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Abstract
Information-flow security is important to the safety and privacy of

cyber-physical systems (CPSs) across many domains: information

leakage can both violate user privacy and reveal vulnerabilities to

physical attacks. CPSs face the challenge that information can flow

both in discrete cyber channels and in continuous real-valued phys-

ical channels ranging from time to motion to electrical currents. We

call these hybrid-dynamic information flows (HDIFs) and introduce

dHL, the first logic for verifying HDIFs in hybrid-dynamical mod-

els of CPSs. Our logic extends differential dynamic logic (dL) for
hybrid-dynamical systems with hybrid-logical features for explicit

program state representation, supporting relational reasoning used

for information flow arguments. By verifying HDIFs, we ensure

security even under a strong attacker model wherein an attacker

can observe time and physical values continuously. We present a

Hilbert-style proof calculus for dHL, prove it sound, and compare

the expressive power of dHL with dL. We develop a hybrid system

model based on the smart electrical grid FREEDM, with which we

showcase dHL. We prove that the naïve model has a previously un-

known information flow vulnerability, which we verify is resolved

in a revised model. This is the first information flow proof both for

HDIFs and for a hybrid-dynamical model in general.

CCS Concepts • Theory of computation → Logic and veri-
fication; Modal and temporal logics; • Security and privacy →

Logic and verification; • Computer systems organization →

Embedded and cyber-physical systems;

Keywords dynamic logic, hybrid logic, hybrid systems, informa-

tion flow, cyber-physical systems, formal verification, smart grid

1 Introduction
Cyber-physical systems (CPSs), which feature discrete computer

control interacting with a continuous physical environment, are

ubiquitous. They include critical infrastructure such as electricity,

natural gas, and petroleum transportation grids, medical devices

such as pacemakers and insulin pumps, and transportation systems

including aircraft, trains, and automobiles. Because of their crit-

icality, it is essential to ensure their safe, correct operation, and

formal methods for safety (e.g., collision-freedom) in CPS have had

important successes [14, 18, 29].
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There is less work on formal methods for CPS (information-flow)

security, which is often as critical as physical safety. We focus on

nondeducibility [4] of information flow, which captures the notion

that an attacker cannot infer private information for certain in a

system with non-observable nondeterminism. We choose this focus

because for many nondeterministic systems, nondeducibility is the

strongest property one can hope to achieve. As consumer-facing

infrastructure such as electrical and telecommunication networks

are increasingly computerized, the risk of leaking confidential cus-

tomer information increases. Beyond leaking customer information,

it has been suggested [3] that information flow leaks have the poten-

tial to aid attackers in identifying vulnerable infrastructure targets.

Computerized medical devices risk leaking medical records pro-

tected by law (e.g., HIPAA), which can enable attacks that have

life-threatening results, such as ventricular fibrillation [17]. Infor-

mation leakage concerns are also significant in the transportation

domain, e.g., position-spoofing attacks in aircraft have been pro-

posed that could cause major disruptions to air-traffic control [33].

The common feature is that information flows in both computer

communication channels and physical channels such as transmis-

sion lines, pipelines, the human body [31], and roadways. Because

information flows through both computation and physics, CPSs de-

mand a notion of flow which accounts for both. While information

flow in CPS has been explored [1, 3, 16, 20, 36], prior works either

model physics discretely or ignore physics altogether [3].

These abstractions constitute a significant model gap: Formal

analyses of any model can only be trusted to the extent that the

model is faithful to reality and to the abilities of attackers. Event-

based models such as the prior model of the FREEDM grid [3],

for example, assume attackers cannot observe time or exact phys-

ical quantities. Our hybrid (i.e., mixed continuous and discrete)

dynamics narrow the gap greatly, modeling attackers that observe

continuous time and real-valued physical quantities. In doing so,

our FREEDM model reveals a leak undetected by the prior model.

A discrete-time model would also leave a smaller gap than and

and reveal more bugs than an event model. A key advantage of a

hybrid model is that we support continuous time and thus know for

certain that we have accounted for the timing abilities of all possible

attackers, while a discrete-time model would leave us uncertain

whether the model is precise enough to reveal all practical attacks.

We investigate properties of hybrid-dynamic information flows
(HDIFs), which combine discrete and continuous flows. We pro-

vide an approach for verifying HDIF security by introducing the

logic dHL. The dHL logic features two forms of hybridness which

should not be confused: it extends differential dynamic logic (dL)
for reachability of hybrid-dynamical systems with first-order hy-

brid logic [7], which provides first-class representation of program

states. This combination of hybrid dynamics with first-class pro-

gram states enables us to verify HDIF security. In capturing physical

and temporal phenomena, hybrid dynamics also provide a flexible
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framework for modeling side-channels and verifying them with

the same techniques as other cyber-physical channels.

The distinguishing feature of information flow (vs. safety and

liveness properties) is that it is not a trace property, but a 2-trace

hyperproperty [12] (i.e., a property of pairs of program traces).

This poses a hurdle for program verification calculi: Hoare calculi

(and typical dynamic logics [34]), for example, cannot verify hyper-

properties without significant source-level transformations such

as self-composition [5]. These source transformations have been

noted [35] to make verification tasks needlessly difficult in prac-

tice by inflating their size. Relational calculi [6] reduce verification

complexity, but also generality.

Our novel use of hybrid logic not only reduces complexity but

also maintains generality by allowing first-class representation of

program states, which makes both direct statements and proofs of

information-flow properties straightforward. In the process, we dis-

play a novel connection with hybrid logic that extends beyond infor-

mation flow to general hyperproperties. Beyond its aesthetic appeal,

this generality promises to enable verification of numerous related

hyperproperties in one common logic, without having to adapt

the logic to: i) more notions of security such as non-interference

ii) more hyperproperties such as robustness [12]. We introduce a

Hilbert-style proof calculus for dHL and prove it sound, then de-

rive high-level rules for bisimulation. We relate the complexity of

proofs in dHL vs. dL: a reduction is possible for a significant frag-

ment of dHL, but impractical: i) it has limitations when applied to

the general case, interfering with advanced proof techniques such

as refinement [21] for modular verification, ii) the reduction causes

quadratic formula size blowup in the worst case, and iii) the reduc-

tion is surprisingly subtle, suggesting that a proof by reduction to

dL would be needlessly long and unintuitive.

As an example application, we give the first hybrid-dynamical

model of a smart grid controller with concrete dynamics for dis-

tributed energy generation/storage and load-balancing [2] based

on published descriptions of the FREEDM grid [19]. This contrasts

with prior models [3], which consider only the high-level struc-

ture of event-based interactions between components. Our model

shows the importance of dynamical-level modeling by revealing an

information flow bug uncaught by higher-level models. We then

prove a revised model secure even in the presence of HDIFs.

Our model of FREEDM captures its essential hybrid dynamics

and our proof demonstrates important features of proofs in dHL:
i) The well-understood principle of proof by bisimulation translates

naturally to dHL proofs, ii) dHL provides an effective mechanism

to tease apart the interactions between discrete transitions and

continuous flow, enabling verification to scale to the complex in-

teractions found in CPSs, and iii) typical CPSs have sufficiently

complex information flows to warrant the deductive approach.

These traits are typical across different domains of CPS, showing

that our approach holds promise for verifying information flow of

applications in various domains beyond smart grids.

2 The Logic dHL
We present the complete syntax and semantics of the logic dHL,
extending the dynamic logic dL with explicit hybrid-logical repre-

sentation of program states. Our calculus, as with modern imple-

mentations [15] and machine-checked correctness proofs [9] for

dL, is based on uniform substitution [11, §35][30]: symbols ranging

over predicates, programs, etc. are explicitly represented in the syn-

tax. This improves the ease with which dHL can be implemented

and its soundness proof checked mechanically in future work.

The expressions of dHL consist of real-valued terms θ , world-
valued terms w , programs α , and formulas ϕ. We write Θ for an

arbitrary term θ orw , and write e when an expression can be either

a term Θ or a formula ϕ, but not a program α .

Definition 1 (Real-valued terms of dHL).

θ ::= c | x | f (®θ ) | F | θ + θ | θ · θ | @iθ

Here c ∈ Q is a literal and x is a real-valued program variable,
said to be flexible because it can be bound in quantifiers. Their

rigid counterparts are nullary function symbols f (),д() that cannot
be bound. The meaning of a function symbol f (®θ ) depends on an

arbitrary number of real-valued arguments. Functionals F are a

generalization of functions whose meaning depends on all flexible

symbols. Functions and functionals are used to express axioms in

Sec. 5. Terms in dHL extend dL with at-terms @wθ denoting the

value of term θ in the state denoted by the world-valued termw .

Definition 2 (World-valued terms of dHL).

w ::= s | n

The language of world-valued termsw is simple, consisting only

of world variables s, t and nominals n,m, which differ only in that

world variables are flexible while nominals are rigid.

Definition 3 (Programs of dHL).

α , β ::= ?(ϕ) | x := θ | x := ∗ | x ′ = θ &ψ | α ∪ β | α ; β | α∗ | a

The hybrid program constructs of dHL are simply those of dL.
Hybrid programs combine discrete programming constructs with

differential equations to provide a program representation of hybrid

systems. The atomic dL programs are tests ?(ϕ) that abort execution
if formula ϕ is false, assignments x := θ and x := ∗ which update

program variable x to the value of term θ or a nondeterministic

value, differential equation evolution x ′ = θ &ψ , and object-level

program constants a which range over fixed, arbitrary programs.

They should not be confused with the similar-looking program

metavariables α used in schemata and theorems. Differential equa-

tions are the defining feature of dL; the effect of x ′ = θ &ψ is to

evolve the differential equation x ′ = θ nondeterministically for any

duration, but only so long as the formulaψ is always true.

They are composed with nondeterministic choice α ∪ β that

runs exactly one of α or β , sequential composition α ; β , and non-

deterministic iteration α∗ that runs α any finite number of times

sequentially. Traditional deterministic programming constructs can

be derived from the nondeterministic hybrid program constructs,

e.g., if (ϕ){α } else {β} ≡ (?(ϕ);α) ∪ (?(¬ϕ); β).

Definition 4 (Formulas of dHL).

ϕ,ψ ::= ϕ ∧ψ | ¬ϕ | ∃x :R ϕ | θ1 ≥ θ2 | ⟨α⟩ϕ

| ∃s :W ϕ | w | @wϕ | ↓s ϕ | p( ®Θ) | P

Formulas ϕ ∧ ψ ,¬ϕ,∃x :R ϕ, and θ1 ≥ θ2 are as in first-order

logic. As in dL, the diamond modality ⟨α⟩ϕ says there exists an

execution of the (nondeterministic) program α where formula ϕ
holds in the ending state. Its dual, the box modality [α]ϕ, says all
end states satisfy ϕ, and is derived: [α]ϕ ≡ ¬⟨α⟩¬ϕ.
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Figure 1. FREEDM load balancing

The following features are added from first-order hybrid logic.

The quantifier ∃s :W ϕ says there exists a world (program state) s
in which ϕ holds (where ϕ can mention the world variable s). We

will also use the universal quantifier ∀s :W ϕ, which is a derived

construct by the duality ∀s :W ϕ ≡ ¬∃s :W ¬ϕ. We support nom-

inal propositionsw that hold in exactly the one state denoted by the

world-valued termw . These allow testing equality of the current

state againstw . Note the same syntax is used regardless whether

w appears as a term or formula; these usages are distinguished

by syntactic context. The hybrid satisfaction modality @wϕ says

that ϕ is true at the unique state named by w . In addition to the

typical existential and universal quantifiers, hybrid logic features

the local quantifier ↓s ϕ which binds the current state to the world

variable s within the formula ϕ, whereas the universal quantifier
∀s :W ϕ binds an arbitrary state to s . The local quantifier ↓s ϕ can

be derived as ↓s ϕ ↔ ∃s :W (s∧ϕ) or equivalently ∀s :W (s → ϕ).
We present this quantifier in its entirety regardless, because it is

important to information-flow applications and may be unfamiliar

to the reader. The connectives ↓s ϕ and @wϕ can be understood

computationally as well, as storing or loading the current state to s
or fromw , respectively.

The predicate symbols p( ®Θ) range over both real-valued terms

θ and nominal expressions w , and are used in axioms to stand

for propositions. Beyond axioms, predicates will be used widely

in bisimulation arguments for information-flow: R(i, j) denotes a
binary predicate over nominals. Predicationals P simply stand for

arbitrary formulas and are used in axioms in Sec. 5.

3 Information-Flow Example: FREEDM Grid
In this section, we introduce two variants of a smart grid model

based on NSF FREEDM [19], a microgrid which controls a local sec-

tion of the power grid and interacts with the surroundingmacrogrid.
Our model is the first hybrid-systems model of FREEDM and fol-

lows the published algorithm [2], incorporating detailed dynamics

not present in prior models [3]. We show how information-flow

security properties and their negations are stated in dHL. We prove

them in Secs. 8 and 9 once the proof calculus is introduced.

Smart grids like FREEDMuse computer control tomake electrical

grids more robust, efficient, and cost-effective in face of increas-

ingly diverse power loads and supplies. Computer control in grids

makes joint cyber-physical security of this critical infrastructure

essential. Not only can information flow violations compromise

private consumer information, but it has been suggested they can

aid attackers [3] in identifying targets for physical attacks.

Scenario. We look at an exchange (depicted in Fig. 1) that migrates

power between two neighboring transformersT1 andT2 connected

to a macrogrid gr over a shared line. Variable names indicate units:

energy is uppercase, power (derivative of energy, e.g. B′
i = bi ) is

lowercase, and migration rates (derivative of power, e.g. b ′i = bmi )

end inm. Each transformer Ti carries power pi and is connected

to a renewable energy resource ri , to a household which demands

power di , and to a energy storage device Bi . The transformers are

connected by a communication Link. While real instances of the

FREEDM grid have many transformers, each migration involves

exactly two transformers, so the two-transformer case provides

important insight for the general case.

Each transformer can be in one of three demand states: Low De-
mand, Normal Demand, or High Demand. The algorithm [2] states:

• Net demand ni is the difference of gross power demand di
and the sum of power draw pi with generation ri .

• A transformer is in Low Demand if it has net demand ni < 0,

High Demand if net demand exceeds a provided threshold

ni ≥ thresh > 0 or Normal otherwise.
• If any transformer i is Low (has excess power) while the other

(written ī ) is High, power migrates at a provided constant

ratem :=maxm until at least one of them is Normal.
• Any excess power supply −ni > 0 not used in migration is

accumulated as energy 0 ≤ Bi ≤ Bmax in battery i .
• Any excess demand ni > 0 not met by migration is drawn

from the battery Bi with power bi and migration rate bmi ,

or sold to the grid if the battery is full (Bi = Bmax).

• If Ti ’s corresponding battery Bi is empty, it draws power gr
(with migration rate gr ′ = grm) from the macrogrid instead.

The grid is modeled in Fig. 2 as a hybrid program αF , which con-

tains the controller (ctrl) and physical model (plant). The controller
migrates power (migrate) and operates the battery (bat), which has

two implementations: a deterministic implementation batI of the
above algorithm, which we show to be insecure, and a nondeter-

ministic version batS , which we show to be secure. We abbreviate

αI ≡ αF
batI
bat and αS ≡ αF

batS
bat for the instantiation of αF with the

insecure or secure battery, respectively.

Our treatment of di and ri is general, assuming only that they

are non-negative and can change countably often. Time t ′ = 1 is

not used for control, but will factor into our proofs because it is

observed by attackers and we prove that, e.g., observing the ODE

duration does not leak the continuous variables pi ,Bi ,bi .

Defining Information Flow. We give the general formulation:

Definition 5 (Nondeducibility Information-Flow Security). Let α
be a program and let L be the set of publicly observable expressions,

e.g., L = {gr, t} for FREEDM with publicly-known time t and

macrogrid flow gr . At its simplest, binary relation R(i, j) says worlds
i and j agree on all public expressions L, and is defined by:

R(i, j) ≡

(∧
θ ∈L

(
@iθ = @jθ

))
∧

©­«
∧
ϕ∈L

(
@iϕ ↔ @jϕ

)ª®¬
In practice, R(i, j) often also states that i and j satisfy any problem-

specific constraints, e.g. on the range of system parameters. Now

we define nondeducibility information flow:

∀i1, i2,o1 :W
(
@i1 ⟨α⟩o1 ∧ R(i1, i2) → @i2 ⟨α⟩↓o2 R(o1,o2)

)
Nondeducibility means an observer can never deduce anything

about the input value @i1x of a private variable x < L from the

final values of public expressions @o1
(θ or ϕ), when the observer
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αF ≡ (ctrl; plant)∗ ctrl ≡ migrate; bat

migrate ≡
{
di := ∗; ?(di ≥ 0); ri := ∗; ?(ri ≥ 0); ni := di − (ri + pi );

if (ni ≥ thresh ∧ nī < 0) {m := (−1)i ·maxm}

else {m := 0}
}

plant ≡ {p′i = −1
i ·m, B′

i = bi , b
′
i = bmi , gr′ = grm, t ′ = 1 & Bi ≥ 0}

batI ≡
{
gr := 0; bmi := 0; grm := 0;

if ((ni ≤ 0 ∧ Bi < Bmax) ∨ (ni > 0 ∧ Bi > 0)){

{ bi := −ni ; bmi := bmi + (−1
i+1) ·m }

else { bi := 0; gr := gr + ni ; grm := grm + (−1)i+1 ·m }
}

batS ≡
{
gr := 0; bmi := 0; grm := 0;(

?(Bi < Bmax) ∨ (ni > 0 ∧ Bi > 0);

bi := −ni ; bmi := bmi + (−1)i+1 ·m
)

∪

(
bi := 0; gr := gr + ni ; grm := grm + (−1)i+1 ·m

) }
Figure 2. FREEDM model with insecure and secure batteries

does not directly observe how nondeterminism is resolved. This

is the case when Def. 5 holds because it says every input state i2
that agrees on public terms (R(i1, i2)) has at least one program path

@i2 ⟨α⟩o2 (where o2 is the final state of α , as bound by the quantifier
↓o2) that would explain the final values of public expressions at

o1. Because all inputs would have made the output possible, it

is impossible to deduce anything about the input state. As we

will see in Sec. 9, the core challenge in proving this property is

identifying which program path explains any given final public

value: for a nondeterministic program α , only by carefully resolving
nondeterminism will we find a path that ensures secure flow.

In Sec. 8 we will also prove batI is nondeducibility insecure, by
proving the negation of nondeducibility security, i.e.:

∃i1, i2,o1 :W
(
@i1 ⟨α⟩o1 ∧ R(i1, i2) ∧ @i2 [αI ]↓o2 ¬R(o1,o2)

)
4 Semantics
We return to developing dHL. Its semantic development begins

with our semantic building blocks. The building blocks are worlds
ω, µ,ν , galaxies д,h, and interpretations I , J . Interpretations give
meaning to rigid symbols, whose meanings are fixed throughout a

formula, such as functions, predicates, nominal constants, and pro-

gram constants. The flexible symbols, whose meaning can change

throughout a program or formula, are real-valued program variables
x ,y and world-valued world variables s, t . The program variables

receive their values from the active world ω while world variables

receive their values from the galaxy д, which contains an infinitude

of worlds, one for each world variable. We write ωrx for the state

that updates ω’s value of program variable x to r ∈ R and likewise

дωs for updated galaxies.

Program and world variables are both drawn from a countable

variable set V isomorphic to N. The set of all worlds W is isomor-

phic to RV . The set of all galaxies G is isomorphic to

(
RV

)V
.

We write I (f ), I (p), etc. for the interpretation of a given symbol

andI for the set of all interpretations. The types of each component

are as follows, where ℘(S) is the power set of S :

I (f ) : (R ∪W) → R

I (p) : ℘(R ∪W)

I (F ) : G ×W → R

I (P) : G → ℘(W)

I (a) : G → ℘(W ×W)

That is, we treat f and p as untyped and unary, because generaliza-

tions to polyadic f ,p are straightforward.

Definition 6 (Real term semantics). Let ω∈W,д∈G, I∈I, then:

[[x]]Iдω = ω(x) (1)

[[c]]Iдω = c (2)

[[θ1 + θ2]]Iдω = [[θ1]]Iдω + [[θ2]]Iдω (3)

[[θ1 · θ2]]Iдω = [[θ1]]Iдω · [[θ2]]Iдω (4)

[[@wθ ]]Iдω = [[θ ]]Iдν where ν = [[w]]Iдω (5)

[[f (θ )]]Iдω = I (f )([[θ ]]Iдω) (6)

[[F ]]Iдω = I (F )(дω) (7)

Equations (1)–(4) describe polynomial terms as in dL. The new

term construct of dHL is the at-term @wθ , whose meaning is the

meaning of real term θ at the state denoted by world termw .

The language of world terms is quite simple, containing only

rigid nominals n and flexible world variables s , deriving their mean-

ing from the interpretation I or galaxy д, respectively. We write

[[w]]Iдω for symmetry with real terms θ even though ω is unused.

Definition 7 (World term semantics). Let д ∈ G, I ∈ I, then:

[[n]]Iдω = I (n)

[[s]]Iдω = д(s)

Definition 8 (Program semantics). As in dL with the addition of

galaxies д. Let ω,ν ∈ W,д ∈ W, I ∈ I, then:

(ω,ω) ∈ [[?ϕ]]Iд iff ω ∈ [[ϕ]]Iд (8)

(ω,ν ) ∈ [[x := θ ]]Iд iff ν = ωrx for r = [[θ ]]Iдω (9)

(ω,ν ) ∈ [[x := ∗]]Iд iff ν = ωrx for some r ∈ R (10)

(ω,ν ) ∈ [[x ′ = θ &ψ ]]Iд iff (ω,ν ) = (φ(0),φ(t)) and φ solves

x ′ = θ on [0, t] and φ(s) ∈ [[ψ ]]Iд for all s ∈ [0, t] (11)

(ω,ν ) ∈ [[α ∪ β]]Iд iff (ω,ν ) ∈[[α]]Iд or (ω,ν ) ∈[[β]]Iд (12)

(ω,ν ) ∈ [[α ; β]]Iд iff (ω,ν ) ∈ ([[α]]Iд) ◦ ([[β]]Iд) (13)

(ω,ν ) ∈ [[α∗]]Iд iff (ω,ν ) ∈ ([[α]]Iд)∗ (14)

(ω,ν ) ∈ [[a]]Iд iff (ω,ν ) ∈ I (a)(д) (15)

Galaxy д is untouched by execution. Equations (8)–(11) are the

atomic hybrid programs. Differential equations (11) evolve accord-

ing to the solution of the ODE for any duration t ≥ 0, but must

stop while the formula ψ still holds. In (13), ◦ is composition. In

(14), ([[α]]Iд)∗ is the reflexive, transitive closure of [[α]]Iд. Program
constants (15) receive their meaning from the interpretation (and

galaxy, since formulas inside programs can mention nominals).

4
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Definition 9 (Formula semantics).

ω ∈[[ϕ ∧ψ ]]Iд iff ω ∈[[ϕ]]Iд and ω ∈[[ψ ]]Iд (16)

ω ∈[[¬ϕ]]Iд iff ω <[[ϕ]]Iд (17)

ω ∈[[∃x :R ϕ]]Iд iff ωrx ∈[[ϕ]]Iд for some r ∈ R (18)

ω ∈[[θ1 ≥ θ2]]Iд iff [[θ1]]Iдω ≥ [[θ2]]Iдω (19)

ω ∈[[⟨α⟩ϕ]]Iд iff ν ∈[[ϕ]]Iд for some ν s.t. (ω,ν ) ∈[[α]]Iд (20)

ω ∈[[∃s :W ϕ]]Iд iff ω ∈[[ϕ]]Iдνs for some ν ∈ W (21)

ω ∈[[@wϕ]]Iд iff ν ∈[[ϕ]]Iд for ν = [[w]]Iд (22)

ω ∈[[↓s ϕ]]Iд iff ω ∈[[ϕ]]Iдωs (23)

ω ∈[[w]]Iд iff [[w]]Iдω = ω (24)

ω ∈[[p(Θ)]]Iд iff [[Θ]]Iдω ∈ I (p) (25)

ω ∈[[P]]Iд iff ω ∈ I (P)(д) (26)

Equations (16)–(19) are a standard definition of first-order logic

connectives, wherein [[θi ]]Iдω : R is the denotation of real-valued

term θi (Def. 6). Equation (20) defines the diamond modality ⟨α⟩ϕ:
we employ a Kripke semantics where possible worlds are program

states (Def. 8). Equations (21)–(24) define the hybrid-logical opera-

tors, where [[w]]Iд : W (Def. 7) is the denotation of a world term.

Equations (25)–(26) say predicates and predicationals derive their

meaning from the interpretation I , with the difference that predi-

cates depend only on their arguments while predicationals depend

on all flexible symbols. We say formula ϕ is valid when the relation

ω ∈[[ϕ]]Iд holds for all states ω, galaxies д, and interpretations I .

5 Proof Calculus
We present a sound proof calculus for dHL, which is used for deduc-

tive verification. The calculus is given in Hilbert style, i.e., axioms

are used wherever possible, with a minimal number of proof rules.

Axioms are instantiated with a uniform substitution [30][11, §35]

rule: from the validity of ϕ we can conclude validity of σ (ϕ) where
substitution σ specifies concrete replacements for some or all rigid

symbols in a formula ϕ:

US

ϕ

σ (ϕ)

The side-conditions determining which substitutions σ are sound

are non-trivial, and make up much of the soundness proof in Sec. 6,

with the benefit that soundness arguments and implementation for

individual axioms are greatly simplified.

Program Axioms. The axioms for programs in diamond modali-

ties in Fig. 3 are as in dL [27]. Axioms for box modalities [α]ϕ can be

derived by duality (axiom ⟨·⟩, Fig. 3). With the exception of the loop

axioms, these axioms can be read off directly from the semantics

of hybrid programs. The axiom ⟨′⟩ replaces a differential equation

with a global solution, represented here by the expression
1 y(t).

Loops can be finitely unfolded with the axiom ⟨∗⟩. More often, we

reason by induction using axiom I or its derived rules.

Modal Axioms and Hilbert Rules. Generic modal axioms and

Hilbert rules are as in dL [27] and are listed in Fig. 3. The axiom ⟨·⟩

relates the diamond and boxmodalities, and is used to derive axioms

for box modalities [α]ϕ. As is typical for Hilbert calculus, axioms

are combined with rules G, US, and MP. Axiom V says nullary

1
The presentation of this axiom is simplified for clarity. In reality, differential equation

solving is implemented with the combination of several axioms [30].

⟨;⟩ ⟨a;b⟩P ↔ ⟨a⟩⟨b⟩P

⟨∪⟩ ⟨a ∪ b⟩P ↔ (⟨a⟩P ∨ ⟨b⟩P)

⟨?⟩ ⟨?P⟩Q ↔ (P ∧Q)

⟨:=⟩ ⟨x := f ()⟩p(x) ↔ p(f ())

⟨:∗⟩ ⟨x := ∗⟩p(x) ↔ ∃x :R p(x)

⟨′⟩ ⟨x ′ = F &q(x)⟩p(x) ↔ ∃t≥0(p(y(t)) ∧ ∀0≤s≤t q(y(s)))

⟨∗⟩ ⟨a∗⟩P ↔ (P ∨ ⟨a⟩⟨a∗⟩P)

I [a∗]P ↔ (P ∧ [a∗] (P → [a]P))

G

P

[a]P

US

ϕ

σ (ϕ)

M

P → Q

⟨a⟩P → ⟨a⟩Q

MP

P → Q P

Q

⟨·⟩ ⟨a⟩P ↔ ¬[a]¬P

V p() → [a]p()

K [a](P → Q) → [a]P → [a]Q

Figure 3. dL axioms and rules

predicates p() are preserved under program execution because they

depend on no program variables.

Hybrid rules and axioms. Our hybrid modality and quantifier

axioms come from first-order hybrid logic [7] and Combinatory Dy-

namic Logic [24] and are listed in Fig. 4. Axiom @id says nominal

constant formulasn are satisfied at the state named byn. Axiom ∃W
introduces a name for the current state. Rule G@ and axiom K@ are

the Gödel generalization rule and Kripke axiom for the @ modality.

Axioms ∀I@ and ∀E@ are Skolemization and elimination for univer-

sal world quantifiers. Axiom@I introduces an @nϕ modality when

n is the current state. Axiom @@ collapses nested @ modalities

to the inner modality. Axiom @↔ replaces equal states in context.

Axiom ⟨n⟩ introduces an @ modality for any state n reachable by

a program a. Axiom ↓ reduces the local quantifier to its definition

in terms of the existential operator. Homomorphism axiom family

@hom completely captures the meaning of at-terms. Barcan axiom

schema BW swaps a quantifier ∃s :W with a program α where s
does not appear free (s is never bound in any program). To make

schematic program α into a constant a and make BW a concrete

axiom, it would suffice to prohibit nominals inside programs.

6 Theory
We now develop the theory of dHL, showing that the proof calculus
is sound and comparing the expressiveness of dHLwith other logics.
Complete definitions and proofs are in the companion report [8].

6.1 Soundness
We show soundness of dHL by extending the soundness proof for

the uniform substitution calculus for dL [30]. Uniform substitution

allows for a modular soundness proof: the soundness proof is sep-

arated into proving that a finite list of dHL axioms are valid and

that uniform substitution and the remaining Hilbert rules preserve

validity. We prove that all valid dL formulas are valid dHL formulas,

and thus dL axioms are also sound in dHL automatically.

5
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@id @nn

∃W ∃s :W s

G@

P

@nP

∀I@
q(t)

∀s :W q(s)
(t fresh)

@I (n ∧ P) → @nP

@@ @n@mP ↔ @mP

@↔ @nm → (p(n) ↔ p(m))

∀E@ (∀s :W p(s)) → p(n)

⟨n⟩ ([a]↓s p(s) ∧ ⟨a⟩n) → p(n)

↓ ↓s p(s) ↔ ∃s :W (s ∧ p(s))

K@ @n (P → Q) → (@nP → @nQ)

@hom @np(F1, . . . Fm ) ↔ p(@nF1, . . . ,@nFm )

BW ⟨α⟩∃s :W P ↔ ∃s :W ⟨α⟩P (s < FV(α))

Figure 4. Hybrid rules and axioms

Case Replacement Admissible when

σ (@wθ ) = @σ (w )σ (θ ) No new x ∈ V in FV(σ (θ ))

σ (@wϕ) = @σ (w )σ (ϕ) No new x ∈ V in FV(σ (ϕ))

σ (∀s :W ϕ) = ∀s :W σ (ϕ) No new s in FV(σ (ϕ))

σ (∃s :W ϕ) = ∃s :W σ (ϕ) No new s in FV(σ (ϕ))

σ (↓s ϕ) = ↓s σ (ϕ) No new s in FV(σ (ϕ))

σ (n) = n, if n < σ

σ (n) = σn, if n ∈ σ

σ (s) = s

Figure 5. Uniform substitution algorithm (new cases)

Substitution. The US rule in dHL is analogous to that in dL:

US

ϕ

σ (ϕ)

In dL, the US rule is sound when the substitution σ does not in-

troduce free references to bound variables. Such substitutions are

called admissible, a condition which can be checked syntactically.

We generalize: in dHL, admissible substitutions do not introduce

free references to any bound flexible symbol, world variables in-

cluded. Admissibility conditions are checked recursively by the

substitution algorithm (Fig. 5). We give the new cases and their

admissibility conditions here. The free-variable function FV(e) re-
cursively computes which flexible symbols might influence e .

Examples. The admissibility conditions in Fig. 5 are instantiations

of the principle that substitution should not introduce new free

references under a binder. Yet, it can be surprisingly subtle both why

these conditions are necessary for soundness and why the resulting

calculus is sufficiently complete. To see why they are necessary for

soundness, consider for example the instance of axiom @hom for

σC
def

≡ {FC 7→ x , p(·) 7→ x = ·}, a substitution which clashes and
which, if it were permitted, would result in an invalid formula:

@n (x = x) ↔ x = @nx

where the LHS is a tautology and the RHS is false almost every-

where. The fundamental problem is that the modality @n modifies

the meaning of x : on the left it refers to @nx while on the right

it refers to x in the present state. In short, the meaning of σp is

non-uniform, so substitution with σ would be unsound. The ad-

missibility check for @w prohibits such substitutions, ensuring

uniformity and thus soundness of rule US.

It is equally subtle why rule US allows axiom @hom to be in-

stantiated at all, because the @n modality binds the entire state.

The key is that the argument · of a predicate does not contribute to
the free variables of a substitution. For example, the substitution

σA
def

≡ {F1 7→ x2, p(·) 7→ · ≥ 0} is admissible because i) F1 already

depends on all variables, so σA(F1) introduces no free variables and

ii) the argument · is rigid, so σA(p) introduces no free variables.

Intuitively, σA should be admissible for formula p(F1) because the

argument F1 is a functional that can depend on all variables, yet

σC clashes since σC (p) does not defer to the argument (written ·),
causing @hom to incorrectly use simply x on both sides.

We proceed to the soundness theorem, following the same struc-

ture as previous work [30]. We begin with lemmas on the cor-

rectness of free variable and signature computations, where the

signature Σ(e) is the analog of FV(e) for rigid symbols. The coinci-

dence lemmas say that expressions depend only on their signature

and free variables. We extend coincidence for terms and formulas

with new cases for hybrid-logical constructs:

Lemma 1 (Coincidence).
1. If ω = ω̃ on FV(θ ), д = h on FV(θ ), and I = J on Σ(θ ), then

[[θ ]]Iдω = [[θ ]]Jhω̃.
2. If ω = ω̃ on FV(ϕ), д = h on FV(ϕ), and I = J on Σ(ϕ), then
ω ∈ [[ϕ]]Iд iff ω̃ ∈ [[ϕ]]Jh.

3. Ifω = ω̃,д = h onV ⊇ FV(α), I =J on Σ(α), and (ω,ν ) ∈[[α]]Iд,
then exists ν̃ s.t. (ω̃, ν̃ ) ∈[[α]]Ih and ν = ν̃ on V .

Axioms of dL need not be reproved because dHL contains dL:

Proposition 2 (dHL contains dL). If ϕ is a dL formula, then validity
in dL semantics and validity in dHL semantics coincide for ϕ.

Theorem 3 (dHL soundness). All dHL rules are sound and all ax-
ioms valid, thus all provable dHL formulas are valid.

Proof Sketch [8]. Soundness of US is proven inductively, appealing

to Lem. 1. The dL axioms are valid in dL [30] and (by Prop. 2) dHL,
and by US so are their instances, even instances containing hybrid

connectives. Validity of the new dHL axioms is by direct proof. □

6.2 Reducibility
We compare the expressive power of dHL to that of dL in order

to determine when and in what sense dHL is necessary or espe-

cially beneficial compared to dL. The comparison is surprisingly

subtle, and finds that while dHL is reducible to dL, its specialized
hybrid-logical rules make direct proof in dHL preferable for practi-

cal purposes. The core idea is to emulate each world variable from

6
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dHL with a finite number of program variables in dL, resulting in
an equivalent, finite dL formula. This approach is subtle primarily

because dHL states contain infinitely many program variables:

1. The size of worlds is not a cosmetic decision, but rather

affects validity of some formulas. Consider the formula:

ϕ ≡ ⟨x := ∗⟩s

This is valid iff V ≡ {x}, i.e. iff reaching all values of x
suffices to reach all states. We consider this behavior too

surprising, and eliminate it by requiring infinite states. The

formula is then invalid because program x := ∗ cannot, e.g.,

transition between any ω and ν where ω(r ) , ν (r ) for r , x .
2. Program constants and predicationals depend on every vari-

able, in order to capture the notion that programs and formu-

las can use arbitrary variable names. Since there are infinitely

many variables, they have infinitely many dependencies.

We show that for formulas without program constants and pred-

icationals (called concrete formulas), infinite worlds are not an ob-

stacle, while for formulas with program constants or predicationals

(called abstract formulas), they are. Concrete formulas are reducible:

even though each state contains infinitely many variables, it suf-

fices to employ a single fresh variable r (consider example above).

To make this claim formal, we introduce a notion of finite domains

for states, galaxies and interpretations.

Definition 10 (Finite-domain states). State ω has finite domain
S ⊆ V if S is finite and ω(x) = 0 for all x < S . Galaxies and
interpretations are analogous. A formula ϕ is finite-domain valid
for domain S if ω ∈ [[ϕ]]Iд for all ω, I ,д with finite domain S .

We outline the proof here, with full proofs in the report [8].

The proof proceeds by showing that in both dHL and dL, validity
and finite-domain agree for concrete formulas, then showing that

our reduction preserves finite-domain validity. Thus our reduction

preserves validity for concrete formulas. The converse also holds

because dL is a fragment of dHL (Prop. 2).

Lemma 4 (Finitization). Let ϕ be any concrete dHL formula. Then
let r < FV(ϕ)∪BV(ϕ) (where BV(ϕ) is everything bound in ϕ). Then ϕ
is valid iff ϕ is finite-domain valid with domain {r }∪(FV(ϕ)∪BV(ϕ)).

Lemma 5 (Finite-domain reducibility). There exists a computable
reduction T (ϕ) such every dHL formula ϕ is finite-domain valid iff
the dL formula T (ϕ) is finite-domain valid.

Proof Sketch [8]. We present the translationT (ϕ). In this translation
we write ®x for the vector of all variables x1, . . . ,xn in the domain S ,

and e
®θ
®x for the vectorial substitution of all θi for the corresponding

xi in e . For each of the finitely-many world termsw in ϕ, let ®xw be a

vector of |S | fresh symbols implementing @w ®x . When convenient,

we implicitly assume S ⊃ FV(ϕ) ∪ BV(ϕ).

T (@wθ ) = T (θ )
®xw
®x (27)

T (@wϕ) = [®x := ®xw ]T (ϕ) (28)

T (w) =
(
®x = ®xw

)
(29)

T (∀s :W ϕ) = ∀®xs :R T (ϕ) (30)

T (∃s :W ϕ) = ∃®xs :R T (ϕ) (31)

T (↓s ϕ) = [®xs := ®x]T (ϕ) (32)

T (⊗(e1, . . . , e2)) = ⊗(T (e1), . . . ,T (en )) (33)

In Equation (33), the notation ⊗(e1, . . . , en ) stands for any of the
other dL connectives. In Equation (29), vector equality ®x = ®y stands

for the conjunction

∧
i xi = yi . The result proves by induction. □

Lemma 6 (De-finitization). A concrete dL formula ϕ is valid iff it is
finite-domain valid over domain FV(ϕ) ∪ BV(ϕ).

Theorem 7 (Concrete reducibility). Concrete dHL (i.e., with no
rigid symbols) reduces to concrete dL. That is, for all concrete dHL
formulas, the concrete dL formula T (ϕ) is valid iff ϕ is.

Proposition 8 (Complexity of T ). |T (ϕ)| ∈ Θ(|ϕ |2) for concrete ϕ.

Proof Sketch [8]. To prove the upper bound, note the function T (ϕ)
expands ϕ by at most a factor of |S |. By Lem. 4, |S | ∈ O(|ϕ |) suffices

for finitely-valid ϕ. To prove the lower bound, simply observe there

exist formulas where the number of program and world variables

are both linear in the size. We give a concrete example:

ϕn ≡ ∃s1 :W · · · ∃sn :W
(
@s1

x1 > 0 ∧ · · · ∧ @snxn > 0

)
Now observe that applying T with S = {r } ∪ FV(ϕn ) ∪ BV(ϕn )
results in |T (ϕn )| ∈ Ω(n2). □

We note these theorems do not entail (infinite) validity reduction
for abstract dHL formulas. Thm. 5 does however preserve finite

validity even in the presence of abstract formulas. In summary,

reduction fails if and only if abstract constants are allowed to intro-

duce arbitrary new variables.

Corollary 9 (Relative semi-decidability). Concrete dHL is semi-
decidable relative to properties of differential equations.

Sketch [8]. By relative semi-decidability [27] of dL and Thm. 7. □

We reflect on the practical implications of the reducibility results.

The reduction requires a finite variable domain, but the natural

domain for abstract formulas is infinite. This means verification by

reduction is especially ill-suited for proofs using advanced proof

techniques like refinement [21] which rely on abstract formulas.

Most dHL axioms are also abstract, and so cannot be translated

to concrete dL axioms! Even on concrete formulas, the reduction

exhibits quadratic blowup and obscures the more convenient proof

techniques available in dHL. Thus, direct proof in dHL is strongly

preferable to dL reduction for practical purposes.

7 Derived Rules for Bisimulation
The proof calculus of Sec. 5 provides a hybrid-logical core for hy-

perproperty verification. We connect nondeducibility to this core

by deriving a library of rules for information-flow proofs which,

being derived, lie outside the core calculus. Our derived rules show

that bisimulation, the core proof technique for information flow,

derives from nominals in hybrid logic. Because information flow

arguments specifically equate values from initial and ending states,

we also derive rules for equalities over at-terms. In Sec. 8 and Sec. 9,

we apply our library to our smart grid example and see it raises the

level of abstraction. Derivations are given in the report [8].

Bisimulation Rules. In Fig. 6, R refers to a relation over world ex-

pressions, i.e., R(i1, i2) means that worlds i1 and i2 are related in R,
andm1,m2 refer to anymiddle states. The rules proceed by destruc-

ting a trace on the left; any nondeterminism is resolved identically

on the right. Rule @ind is an auxiliary rule for loop induction with

nominals, derived from loop induction axiom I. It is in turn used to

7
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@ind

@i1o1 → p(o1) @m1
⟨α⟩o1 ∧ p(m1) → p(o1)

@i1 ⟨α
∗⟩o1 → p(o1)

BS
∗

@i1 ⟨α⟩o1 ∧ R(i1, i2) → @i2 ⟨α⟩↓o2 R(o1,o2)

@i1 ⟨α
∗⟩o1 ∧ R(i1, i2) → @i2 ⟨α

∗⟩↓o2 R(o1,o2)

BS
′

@i1 ⟨ASGN⟩o1 ∧ R(i1, i2) → @i2 [ASGN]↓o2 R(o1,o2)

@i1 ⟨ODE⟩o1 ∧ R(i1, i2) → @i2 ⟨ODE⟩↓o2 R(o1,o2)

BS;

@i1 ⟨α⟩m1 ∧ Ri (i1, i2) → @i2 ⟨α⟩↓m2 Rm (m1,m2)

@m1
⟨α⟩o1 ∧ Rm (m1,m2) → @m2

⟨α⟩↓o2 Ro (o1,o2)

@i1 ⟨α ; β⟩o1 ∧ Ri (i1, i2) → @i2 ⟨α ; β⟩↓o2 Ro (o1,o2)

BS∪

@i1 ⟨α⟩o1 ∧ Ri (i1, i2) → @i2 ⟨α⟩↓o2 Ro (o1,o2)

@i1 ⟨β⟩o1 ∧ Ri (i1, i2) → @i2 ⟨β⟩↓o2 Ro (o1,o2)

@i1 ⟨α ∪ β⟩o1 ∧ Ri (i1, i2) → @i2 ⟨α ∪ β⟩↓o2 Ro (o1,o2)

Figure 6. Bisimulation: Derived rules (mi fresh)

NTV @i ⟨α⟩j → @iθ = @jθ (FV(θ ) ∩ BV(α) = ∅)

NT:= @i ⟨x := F ⟩j → @iF = @jx

NT;

@i ⟨α⟩m → @iF = @mH @m ⟨β⟩j → @mH = @jG

@i ⟨α ; β⟩j → @iF = @jG

NT∪
@i ⟨α⟩j → @iF = @jG @i ⟨β⟩j → @iF = @jG

@i ⟨α ∪ β⟩j → @iF = @jG

NT
′

@i ⟨x
′ = F , t ′ = 1 &ψ ⟩j → @iy((@j t) − t) = @jx

NT∗
@s ⟨α⟩t → @sF = @t F

@i ⟨α∗⟩j → @iF = @jF

Figure 7. At-terms: Derived rules (n,m, s, t fresh)

derive Rule BS
∗
, which says any relation R is a bisimulation for loop

α∗ any time it is (in every state) a bisimulation for α . Rule BS; is

Hoare-style composition reasoning raised to the bisimulation level:

we can reason about α ; β by establishing a relation Rm that holds

in the intermediate state. Rule BS∪ says a nondeterministic choice

maintains a bisimulation if each branch does. In rule BS
′
, ODE is a

differential equation of form {x ′ = θ , t ′ = 1 &ψ } (any model can

be trivially extended to this form by adding a fresh variable t ) and
ASGN ≡

(
t :=@o1

t ;x :=y(t − @i1t)
)
simplifies ODEs to assign-

ments implementing their solutions, plugging in the same duration

@o1
t − @i1t as in the trace @i1 ⟨ODE⟩o1.

At-Terms. Fig. 7 derives rules for at-term equalities. Rule NTV says

a term θ is unchanged if its variables never appear bound in α . The
remaining rules are derived from the program axioms and capture

the effect of each program on a term. In rule NT
′
, y(t) is a global

solution to x ′ = f (x).

8 FREEDM: Proving Vulnerability Existence
We now prove that the naïve deterministic controller batI based
on the published algorithm for FREEDM [2] is insecure: our quanti-

tative dynamical model reveals a bug obscured by the finite event-

based abstraction in previous models [3]. Information leaks because

when gr > 0 is true we can infer Bi = Bmax for some i , meaning

we have leaked the information that some battery is at capacity. In

principle, this could be useful to an attacker, because high charge is

associated with vulnerability to (explosive) thermal runaways [13]!

To prove that a system is nondeducibility-insecure, we prove the
negation of nondeducibility security, i.e., we prove:

Proposition 10 (batI is insecure). Let αI be the insecure version
of the grid αF and R(i, j) ≡ (@i t = @j t ∧ @igr = @jgr). Then
∃i1, i2,o1 :W

(
R(i1, i2)∧@i1 ⟨αI ⟩o1∧@i2 [αI ]↓o2 ¬R(o1,o2)

)
is valid.

Proof Sketch [8]. We begin by constructing the states i1, i2,o1. First,

let i be an arbitrary state. Then let i1 be the unique state such

that @i ⟨Bi := Bmax; t := 0; gr := 0⟩i1 and i2 the unique state such

that @i ⟨Bi := 1

2
Bmax; t := 0; gr := 0⟩i2. Let o1 be any state such that

@i1 ⟨αI ⟩o1 and @o1
(t = 0 ∧ gr > 0). We know such a state exists

by running αI for exactly one iteration, setting ri = max(0,−pi )
and di = 1 + max(0,pi ) which always results in Ni = 1. Thus

after evolving the differential equation for time 0 we arrive at

gr > 0. By induction we show that all traces of αI maintain the

invariant J ≡ (t≥0 ∧ (t=0 → gr ≤ 0 ∧ Bi =
1

2
Bmax)), which can be

proven by mechanically applying program axioms, then checking

first-order real arithmetic at the leaves. The result follows from

@o1
(t = 0 ∧ gr > 0)∧@o2

J → ¬R(o1,o2),which itself follows from

a simpler arithmetic argument: @o1
gr , @o2

gr . □

9 FREEDM: Ensuring and Proving Security
We learned that batI leaks Bi = Bmax, ultimately because it is too

deterministic: If gr > 0 we learn for a fact some Bi = Bmax. The

simplest solution, as taken in batS of Fig. 2, is to add the nonde-

terministic option to use the macrogrid even when a battery has

capacity. Now that the macrogrid is always an option, an attacker

who observes gr > 0 cannot infer Bi = Bmax for certain.

We now prove batS nondeducibility secure, i.e., an attacker ob-

serving only gr and t deduces nothing else. We instantiate Def. 5 to

arrive at the theorem statement:

Proposition 11 (Nondeducibility for FREEDM). First, we define
R(i, j) ≡

(
@i t = @j t ∧ @igr = @jgr ∧ pre(i) ∧ pre(j)

)
and define

pre(i)≡@i (maxm > 0 ∧ Bmax> 0 ∧ thresh > 0). Then formula

∀i1, i2,o1 :W
(
@i1 ⟨αS ⟩o1 ∧ R(i1, i2) → @i2 ⟨αS ⟩↓o2 R(o1,o2)

)
is valid, where αS is the secure version of the grid αF .

Proof Sketch [8]. Recall from Sec. 3 that the heart of the proof is

choosing a trace @i2 ⟨αS ⟩o2 which shows the public outputs @o1
gr

and @o1
t of trace

@i2 ⟨αS ⟩o2

are possible from all related input states i2. We apply loop rule BS
∗

with R(i, j) ≡ @i t = @j t ∧ @igr = @jgr ∧ pre(i) ∧ pre(j). The key
proof observation is that for the final values of gr to agree, it suffices

that the values agree for both gr and grm at the start of the ODE.We

perform this reasoning formally using the composition rule BS; with

RP (i, j) ≡ R(i, j) ∧ @igr = @jgr ∧ @igrm = @jgrm ∧ @i t = @j t .
This gives two proof obligations: one for the control and one for the

physics. We split into four cases for the controller using Lem. 12,

according to whether each transformer chooses to migrate.

Lemma 12 (Controller cases). The dHL formula @i1 ⟨ctrl⟩m1 →

@m1

(
(gr = 0∧grm = 0)∨(gr = n1∧grm =m)∨(grm = n2∧grm =

−m) ∨ (gr = n1 + n2 ∧ grm = 0)
)
is valid, where ctrl is as in Fig. 2.

8
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The second case is representative, the rest are in the report [8].

Case @m1
(gr = n1 ∧ grm =m) : By inspection, it suffices to

set n1 = @m1
n1 and n2 = 0,m = 0. If @m1

n1 − @i2p1 ≥ 0 then

we set r1 = −@m1
n1 − @i2p1 and d1 = 0 else we set r1 = 0 and

d1 = @i2p1 +@m1
n1. By algebra, in each case @m2

n1 = @m1
n1.

Then for i = 2 if @i2p2 ≥ 0 then set r2 = −@i2p2 and d2 = 0 else

set r2 = 0,d2 = @i2p2. By algebra, @m2
n2 = 0. Executing the

load balancer, we getm = 0 because n2 = 0 (thus T2 is Normal).
Each case takes the second branch of the battery controller, getting

gr = n1 + n2 = n1 and grm =m · −1
2 +m · −1

1 = 0 =m as desired.

This completes the proof of Prop. 11. □

We have shown how to use dHL to find and resolve hybrid-

dynamic information flow (HDIF) vulnerabilities in CPSs. We reflect

on how verified safety of a model can contribute to the safety of

real-world implementations as well.

Our first model was insecure because a deterministic branch in

the battery controller leaked information. This was fixed by intro-

ducing a nondeterministic branch. Implementations can simulate

the same effect, e.g., with randomized branching. Ourmodels taught

us that the battery controller needs such measures, but the load

balancing controller, in contrast, is secure even with deterministic

control. This knowledge is helpful in practice because measures

like randomization typically reduce operational suitability of a con-

troller, so verifying that a deterministic controller is secure enables

using the efficient deterministic controller with confidence.

In comparison with many other formal security models, our ap-

proach is especially well-suited to verifying security in the presence

of side-channels. Many would-be side-channels for cyber systems

(time, electrical flow, etc.) are primary channels in CPS and, as

shown in our models, are modeled naturally as hybrid systems.

Once these channels are modeled in our hybrid system, they can

be verified with the same techniques as any other HDIF!

10 Related Work
Dynamic Logics and Hybrid Logics. The logic dHL is a hybrid

version of the dynamic logic dL, adding the ability to verify hyper-

properties in addition to safety and liveness properties. The logic

dLh [26] is a proposed extension of dL with propositional hybrid

connectives, but lacks world quantifiers and at-terms, which are

essential for information flow. Dynamic logic and first-order hybrid

logic have been combined in Combinatory PDL [23], which extends

Propositional Dynamic Logic (PDL) with additional set-theoretic

program combinators, but has neither at-terms nor assignments,

let alone differential equations as dHL does. Hybrid logic has been

used in distributed systems [25] reasoning as well. While many

CPSs are distributed systems, distributed systems reasoning alone

does not suffice to verify hybrid discrete and continuous dynamics.

The logic QdL [28] allows verification of distributed hybrid dynam-

ics, but is not a hybrid logic, and faces the same challenges with

hyperproperties as dL does. First-order hybrid logic [7] (without

dynamic-logical or continuous features) and its proof theory [10]

have been studied in detail.

Static Information Flow Security. Logics and type systems for

information-flow security have been widely studied for discrete

programs. Sebelfeld and Myers [32] provide a survey of language-

based security approaches. Approaches can be broadly categorized

into automatic vs. interactive (or manual) approaches. Automation

increases the potential user base, typically at the cost of greatly

reduced completeness. When the proof is done automatically, the

simplicity of the proof is of little concern, and self-composition [5]

can be used to reduce information-flow proofs to a safety property

suitable for Hoare and dynamic logics.

In interactive use, self-composition has been noted [35] to make

proofs awkward by reducing locality: bisimulation techniques con-

sider the local effect of each statement α on two traces, but self-

composition may move the original statement α far from its copy.

For humans, a usable calculus as provided by dHL is far more im-

portant. As our smart grid example demonstrates, typical HDIFs

rely on fine-grained interactions between discrete and continuous

dynamics within system loops. This suggests that automated ap-

proaches would struggle and that our approach, which is amenable

to interactive proof, is merited. An approach analogous to proof

by reduction from dHL to dL has been implemented for the dy-

namic logic JavaDL in the theorem prover KeY (which supports

both automatic and interactive proof, but not nominals). To avoid

the awkwardness of the reduction approach, calculi meant for in-

teractive use [6, 22] typically build in special-purpose relations for

information flow. The disadvantage of such calculi is that baking

in these relations prevents generalizing to other hyperproperties.

We strike a middle ground with dHL: The proof techniques we
would expect of a dedicated calculus are easily implemented as

derived rules, yet we maintain the generality to express arbitrary

safety and liveness properties and hyperproperties as well. Our

development hints that the relationship between hybrid logic and

hyperproperties is general and deserves further exploration.

While we present the first HDIF result for a CPS, information

flow has been verified for discrete models of several different CPSs

via model-checking; e.g., Akella [3] has verified process algebra

models of FREEDM andWang [36] has verified a Petri-net model of

a pipeline network. The absence of continuous dynamics amounts

to a significant model gap between these models and reality. HDIFs

greatly narrow the model gap: for example, our HDIF analysis of

our FREEDM model revealed a vulnerability that was not visible in

the discrete model of Akella [3].

11 Conclusion and Future Work
We introduced dHL, a hybrid logic for verifying information-flow

security properties of hybrid dynamical systems in order to ensure

the security of critical cyber-physical systems (CPS). In contrast

with previous approaches, it allows verifying cyber-physical hybrid-

dynamic information flows (HDIFs), communicating information

through both discrete computation and physical dynamics, so secu-

rity is ensured even when attackers observe continuously-changing

values in continuous time. It achieves this by combining dL, a logic
for hybrid dynamical systems, with hybrid-logical features enabling

explicit reference to program states. This provides a novel way to

verify information flow: information flow properties are hyperprop-

erties, which are expressed naturally in hybrid logic via its ability

to refer freely to states from multiple traces simultaneously. The

foundation of hybrid logic allows verification (and falsification) of

security in a common system at no added complexity, and we ex-

pect the same system can support additional notions of information

flow such as non-interference, as well as arbitrary hyperproperties.

We introduced a calculus for dHL, proved it sound, and derived

high-level bisimulation rules for information flow proofs. Our use

9
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of uniform substitution provides modularity: we can instantiate all

existing dL axioms with dHL formulas and need not individually

reprove that each axiom is a valid formula of dHL. Uniform substitu-

tion also provides a clear path for extending the dL theorem-prover

KeYmaera X [15] and soundness formalization [9] with dHL.
We showed that dHL is capable of verifying the presence or ab-

sence of information-flow vulnerabilities in realistic hybrid models.

As an example, we debugged and then verified a hybrid model of

the FREEDM [19] smart grid controller based on the published al-

gorithm [2] with load-balancing and distributed energy generation

and storage, all important features for practical grids. Moreover, the

proof demonstrates both i) the close correspondence between dHL
information-flow proofs and natural-language proofs and ii) the

non-trivial proof arguments that quickly arise when mixing cyber

and physical dynamics.

Themain places where dHL proofs require more effort than an in-

formal proof were in introducing names for intermediate states and

observing the effect of a program on an individual term. We plan

to provide a proof format in the eventual KeYmaera X implemen-

tation that allows us to automate the majority of these low-level

steps, making proofs efficiently match to human intuition. Our

information-flow arguments depend closely on the exact semantics

of the program and do not follow from, e.g., simple syntactic checks

on variable dependencies, meaning the expressive power provided

by dHL’s deductive calculus is essential for verifying realistic CPS

information flow problems. A major novelty in both the logic dHL
and our model of FREEDM is the presence of HDIFs that mix dis-

crete cyber and continuous physical flows. These cyber-physical

flows arise naturally in many other critical applications, such as oil

and natural gas networks, canals, smart homes, medical devices,

and vehicles, which deserve future exploration.

Lastly, we also wish to explore other uses of dHL beyond hy-

perproperty verification. Derived features such as refinement and

universal modalities have been explored in Combinatory Dynamic

Logic [23], and may have applications [21] in modular hybrid sys-

tems modeling and verification.
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