Indeed the last conjunct is fairly easy to establish, because the differential equa-
tion system x′ = v, v′ = a& v ≥ 0 is limited to v ≥ 0, which trivially implies the
postcondition 0 ≤ v. But the same cannot be said about the first conjunct with
the postcondition x ≤ m. Indeed, after some more decompositions by logical
equivalences, it will turn out to be false if the initial velocity of the car exceeds
its braking capabilities compared to the distance to the obstacle m.

The big conceptual advantage of working with logic for cyber-physical sys-
tems is that one can start with an unambiguous question phrased in dL and then
subsequently transform it with logic such that every step along the way is easy
and clearly correct and the final outcome is easier than the original question. It
is, indeed, in many ways due to the use of logic that the LFCPS course is suc-
cessful in simplifying the otherwise overwhelming challenges of cyber-physical
systems by reducing them to simpler pieces [13].

Active Learning Quizzes. The LFCPS course features active learning quizzes
for every chapter and lecture of the accompanying textbook [15]. Learning by
doing is a crucial element of understanding material. The purpose of the course
quizzes is to support the student’s learning by giving them an opportunity to
practice and get feedback on how well they have achieved a selection of some of
the learning goals of the LFCPS course. By observing which ones the student is
unsure about, the quizzes can help identify which material they should review
again. Since students ultimately need a solid understanding of all aspects of
CPS, this helps stay up to speed.
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The most profound impact of student learning stems from the ways of think-
ing that is internalized so deeply that the student can produce them on the fly
without having to look anything up. Concepts that become part of their thinking
will enable students to autonomously detect situations where they apply, instead
of needing to rely on others to tell them which concept to apply in order to solve
which problem.

While quizzes feature carefully paced introductory questions, they are also
designed to challenge a student’s understanding. This gives them an opportunity
to think through some of the more subtle aspects of CPS at their own pace before
they face similar challenges in application contexts where challenges may become
overwhelming. By solving a sequence of such separate challenges, students be-
come better at understanding nuances and internalize the way of thinking that is
required to solve them. A few of the quiz questions give students an opportunity
to synthesize multiple individual concepts to solve a small joint challenge. These
questions exercise synthetic knowledge and enable students to form conceptual
bridges between individual skills to identify what they need where.

For example, some of the quiz questions ask students to check their thinking
on certain simple subskills, which are useful to acquire early to avoid confusions.
Other quiz questions may make them wonder how long differential equations
evolve and what exactly a safety property of a hybrid system means. These are
fundamental questions about CPS models that they can answer using their se-
mantics. Yet other quiz questions ask students to put all their acquired skills
together to design simple CPS controllers or criticize their designs before facing
the challenges of real applications. Discovering a problem in one’s thinking in
the small context of a quiz question is a great learning experience and prevents
students from the major downstream effects of carrying a conceptual misunder-
standing forward into later parts of the course. Quiz questions make students
confront the blank page syndrome in the small, where they are asked to cre-
atively come up with answers to small questions on their own. This experience is
not easy but prepares students for when they face bigger challenges where they
will creatively come up with answers to bigger questions.

Except for the summary and wrapper questions with free text answers that
are included for the purpose of reflection and feedback, the LFCPS active learn-
ing quizzes are fully autograded by the theorem prover KeYmaera X [4] that
proves correctness of the student’s answer automatically and giving some question-
dependent feedback when this fails. It only happened twice that a student pro-
vided a correct answer on the active learning quiz that KeYmaera X was unable
to prove. By having even thought about this, the student arguably learned more
than what could ever be reflected in the 2 missed points out of 500 quiz points.

Example Quiz Questions. The easiest quizzes to design are multiple-choice quizzes.
But those only teach students the passive skill of recognizing the right answer
rather than the active skill of creatively producing the right answer. This is es-
sentially the educational counterpart to the computational P-NP problem [2].
Checking correct answers is easier than producing correct answers. One cannot
learn integration by multiple-choice, because the mere process of differentiating
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the given answers masks the intended ability to learn how to integrate functions.
To give the reader a feeling how the LFCPS active learning quizzes feature gen-
uinely active learning, here is a small sampling of typical question types.

Example 4 (Quiz: Program shapes). Objective (programming languages for CPS,
semantics, models, operational effects): It is crucial to obtain an intuitive reading
of the respective transitions in a hybrid program. This question gives you an
opportunity to practice the mapping between a transition structure and the
hybrid programs they correspond to.

What hybrid program fits to the following transition structure?

ω ν
a a a

b b b

Answer: {{a;{b;}*}*
Similar to an ellipsis, the dashed part of the transition systems indicates the
transitions as shown that already happened before may happen again and again.
Every a can be followed by an arbitrary number of b, as briefly indicated by the
self loop with b, and the whole pattern can repeat arbitrarily often, as indicated
by the dashed parts. Come to think of it, if the b transition goes back with a
self-loop literally to the exact same state, then it cannot have had a huge effect
or any at all. But, instead, the diagram illustrates the structure of the transition
so the self-loops indicate that b can happen repeatedly at the indicated nodes, so
{a;b;}* would be incorrect, because it does not capture the fact that there can
be an arbitrary number of b (even 0) between two consecutive a occurrences.
The answer a;{b;}*;a;{b;}*;{a;{b;}*}* would fit to the above transition
structure as well, but is unnecessarily complicated, and, thus, not an insightful
answer.

For each of the following transition structures, find a hybrid program that
can mimic its decisions. Give the simplest (shortest) hybrid program that can
mimic all actions in the transition structure.

ω ω1 ω2 ν
a b a b a b

The quiz question type in Example 4 inverts definitions, giving students an
opportunity to understand constructions on a deeper level by asking what input
to a semantics definition would have a shape that fits to the expected output.
While the forward application of definitions is a crucial skill, the backward or
inverse application requires reflection and practices deeper understandings of the
inner working principles. Without techniques for computing integrals, finding a
function that has a given derivative requires a much deeper understanding about
the process of differentiation.

Example 5 (Quiz: True formulas). Objective (model semantics, preconditions,
rigorous specification): If a formula is not valid, it is important to identify when
exactly it is true. This helps identify missing preconditions to make it valid, and
read off consequences when a formula is available as an assumption. Of course,
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knowing when exactly a formula is true is also crucial when they are used as
evolution domain constraints or tests, which is why those are usually quantifier-
free FOL formulas.
Question: When is dL formula [x := x+ 1]x > 5 true?
Answer: x>4
Indeed, the first formula [x := x+ 1]x > 5 and the second formula x > 4 are
equivalent, i.e., they are true in exactly the same states, because the value of
x after the assignment x := x + 1 is one larger than it was before. So x > 5
after x := x + 1 iff x > 4 initially. But the latter formula x > 4 is easier
to understand than its equivalent [x := x+ 1]x > 5, because it merely involves
arithmetic evaluation, rather than also effectful programs.

For each of the following dL formulas identify the exact set of all states in
which it is true and characterize this set by a quantifier-free formula of real
arithmetic (of the same free variables).

[x′ = v, v′ = a]x ≤ m

The quiz question type in Example 5 asks students to creatively come up
with the answer when they learn something about continuous dynamics to char-
acterize when exactly a car always stays before position m. The answer is not
easy but gives students a chance to practice and check their physical intuition
as a logical formula. Answering it helps ultimately fix and prove Example 1 in
a subsequent synthetic skill question in a later quiz. While answering this quiz
question, students are led down a corridor of exploration of increasingly refined
understandings of the safety of continuous dynamics.

Example 6 (Quiz: Axiom usage). Objective (rigorous reasoning about CPS ): As
one important part of rigorous reasoning about CPS, you will practice the cor-
rect application of axioms to differential dynamic logic problems. While the
KeYmaera X prover correctly applies axioms for you, it is still helpful if you
practice this yourself to get a better intuition for how it works and predict the
outcome of a proof step before trying it. That will make you more time-efficient
in your reasoning. It will also inform you how to transform parts of a proof
to make useful axioms applicable later. If you properly understand reasoning
principles, you are also better able to identify and check clever problem decom-
positions.
Question: What is the result of using axiom [;] on [ctrl; plant]x > y?
Answer: [ctrl;][plant;]x>y
Question: What is the result of using axiom [:=] on [ctrl; plant]x > y?
Answer: n/a
Because the axiom [:=] expects an assignment instead of a ; as the top-level
operator in the box modality, so is not applicable to the given formula, which is
not of the form expected by the left-hand side of axiom [:=].

For each of the following dL formulas, give the result of using the indicated
dL axiom (in its usual left to right decomposition direction) once to the whole
formula at its top-level position, i.e., for the top-level operator and not deep
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down in the middle of some subformula. Respond n/a if the axiom is not appli-
cable to the given formula.

Axiom [;] on [sense; ctrl; plant]x > y

The quiz question type in Example 6 teaches students the precision of reason-
ing by asking them to predict a proof step of a theorem prover. One might think
that this skill is irrelevant, because a theorem prover such as KeYmaera X [4]
implementing differential dynamic logic will be perfectly capable of applying
proof principles correctly. But it is also helpful to develop an intuition for what
will happen when, be able to predict the outcome, appreciate the nuances of
reasoning overcome by a theorem prover along the way, and, especially, be able
to do and check manual paper-based proofs as well. Along the way of answering
the above quiz question, students will discover on their own the significance of
precision in the syntactic representation of programs.

Example 7 (Quiz: Axiom development). Objective (operational CPS effects, dL
as a verification language): The axioms of differential dynamic logic are com-
plete, so you do not need any more for its operators. But whenever you add new
syntax to the language, then you give that operator a semantics, and also need to
add new axioms for reasoning about the new syntactic features. These questions
give you an opportunity to practice the extension of syntax, semantics, and ax-
iomatics that fit together in harmony and properly decompose hybrid programs
into logic. Recall that it is imperative that only sound axioms be adopted. Also
remember that solid axioms for a program statement reduce the new syntactic
program operator to simpler logical formulas about subformulas and subpro-
grams, because that makes it possible to understand the new program operator
solely in terms of easier logic, not in terms of different or more complicated pro-
grams. This question gives you the opportunity to practice the development of
new axioms for hybrid programs.

The if-then-else statement if(Q)α elseβ runs HP α if formula Q is initially
true and runs HP β otherwise. Its semantics is ≪ . . . elided · · · ≫.

Develop an axiom for [if(Q) a else b]P that decomposes the effect of the if-
then-else statement in logic with simpler logical connectives.

After the axiom reflection question Example 6, and subsequent questions that
ask students to check the correctness of conjectured axioms, the quiz question
type in Example 7 asks students to create rather than use axioms for reasoning
about CPS, which enables them to develop higher metacritical analytic skills.

Example 8 (Quiz: Loop invariants). Objective (identifying and expressing in-
variants): The most important ingredient of a CPS is its invariant, because an
invariant tells you what you always know about your system, no matter how long
it operates. This question allows you to practice the important but challenging
task of identifying loop invariants for hybrid systems.

Identify a loop invariant J proving the following dL formulas (after using rule
→R) with exactly the following version of the loop invariant proof rule:
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loop
Γ ⊢ J,∆ J ⊢ [α]J J ⊢ P

Γ ⊢ [α∗]P,∆

Write n/a when no loop invariant exists that proves the given dL formula.
x ≥ 1 ∧ v > 0 ∧A > 0 → [

(
(a := 0 ∪ a :=A); {x′ = v, v′ = a}

)∗
]x ≥ 0

The quiz question type in Example 8 implicitly follows up on the skills devel-
oped in Example 5 and gives students the opportunity to figure out why a control
loop works correctly. They are not kept guessing whether their answer is correct,
because the KeYmaera X theorem prover underlying the active learning quizzes
tells them right away when the proof did not succeed. Other questions prac-
tice reflection and understanding by asking for the shortest possible invariant
of a controller or differential equation, which helps students understand which
arguments are necessary compared to which arguments are true but useless. Sub-
sequent quiz questions practice synthetic skills for system design and safety jus-
tifications while helping students understand the beneficial role that incremental
system designs play in reducing verification and comprehension challenges.

CPS V&V Grand Prix. In many but not all years, the LFCPS course also fea-
tures practical verification labs culminating in self-defined course projects. The
students design, analyze, and prove correct a sequence of designs for robot mod-
els mastering increasingly difficult challenges. In each lab, the students design
a controller for a single robot that can interact with an unknown environment.
The students also design an appropriate model for the continuous behavior that
their controlled robot would exhibit given the discrete control inputs. They need
to decide on an appropriate model for the robot’s environment, including using
nondeterminism to capture unknown behaviors in the environment. And finally,
the students formalize a safety property as a logical formula and prove that their
controller never violates it. The labs are all related and build on each other, with
the ultimate goal that the students design and prove safety for a robot that can
avoid moving obstacles.

Before students submit the final robot model (called Veribot), they submit a
Betabot, which is a beta-version of the robot controller that they conjecture to
be safe and submit for feedback. Unlike the final robot submission (the Veribot),
the Betabot does not yet need to be verified, but should provide best-thought-
out conjecture in order to give students a head-start on the Veribot. This teaches
students by experience that most CPS designs are more challenging than it ap-
pears at first glance. Students learn to appreciate the value of formal verification
by seeing first hand the quality difference between their Betabots and their ul-
timate verified Veribots. Feedback on the Betabots also prevents students from
wasting effort on models that have fundamental flaws.

The course culminates in a self-defined final course project, with which the
students compete in the CPS V&V Grand Prix course competition, presenting
to a panel of about 12 experts in CPS who give them feedback from an industry
perspective from organizations such as Siemens, Google, Bosch, Aptiv, Galois,
Argo AI, Near Earth Autonomy, MathWorks, Toyota, NASA, Intel, GM who
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also award prizes. The mix of substantial conceptual challenges and self-defined
course projects with written reports and slide presentations in the competition
for the industry judges gives students a chance to shine and the instructor and
judges a chance to get to know them fairly well. Because of the time pressure
and random effects of presentations at the competition, as well as mix of un-
dergraduates, master’s students, and PhD students competing, the final rank in
the Grand Prix is no direct indicator of the overall skill of a student. In fact,
the more detailed study of their course projects by my TAs and me frequently
shines a complementary and more thorough light on their innovation and tech-
nical quality that they did not communicate perfectly to the judges. But this is
overall a much-appreciated factor of the LFCPS course that it provides so many
different ways to shine and become a verification rock-star.

Evaluation. While the course evaluations are essentially perfect (with the excep-
tion of understandable concerns about the high workload), a much more useful
indicator of success is the fact that so many students take this course, despite
the fact that it is much easier to earn a good grade in other courses, and even
though, when run with all its components, the course has a very intensive work-
load. The author is since experimenting with ways of reducing the workload
without over-proportionally reducing the learning outcomes.

Anecdotal evidence since the introduction of active learning quizzes into the
LFCPS course led to students who are significantly advanced compared to their
peers from prior years. This experiment is imperfect, however, because active
learning quizzes were introduced at the start of the covid-19 pandemic, where
the course became fully remote, so that more than one aspect of the course
was changed at the same time. Statistical analysis also indicates that the active
learning quiz scores are the strongest predictor for the overall course grade.

4 Course: Programming Language Semantics

The Programming Language Semantics course that the author taught at Carnegie
Mellon University was a logical redesign benefitting significantly from previous
course designs by Steve Brookes and John Reynolds [17]. The use of logic in
studying programming language semantics is universal wisdom, most obviously
in the case of axiomatic semantics for programming languages, which establishes
logical axioms that characterize the truth of statements about programs. Other
parts of programming language semantics courses deal with several variations
of denotational and operational semantics. The relation between those different
flavors of semantics is most exciting and valuable. The equivalence of denota-
tional and operational semantics, which helps combine the advantages of both,
and the soundness and relative completeness relations of denotational or op-
erational and axiomatic semantics, teach valuable lessons about how to justify
that different perspectives on a programming language are in sync. But different
designs of programming language semantics courses differ in how pervasively
logic is used. Tobias Nipkow, for example, propagates the pervasive use of the
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theorem provers Isabelle/HOL to study programming language semantics [5,6].
The author’s Programming Language Semantics (PLS) course does not use for-
mal theorem provers, which reduces the learning curve of proof tools, but still
consistently benefits from the use of dynamic logic and uniform substitution [14].

Partial Semantics. One obvious difference impacted by the use of logic is in the
development of program states. For PLS courses that are developed from the
perspective of programming languages, it is natural to define states as partial
functions ω : V 99K D from variables in V to values in D and then define the
meaning of expressions and programs and assertions about programs equally
partially while distinguishing cases on whether or not a state is defined on all
variables that a program reads or that a formula depends on. For instance, the
semantics ω[[x+ 1]] of a program expression x+ 1 in the state ω is only defined
if the state ω actually gives a value to the variable x that the expression x + 1
mentions. Otherwise, ω[[x+ 1]] remains undefined. This detail is useful to teach
about delicacy and precision, and prepares for other reasons of undefinedness
in program execution such as null-pointer dereferences or out of bounds array
accesses, but it does cause a fair amount of technical hurdles and complications
at every step along the way if every connection of syntax and semantics needs
to be guarded by an assumption that the states are defined everywhere where
they need to be to make sense of the syntax.

Impartial Semantics. For PLS courses developed from the perspective of logic,
it is more natural to define states as total functions ω : V → D from variables to
values, which makes it easier to evaluate terms and formulas and programs as a
function of the values of the variables they read. The semantics ω[[x+1]] is always
defined and equas ω(x) + 1, since the total function ω has some value ω(x) for
every variable x ∈ V. The resulting substantial conceptual simplicity is a benefit
even if states “waste information” in the sense that variables have values even if
they are never needed. With the establishment of an easily proved coincidence
lemma, saying that the value of formulas and the effect of programs only de-
pends on the values of their free variables FV(·), this difference between both
approaches vanishes, but the conceptual simplicity and absence of technicalities
of undefinedness remains a benefit of the approach coming from logic.

Lemma 1 (Coincidence lemma [14]). If ω = ν on FV(θ), then ω[[θ]] = ν[[θ]].

After establishing this coincidence lemma it becomes clear retroactively that
only the values of some part of the state affect the meaning of terms θ (and
similarly for other expressions). But undefinedness or the need to check for the
semantic compatibility of states and expressions was never a concern.

Syntactic Transformation via Special-purpose Semantics. Even more pronounced
is the simplicity afforded by logic for program transformations and program con-
texts. A natural operation on programs is to replace one part with something
else. Obviously, some program transformations change the program behavior
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while others do not. Proving when program transformations do not affect the
program behavior is surprisingly difficult without the use of logic even in simple
cases. To illustrate, a transformation turning a part e of a program into k con-
ventionally needs the definition of a program context as a program α( ) with a
hole that is once filled with the syntactic part e to form α(e) and that is once
filled with the syntactic part k to form α(k) giving the following rewrite:

α(e)⇝ α(k)

Besides defining the syntax of programs, the syntax of programs with holes, the
syntactic operation of the program transformation, a correctness argument also
needs to define not just the semantics [[α]]prg of programs α but also the semantics
[[α( )]]cxt of programs α( ) with holes, and the semantics [[e]]part of the affected
parts e. And one then has to prove that the semantics of the program obtained
after the syntactic transformation of plugging in e into the program α( ) with
hole to obtain the program α(e) is equivalent to the semantics [[α( )]]cxt of the
program with hole α( ) applied to the semantics [[e]]part of the part e:

[[α(e)]]prg = [[α( )]]cxt
(
[[e]]part

)
(1)

Of course, inductively proving this particular compatibility result (1) teaches
one to scrutinize and relate several different but closely related versions of seman-
tics definitions with inductions on the syntax and corresponding decompositions
on the semantics. But the proof of (1) and similar results is fairly technical and
all the required definitions repetitive even if the semantic domain shifts a little
from program behavior to functions from hole-filling behavior to program be-
havior. Likewise one will have to prove that the semantics of a program context
α that does not, in fact, even have a hole is actually equivalent whether taken
as a program or as context semantics:

[[α]]prg = [[α]]cxt(S) for any possible semantics S that a part e may have

Syntactic Transformation via Logic. Taking logic seriously leads to another angle
on PLS courses, where the use of dynamic logic and uniform substitution signifi-
cantly simplify technical challenges. Uniform substitution was originally defined
for first-order logic by Church [1, §35,40] for substituting function symbols with
terms and substituting predicate symbols with formulas, uniformly everywhere,
while respecting that free variables cannot be bound during the substitution [14].
Corresponding generalizations lift uniform substitution to dynamic logic with
programs, where, in addition, program symbols can be substituted with pro-
grams [14]. The uniform substitution proof rule US states that if a formula φ
has a proof then all its uniform substitution instances σ(φ) have a proof.

Theorem 1 (Soundness of uniform substitution [14]). The proof rule US
is sound (where US is only applicable if the substitution result σ(φ) is defined).

US
φ

σ(φ)
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Proving soundness of the uniform substitution proof rule US takes some effort as
well but only needs to be established once and for all as the only form of syntactic
transformation. A similar proof principle uses the same uniform substitution σ
simultaneously on all premises and the conclusion of a (locally sound) inference.

Theorem 2 (Soundness of uniform substitution of rules [14]). All uni-
form substitution instances (whose substitutions introduce no free variables) of
locally sound inferences are locally sound:

ϕ1 . . . ϕn

ψ
locally sound implies

σ(ϕ1) . . . σ(ϕn)

σ(ψ)
locally sound

Correctness of the syntactic transformation of term e for an equal term k is then
a uniform substitution instance of the following obvious axiomatic proof rule:

CQ
f = g

p(f) ↔ p(g)

The congruence rule CQ states that if (nullary function symbol) f is equal to g
then for any (unary) predicate p the formula p(f) is equivalent to p(g), which is
evidently correct by the principle of substitution of equals for equals. Making a
concrete inference with rule CQ simply amounts to using the uniform substitu-
tion principle from Theorem2 to substitute the concrete term e for the function
symbol f and the concrete term k for the function symbol g and a concrete prop-
erty of a concrete program for the predicate symbol p in which, by way of the
principle that replacements of predicate symbols will still have their arguments
in the same places, implicitly defines a context without the need for separate
definitions, semantics and constructions. Thanks to uniform substitution, which
modularizes all the challenges of how syntactic transformations preserve the
semantics, independently of the particular use case, congruence reasoning and
contextual replacements reduce to the self-evident rule CQ.

The same principle of substituting equals for equals immediately transfers to
the situation when replacing formulas for equivalents or when replacing subpro-
grams without the need to define a new semantics and new syntactic replacement
principles and their semantic compatibility from scratch. For example, congru-
ence on terms reduces to uniform substitution uses via Theorem2 of the evident
axiomatic proof rule CT:

CT
f = g

c(f) = c(g)

No new syntactic category of terms with holes or new semantics or new replace-
ment mechanisms or new compatibility proofs are needed. Everything simply
follows from uniform substitution.

Logical Compiler Optimizations. Likewise, program transformations such as
common subexpression elimination are but uniform substitution instances of
the backwards direction of the assignment axiom:

[:=] [x := e]p(x) ↔ p(e)
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The idea is merely that a common subexpression e identified in a formula p(e)
(or a program contained therein for the purpose of showing equivalence of the
transformation) that may occur multiple times in different places is pulled out
and stored into a common variable x that is assigned to after computing the
value of the term e only once.

Example 9 (Common subexpression elimination via logic). The common subex-
pression a2 + b can be pulled out of the following program

[while(y2 < a2 + b) {z := z + y2 ∗ (a2 + b); y := y + 2 ∗ 3}]P

to obtain the, by [:=] equivalent

[x := a2 + b;while(y2 < x) {z := z + y2 ∗ x; y := y + 2 ∗ 3}]P

But common subexpression elimination cannot pull out any of the y2 occur-
rences, because y is changing afterwards in the loop body which will be before
the (textually earlier) next use of y in the next round of the loop. This differ-
ence of applicability of common subexpression elimination, which is crucial for
correctness, is easily spotted by uniform substitution via Theorem1 applied to
axiom [:=]. Of course, another intuitive giveaway is that, if all parts of a loop
condition were common subexpressions, then the loop condition never changes
its truth value, so the loop either never runs or runs forever.

Ordinarily, special-case analyses would have to be designed and their cor-
rectness proven separately for syntactic transformations such as common subex-
pression elimination in programming language compilation. The consequent use
of logic reduces this to mere uniform substitution.

Example 10 (Copy propagation via logic). Copy propagation is another compiler
optimization that, of course, needs soundness-critical applicability checks. Prop-
agating the value of a variable to later occurrences of that variable is again
just uniform substitution via Theorem1 for the [:=] axiom. This, for example,
rephrases the last program of Example 9 equivalently to

[x := a2 + b;while(y2 < x) {z := z + y2 ∗ (a2 + b); y := y + 2 ∗ 3}]P

or to

[x := a2 + b;while(y2 < a2 + b) {z := z + y2 ∗ (a2 + b); y := y + 2 ∗ 3}]P

Again, uniform substitution directly tells apart this correct use of copy propaga-
tion from an incorrect attempt to propagate the value z+y2∗x for any occurrence
of z (such as after the program or in itself), because that would already have a
different value due to the loop.

Example 11 (Constant folding via logic). The constant folding transformation is
merely a use of uniform substitution for the congruence rule CQ, e.g., to reduce



20 André Platzer

that the multiplication 2 ∗ 3 is 6 in a program, because 2 ∗ 3 = 6 is true. This
reasoning rephrases the last program of Example 9 equivalently to

[x := a2 + b;while(y2 < x) {z := z + y2 ∗ x; y := y + 6}]P

If, for some reason, one would like to commute a2 + b to b + a2 (maybe in
order to enable more common subexpression eliminations in other parts of the
program), then another use of uniform substitution for congruence rule CQ uses
the equation a2 + b = b+ a2 to transform the above program equivalently:

[x := b+ a2;while(y2 < x) {z := z + y2 ∗ x; y := y + 6}]P

With slight generalizations of uniform substitution to program relations such
as refinement α ≤ β and equivalence α = β [16], one can state a congruence rule
for making use of program equivalences in any context C( )

CP
α = β

C(α) ↔ C(β)

Example 12 (Loop unwinding via logic). Unwinding one round of a loop to run
before the loop is easily done via uniform substitution via Theorem2 on congru-
ence rule CP. Based on the equivalence

while(Q)α = if(Q) {α;while(Q)α}

the last program of Example 11 is transformed via CP to its equivalent:

[x := b+ a2; if(y2 < x) {z := z + y2 ∗ x; y := y + 6;

while(y2 < x) {z := z + y2 ∗ x; y := y + 6}}]P

If interesting optimizations now were to become possible in the pulled out first
iteration, subsequent combinations of logical transformations can continue. Here,
this might apply, e.g., if the initial value of y is known to satisfy y2 < b + a2

such that the if branching is unnecessary.

5 Conclusion and Outlook

Overall, symbolic logic plays and should play a significant role in scientific ed-
ucation. Logic both leads to significant simplifications of otherwise challenging
concepts and logic leads to identifying the inherent core essence of ideas other-
wise lost among lots of peripheral aspects. As the experience relayed in this paper
demonstrates, there is a wide variety of courses that benefit from the inclusion of
ideas from logic ranging from introductory courses over systems courses to logic
and programming language courses. Logic helps on a scale ranging from tool-free
informal logic reasoning supported by practice with mere dynamic checking of
program-expressed contracts all the way to full feature theorem provers. Active
learning quizzes with theorem provers fully blackboxed in its autograder have
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an outside impact on the understanding of students that seems well worth the
nonnegligible time investment. The development of pedagogically well-paced and
insightful questions aligned with the learning goals of the course is, however, a
massive undertaking that can only be amortized by reusing the quiz questions
and autograding infrastructure over the years.
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