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Abstract. Cyber-physical systems (CPS), such as airplanes, operate
based on sensor and communication data, i.e. on potentially noisy or
erroneous beliefs about the world. Realistic CPS models must therefore
incorporate the notion of beliefs if they are to provide safety guarantees
in practice as well as in theory. To fundamentally address this challenge,
this paper introduces a first-principles framework for reasoning about
CPS models where control decisions are explicitly driven by controller
beliefs arrived at through observation and reasoning. We extend the dif-
ferential dynamic logic d£ for CPS dynamics with belief modalities, and
a learning operator for belief change. This new dynamic doxastic dif-
ferential dynamic logic d*C does due justice to the challenges of CPS
verification by having 1) real arithmetic for describing the world and be-
liefs about the world; 2) continuous and discrete world change; 3) discrete
belief change by means of the learning operator. We develop a sound se-
quent calculus for d*C, which enables us to illustrate the applicability of
d?C by proving the safety of a simplified belief-triggered controller for an
airplane.

Keywords: differential dynamic logic - dynamic epistemic logic - se-
quent calculus - hybrid systems - cyber-physical systems

1 Introduction

Cyber-physical systems (CPS) mix discrete cyber change and continuous physi-
cal change. Examples of CPS include self-driving cars, airplane autopilots, and
industrial machines. With widespread espousal of automation in transportation,
it is imperative that we develop methods capable of verifying the safety of the
algorithms driving the CPSs on which human lives will increasingly depend.
However, because CPSs rely on sensors and partial human operation, both
of which are imperfect, they face a possible discrepancy between reality, and
the perception, understanding and beliefs thereof. Critical system components
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are engineered to be exceptionally reliable, so safety incidents often originate
from just such a discrepancy between what is believed to be true versus what is
actually true. This can be highlighted by three (of many) tragedies, some now
known to be preventable, e.g., through neutral control inputs [BIJT2]. However,
non-critical sensor failures led to erroneous pilot beliefs. These beliefs resulted
in the pilots’ inability to perform informed, safe control decisions, leading to 574
fatalities in these three incidents alone.

Verification efforts for practical system designs must therefore augment initial
analyses which assume perfect information with an awareness of factors such
as sensor errors, actuator disturbances, and, crucially, incomplete or incorrect
perceptions of the world. Ideally, such factors ought to become an explicit part
of the model so that CPS design and verification engineers can confront this
challenge of uncertainty head on at design time, before safety violations occur.

We argue that the notion of beliefs (dozastics) about the state of the world,
which has been extensively studied, can succinctly capture such phenomena. We
develop a first-principles language and verification method for reasoning about
changing beliefs in a changing world. Using this language, CPS designers may
create more realistic controllers whose decisions are explicitly driven by their
beliefs. The consequences of such decisions are borne out in the continuous-time
and continuous-space evolution of these belief-aware CPS.

In this new paradigm, control decisions are grounded only in what can be
observed and reasoned. By providing the tools to develop such belief-triggered
controllers, we help bridge the gap between the theoretical safety of CPS models,
and the practical safety of the CPS vehicles that will soon be driving and flying
us to our destinations.

2 Technical Approach

Our approach is to integrate a framework for specifying and verifying real-world
CPS with a suitable notion of dynamic beliefs. The result should be a single
cohesive framework capable of complex reasoning about changing beliefs in a
changing world, as required by belief-aware CPSs.

Work on control-theoretic robust solutions for CPS models seem promising,
since they entail asymptotical steering towards a desired target domain despite
perturbations in the system [11]: sensor and actuator noise could be modeled as
perturbations rather than beliefs. However, perturbation analysis does not cap-
ture the complex causal relationship from observation, to reasoning, to actuation
in an explicit way that can lead to e.g. malfunction checklists or pilot best prac-
tices. Accurate analyses for safety incidents such as [BIIIT2] require the power
to 1) model agents with reasoning capabilities, and 2) leverage complex logical
arguments about perception versus fact in the pursuit of safety guarantees.

The differential dynamic logic d£ [I6/I7IT9] is a successful tool for design-
ing and verifying belief-unaware CPS, i.e. a “changing world” in a real-valued
domain. Dynamic epistemic logics (DELS), on the other hand, deal with chang-
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ing knowledge (which is tightly connected to beliefSED in a propositional static
world that never changes [3J4[I0J7], again through the lens of modal logic. Some
previous work exists at the intersection of these two. However, belief-aware CPS
requires unobservable world change under the real numbers, which is in conflict
with the public propositional world-change in [6]; and a more comprehensive
and less restrictive treatment of belief that goes beyond using the underlying
dynamic modalities of world-change to emulate noise as in [14].

Since both dC and DELs are dynamic modal logics, they are prime candidates
for inspiration in the pursuit of a unified dynamic modal logic that can reason
about changing beliefs in a changing world. We develop the dynamic dozastic
differential dynamic logic d*L, as an extension of dZ with 1) belief modalities,
and 2) a learning operator for describing belief-change, inspired by DELs.

This new framework requires a fundamental conceptual shift in the design of
CPS. Let ctrl be a program describing control decisions (e.g. a pilot pressing a
button), and plant be a program for continuous evolution (e.g. an airplane fly-
ing). In the current, belief-unaware d paradigm, the primary mode of establish-
ing the safety of CPS is by the validity of a formula pre — [(ctrl; plant)*] safe.
It states that, starting from precondition pre, every possible execution of the pro-
gram (ctrl; plant)” ends with the safety property safe being true, with the
star * operator repeating ctrl followed by plant any number of times.

Example 1. As a running example, suppose an airplane is controlled by directly
setting its vertical velocity to 1 or -1 in thousands of feet per second. The safety
goal of the controller is to keep the airplane above ground:

1. pre = safe = (alt > 0), i.e., the airplane is above ground.

2. ctrl = (?alt > 1;yv:= —1) U yv:= 1, in which two things may happen, on
either side of U. If the airplane is above 1000ft (?alt > 1), it may descend
by setting vertical velocity yv to -1000 feet per second. Alternatively, it can
climb with yv := 1, which may always happen since this action has no ? test.

3. plant =t := 0;¢' = 1,alt’ = yv & t < 1 describes, using differential equa-
tions, that altitude changes with vertical velocity (alt’ = yv) for a maximum
of 1 unit of time using time counter ¢ = 1. The evolution domain constraint
t < 1 bounds how much time may pass before the pilot reassesses this choice.

Intuitively, this CPS is safe because the controller can only decide to descend
if it is high enough above ground such that descending for 1 second at a velocity
of -1000 feet per second, traveling a total of 1000 feet, keeps it above ground.
This condition is based on ontic (real world, or factual) truth and does not
capture the reality that altitude is read from a noisy altimeter, and that pilot
beliefs trigger actions, not ontics.

In contrast, in belief-aware CPS, control decisions are triggered by some belief
B, (¢), not ontic truth ¢. This minor syntactic change belies the complexity of
the underlying paradigm shift. The CPS model must now explicitly describe how

4 Beliefs may be erroneous, knowledge may not.
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an agent learns about the world and acquires such beliefs B, (¢). In d*C, this
process of observation and reasoning is specified by means of a learning operator.
A dL program «, describing ontic change, does not alter beliefs. In contrast, a
learning operator program L, (a) changes only agent a’s beliefs, with the change
described by a becoming doxastic rather than ontic. The pattern a; Lo () de-
scribes observed ontic change, which also affects beliefs. This learning operator
may be used in a program obs to describe the agent’s learning processes of obser-
vation and reasoning. This leads to the addition the belief-changing obs to the
safety formula pre — [(obs; ctrl; plant)*] safe used for belief-aware CPS.

Ezample 2. Consider a belief-triggered controller for the airplane of Example [T}
The model now incorporates the fact that observation is imperfect, and that the
altimeter, while operating properly, has some noise bounded by ¢ > 0.

1. obs = L, (?alt — alt, < ). The pilot a learns, by observing the altimeter
with known error bounds €, that the perceived altitude alt, can be lower
than the true altitude alt by at most e. Thus, the belief B, (alt — alt, < €)
comes to be.

2. ctrl = (7B, (alt, — e > 1);yv:= —1) Uyv = 1). Climbing, being safe, re-
mains an always acceptable choice. However, the trigger for descending is
that the pilot believes that the perceived altitude with worst-case noise is still
high enough for the airplane to descend for one second, i.e. B, (alt, — e > 1).

We must add € > 0 to pre, but plant does not change since beliefs do not directly
affect the behavior of the real world: they do so only through agent actions.

More generally, d*C allows for arbitrary combinations of ontic d actions
and the learning operator, representing any interleaving of physical and doxastic
change, the former potentially unobservable, and the latter potentially imperfect,
e.g. through noisy sensors.

3 Syntax of d‘C

In this section, we will describe d%C terms, formulas and programs. As in d_,
real arithmetic is used to accurately model CPSs. Thus, terms are real-valued.

The safety of well-functioning belief-aware CPS is often predicated on beliefs
being grounded in reality so that informed decisions can be made, cf. formula
B, (alt — alt, < €) of Example [2| where perceived altitude can underestimate
factual altitude by at most e. This relation between belief and truth is at the
core of many safety arguments, and should be describable within the logic. We
must therefore be able to refer to both ontic (factual) and doxastic (belief) states
in the same context, as in B, (alt — alt, < ¢).

3.1 d%C Terms and Formulas

State variables describe ontic truth, e.g. alt is the airplane’s real altitude. Dox-
astic variable alt, is agent a’s perception of alt. Basic arithmetic is also in the
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language, e.g. © —y. Constants ¢ € Q allow for digitally representable numbers in
the syntax, e.g. 2.5 but not m, though the semantics can give variables any value
in R. Logical variables X are introduced by quantifiers over R to e.g. discharge
reasoning about continuous time, or to find witnesses for existential modalities.

Let A be a finite set of agents, X be a countable set of logical variables, V
be a countable set of state variables, and V, = {x, : x € V} the set of doxastic
variables for agent a € A. The following definition distinguishes between terms
with and without doxastic variables. The distinction is crucial when assigning
to state or doxastic variables, as we will see in Definition [3]

Definition 1. The dozastic terms 6 and non-dozastic terms ¢ of dL, with ® €
{+,—,x,+}, XeX zeV,z,€V,, ac€ A, ceQ, are given by the grammar:

0 == 00 | X | c| x| x4
¢ w= (®C| X [c]|a

The formulas of d*L are a superset of dC’s [17], which are a superset of those of
first-order logic for real arithmetic. Alongside logical connectives, we may write
propositions such as #; < 6y and logical quantifiers VX ¢. To this, d‘C adds
the belief modality B, (¢), meaning agent a believes ¢. The dynamic modality
formula [a] ¢ (after all executions of program «, ¢ is true), and its dual () ¢
(after some execution of «, ¢ is true) capture belief-aware CPS behavior. The
language of the programs « will be specified later in Definition [3]

Since d*C beliefs are only about the state of the world, it is useful to distin-
guish between formulas £ which may appear inside belief modalities, and those
¢ which may not. We still allow doxastic terms € in ¢, since safety proofs may
generate such formulas.

Definition 2. The formulas ¢,¢ of dC are given by the grammar:

¢ u= ¢Vo | =g | 0<0 | VX ¢(X) | [a]¢ | Ba(§)
§ u= EVE | =L | 0<0

The remaining logical connectives, A, — and duals () ¢, X ¢(X), P, (§) are
defined as usual, e.g. (@) ¢ = —[a] =, and P, (§) = —B, (—§) when a considers
¢ possible. We may now generalize the noisy but accurate sensors of Example [2]

Ezample 3 (Noisy sensors). Sensors often come with known error bounds e. A
pilot reading from the altimeter should thus come to believe the indicated value
to be within € of the real alt, as captured by B, ((alta —alt)? < 62), with integer
exponentiation being definable from multiplication.

Belief modalities with both state and doxastic variables are meta-properties
of belief, e.g., how far doxastic truth is from ontic truth. Thus, their truth value
indeed changes as either the world or beliefs change. Section [6] will show such
formulas are part of the core argument for some belief-aware CPS safety proofs.
When formulas such as B, ((alta —alt)? < 52) are not true, it can become im-
possible for a to make informed decisions. Safety may then instead rely on very
conservative actions, e.g. bringing a car to a stop, or flying straight and level.
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3.2 Doxastic Hybrid Programs

The hybrid programs (HPs) of dC [I7] are able to describe both discrete and
continuous ontic change. They are the starting point for the dozastic hybrid
programs (DHPs) of dC. We introduce a learning operator L,(7) for doxastic
change, where v encodes an agent observing the world, reading from a sensor,
or suspecting some change to have happened. In this paper, the language of the
learned program <y is nearly identical to that of hybrid programs, and to the
epistemic actions of the epistemic action logic EAL [7].

Changing Physical State. Assignment x := ( performs instantaneous ontic
change, e.g. pushing the autopilot button, autopilot := 1, or resetting a time
counter with ¢ := 0, as in Examples [[] and 2] No doxastic variables are allowed
in ¢, since ontic truth is not directly a function of belief!

Differential equations =’ = ¢ & x describe continuous motion over a nonde-
terministic duration, so long as the evolution domain constraint formula y is true
throughout. For example, alf = yv,t’ = 1 & t < 10 describes linear change of
altitude for up to 10 seconds according to vertical velocity yv. Nondeterministic
ontic assignment z := * is definable as 2’ = 1; 2’ = —1, which assigns any value
in R to = by increasing then decreasing it arbitrarily.

The test ?¢ transitions if and only if d*C formula ¢ is true. It was used in
Example [I| as an ontic trigger ?(alt > 1) determining whether an airplane could
descend, and similarly as a belief trigger 7B, (alt, — ¢ > 1) in Example [2] where
a pilot can only descend if they believe the airplane is safely above 1000 feet
while taking worst-case noise into account.

Sequential composition «; § is self-explanatory. The choice a U [ nondeter-
ministically executes either o or 5. It may be used to encode multiple possible
outcomes or actions, e.g. (?alt > 1;yv:= —1) U yv := 1 from Example

Nondeterministic repetition a* lets a be iterated arbitrarily many times. It
was used in (obs; ctrl;plant)* to ensure the safety proof applies to a system
that can run for a long time, not just to a one-time control decision.

Changing Belief State. Agent beliefs are updated by means of the learning
operator L,(7y), where v is a program describing belief change. Notably, to in-
terleave ontic and belief change, the learning operator is a program itself rather
than a modality as in [SJ6]. Under d“L’s possible world semantics, each agent a
considers multiple worlds possible. The intuitive behavior of L, () is to execute
program -y at each such world, and consider all outcomes of such executions as
possible worlds.

The language of v is a slightly modified subset of that of hybrid programs.
Inside a learning operator, ontic assignment x :=  becomes doxastic assignment
xq = 6. Since doxastic change (unlike ontic change) may depend on previous
beliefs, the assigned term 6 allows doxastic variables. The language also includes
test 7¢, choice 1 Uy and sequential composition v1;ys.

This language of doxastic change captures the bulk of observation and rea-
soning phenomena found in belief-aware CPS, which tend to occur at distinct
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and discrete intervals, e.g. looking at a sensor periodically. The literature [20/6]
suggests that learned differential equations and repetition pose a very significant
additional challenge, which is useful only in more specialized scenarios.

Learned programs may contain nondeterminism, as in L, (y1 U7z2). Intu-
itively, this says that agent a is aware that either 1 or 45 happened, but cannot
ascertain which: agent ¢ must consider possible all outcomes of v; and of ~s.
Thus, in dC, learned nondeterminism is unobservable, and leads to the indistin-
guishability of outcomes, as in action models and epistemic actions [3[7]. This is
contrast to program L, (1)U Ly (72), in which agent a either learns «y;, or learns
72, but in both case knows precisely which one happened.

Learned test L,(?¢) eliminates those possible worlds for which 7€ does not
succeed, i.e. in which & is false. In this way, [L.(?¢)] ¢ is analogous to public
announcements and the tests of epistemic actions [7].

So far, the set of possible worlds may contract through learned tests and
finitely expand with learned choice. The nondeterministic doxastic assignment
x4 = * further enables uncountable expansion of possibilities by assigning any
value in R to x,. To let z, take any value satisfying some property ¢(z,), the
program L, (z, = *; 7¢(x,)) first “resets” the values z, can take using nondeter-
ministic assignment, and then contracts the set of possible worlds with ?¢(z,).

The grammar of programs divides programs into two categories. The first,
denoted a, describes the language of ontic change, or the ontic fact L,() that
program -y was learned. The second, denoted ~y, describes the language of doxastic
change, and, as we have seen, is a subset of the first with minor modifications.

Definition 3. Let x € V, a € A, z, € V, ¢,& be formulas per Def.[3, 0,( be
terms per Def. . Dozastic hybrid programs (DHP) « and learnable programs
are defined thus:

a = x=( | 2'=C&x | % | ;a | aUa | a* | Li(y)
vou= ze=0 | mg=x | 2 | vy | YUy

With a better understanding of d*C programs, we may now describe exactly
how the belief of Example |3| B, ((alta —alt)? < 52), is acquired.

Ezample 4 (Noisy sensors, cont’d). By observing a trusted altimeter, the pilot
decides to forget previous beliefs about altitude and trust the current reading.
Then, because the altimeter has a known error bound of ¢, the pilot must now
consider possible all altitude values at most £ away from the true value of alt.

La(alta =x; ?(alt, — alt)2 < 62)

4 Semantics of d*C

The d*C semantics are designed to allow agents to hold potentially erroneous
beliefs (proper belief, not knowledge) about a world which may undergo unob-
served change. We are inspired by the modal Kripke semantics, but diverge from
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it by completely decoupling the valuation describing ontic truth, denoted r in
d%L, from agent beliefs, since unobservable actions must change ontic truth only.

Because beliefs are exclusively about the world and not about other beliefs,
different agents’ worlds need not interact with one another. Therefore, each agent
a has their own set of worlds W,, which they consider possible. Each agent a’s
valuation V,(t) function holds the values of all doxastic variables at every world
t € W,, e.g. agent a’s perception of altitude at t € W, is V,(¢)(alt,).

In these sets of possible worlds, every world t; € W, is indistinguishable from
any other world t5 € W,. Under the usual Kripke semantics, this means that the
accessibility relation ~,, determining indistinguishability between worlds, is an
equivalence relation, i.e. an S5 system. Equivalence relations traditionally encode
knowledge, and belief is usually obtained by waiving the reflexivity requirement.
In such belief systems, a distinguished world s € W, determines ontic truth, and
yet may not be accessible through ~,.

In d%C, we achieve belief by allowing discrepancies between the valuations
of the possible worlds, including the distinguished one, and the separate ontic
valuation r. Thus, a pilot could believe the airplane to be high with V, (¢)(alt,) >
1000 for every t € W,, while it could be low in reality, with r(alt) < 1000.

This allows us to omit the accessibility relations entirely. It also simplifies
learned program semantics since the learning operator can never inadvertently
change ontic truth by altering the valuation of the distinguished world. We keep
the distinguished world in Definition [4] as a means by which we may interpret
every formula in every context, as we will see in Definitions [5] and [6]

This gives us the models of dC, called physical-doxastic models, or PD-
models for short. For simplicity, we consider only one agent a from now on, and
we omit the subscript where it can be easily inferred, e.g. V' instead of V.

Definition 4 (Physical/doxastic model). A physical/dozastic model or PD-
model w = (r,W,V, s) consists of 1) r: V — R, the state of the physical world;
2) W a set of worlds called the possible worlds; 3) V. : W — (Vo = R), a
valuation function in which V(t)(x,) returns agent a’s perceived value of the
dozastic variable x, at worldt € W; and 4) s € W, a distinguished world.

PD-models are sufficient to give meaning to all terms, formulas and programs.
We use w, v, u to denote PD-models, and sub- and super-scripts are applied
everywhere, e.g. w’ = (r', W' V' s'). The shortcut t € w means t € W; w(t)(z,)
means V(t)(z,); and w(z) means r(z). The distinguished world of w is Dw(w)
and its distinguished valuation DV(w) = w(DW(w)) = w(s) = V(s). The real
world is R(w) = r. Finally, let (r, W, V,s) @t = (r, W, V,t) for any t € w.

Interpretation of Terms, Formulas, and Programs. The interpretation of
terms and formulas is standard, with logical variables X given meaning by a
variable assignment 7 : X' — R, state variables by the physical state R(w), and
doxastic variables x, by the distinguished valuation Dv(w). Terms and formulas
such as alt, and alt, > 1000 may appear outside doxastic modalities during
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calculus proofs. The distinguished valuation (for the distinguished world) ensures
that they have a well-defined meaning and can thus be used as part of the proof.

Definition 5 (Term interpretation). Let w = (r,W,V,s) be a PD-model,
and n : X — R be a logical variable assignment. Then, the interpretation of
terms is defined inductively as follows: val, (w,x) = r(z) for state variable x;
val, (w, X) = n(X) for logical variable X ; val, (w, x,) = DV(w) (z4) for dozastic
variable xq; val, (w,01 ® 62) = val, (w,01) ® val, (w,82) for ® € {+,—, x,+}.

Formula interpretation is derived directly from dZ, first-order logic for real
arithmetic, and simplified Kripke semantics for beliefs. Definitions [6] and [7] are
mutually recursive due to the box modality formula [a] ¢ and test program ?¢.

Definition 6 (Interpretation of formulas). Let w = (r,W,V,s) be a PD-
model, n be a variable assignment, and (r,W,V,s) &t = (r,W,V,t). Then, the
valuation of a formula ¢ as 1 (true) or 0 (false) is defined inductively as follows.

val, (w, 01 < 02) = iff val, (w,01) < val, (w,62)

valy (w, ¢1 V ¢2) = iff valy (w, ¢1) =1 or val, (w, ¢2) =1

val, (w, —¢) =1 iff valy (w,¢) =0

valy (w,VX ¢) =1 iff for all v € R, valyx ) (W, ¢) =1

val, (w, B, (€)) =1 iff for allt € w,val, (wEt,§) =1

val, (w, [a] ¢) =1 iff  for all (w,w') € py (), val, (W, ¢) =1

Under these semantics, B, (z = 0) is equivalent to = 0 since state variable
is independent of the choice of distinguished world, unlike x,. CPS designers have
no reason to write such formulas, but when they do appear in calculus proofs,
the doxastic modality is eliminated using the equivalence B, (x = 0) > = = 0.

Program Semantics The program semantics is given as a reachability relation
over PD-models, with (w,w’) € p, (a) meaning that PD-model w’ is reachable
from w using program «. The semantics of DHPs starts with that of dC’s hybrid
programs. Most cases are intuitive. Differential equations use their solution y to
evolve R(w) for a nondeterministic duration, and ensure the evolution domain
constraint x is satisfied throughout. For a more in-depth treatment, see [I7].

To this we add doxastic assignment, which affects the distinguished valua-
tion DV(w), and the learning operator, which represents the “execute v at each
possible world” semantics from DELs, as illustrated in Figure [T}

In Figure (1} let (w,w’) € py (La(7)). Then, each world v € w’ after learning
has an “origin” world ¢ € w from before learning, e.g. t; is the origin world for 14
and vo. Every PD-model v that 7 can reach from each origin world ¢ € w (i.e.
(w® t,v) € py (7)) becomes a possible world v € W' after Lo(7). The valuation
w'(v) reflects the effects of v, which can be found in the distinguished valuation
of v, and thus, we let w'(v) = DV(v).
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Finally, the distinguished world of w’ is chosen as any ' € w’ whose origin
world is Dw(w). This applies the principle of learned nondeterminism as indis-
tinguishability of outcomes to the distinguished world.

530

Fig. 1. The double-circled ¢; = bw(w) creates, through +’s nondeterminism, two post-
learning worlds v1,v2 € w’ worlds, either of which can be nondeterministically chosen
as DW(w’). The world t2 € w leads to v3 € w’, which cannot be chosen as bw(w’).

Definition 7 (Transition semantics). Let w = (r,W,V,s) be a PD-model,
and n be a variable assignment. The transition relation for dozastic dynamic
programs is inductively defined by:

— (w,w') € py (x =) iff W =w except R(W') () = ( ,0)

— (w,w') € py (x4 :=0) iff W' = w except DV(W') (za) al, (w, 8)

— (w,w') € py (xq = %) iff W =w except DV(W') (z ):vfor some v € R

— (w,w') €py(@ =C& x) iff W = (rlv—=y(r)],W,V,s) for the solution y :

[0,T] = R of the diff. eq., with 7 € [0,T] for some T > 0. Furthermore, for
allt; € 10, 7], and val, ({rlz — y(t;)], W, V,s),x) = 1.
— (w,w) € py (79) iff val, (w,¢) =1
= pn (03 8) = py (@) © py ()
= {ws : there is wy s.t. (wi,w2) € py () and (w2,ws) € p, (B)}
= pp(@UB) = py () Upy, (B)
— (w,w') € py () iff there is n € N such that (w,w’) € p, (a™), where a™ is
a sequentially composed n times.
— (w,w') € pp(L(y) ifs v =r, W ={v: thereist € ws.t. (wWdt,v) €
pn (1)}, W' (v) =DV(v) for all v € W', and DW(DW(w')) = DW(w).

Figure [1] and Definition [7]show that d“C’s learning operator applies the DEL
semantics to any language of change, so long as it has a transition semantics, as
in (wet,v) € py,(y). It is possible to extend this operator to traditional multi-
agent Kripke structures by letting two after-learning worlds be indistinguishable
in ' iff their origin worlds were indistinguishable in w, as is standard in DELs.
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5 Sound Sequent Calculus

Our main contribution towards the verification of belief-aware CPS is a sound
proof calculus for d*Z. The meaning of a sequent I" - ¢ with a d%C formula ¢
and a set of d*C formulas I is captured with the following definition of validity.

Definition 8 (Validity). A sequent I' - ¢ is valid iff for all w and 7,

val, (w,/\wepz/) — qb) =1
For simplicity’s sake, we use a single definition of soundness for proof rules.

It ¢

S1T0
In - @9

Definition 9 (Global Soundness). A proof rule PR, as in PR
globally sound when, if I'1 = ¢1 is valid then I's = ¢o is valid.

Overview of the Calculus. Figure [2] contains the fragment of the calculus
that pertains to the learning operator. The dC calculus [I6] is omitted as it is
easily adaptable to d*L. Single-modality agent rationality axioms can be adopted
for belief, i.e. By (¢1 — ¢2) = (B (1) = By (d2)) and, if ¢ is valid, then B, (¢)
is too. The proof for the following theorem can be found in [I3].

Theorem 1. The proof rules in Figure[3 are globally sound.

Sequent contexts I are partitioned into I'r; I'g; I'p; I 0. The set I'g is the set
of formulas with only state and logical variables and no doxastic modalities, e.g.
alt > 0. I's and I'p are the sets of belief and possibility formulas respectively,
e.g. By ((alty — alt)* < &?) and P, ((alt, — alt)?> < £%). I'p is the set of formulas
with doxastic variables but no modalities, e.g. alt, > 0. The rules in Figure
are only applicable once this partitioning has been achieved. Finally, let I \xa =
{¢ € I' : z, does not occur in ¢}.

Proof rules for learned programs that change doxastic state, like assignment
or test, work by altering the contexts in suitable ways. Each learned program
has two rules, for the O and ¢ dynamic modalities, which deal with the nonde-
terminism in the choice of the distinguished world. The exception is L,(a U (),
where doxastic and dynamic modalities interact much more subtly.

The proof rules for assignment L,(x, = 0) capture the intuition that, since
x, now has the value of 6 at each possible world, syntactically substituting all
occurrences of x, with # ought to mean the same thing.

Since nondeterministic assignment L, (z, = %) gives x, any possible value,
then anything previously possible about z, remains possible. However, beliefs
about z,, which must hold for all worlds, do not survive the assignment (unless
they are tautologies). The proof rules [L:=+] and (L:=x) eliminate the formulas
which may no longer hold after assignment from the context.

Formulas describing the distinguished world, i.e. in I'p, are retained or re-
moved, respectively, depending on whether the dynamic modality allows us pick
our distinguished world to suit our goals, as with {, or not, as with [J.



12 J. G. Martins et al.

L] ' ¢(0) ) . I't-¢(6) .
T La(we = 0)] 6(aa) = T (La(wa = 0)) 6(za)
e I'r;I's\, ;I'p;I0\,, F¢ I I'r;I's\, ;I'p;lot ¢
L=+ —F [La(za = )] & (Li=+) —p (Lo(za = #)) &
) I'r;I'g;0;To b By (€) — 4 () I'r;I'p;0; o F Ba (&) A
" I'r;I'p;Ip;To b [La(?6)] 9 V' T'r;I'; I'psTo b (La(?8)) ¥
L] 't [La(1); La(72)] ¢ \ I {La(m); La(12)) ¢
T I'E[La(msv2)] ¢ T IE(La(y1572)) ¢
I'F [La(71)] Ba (§) A [La(y2)] Ba (€) I'F (La(11)) Ba (§) A {La(72)) Ba (€)
[LBU] T'F [La(y1 Uv2)] Ba (€) (LBU) I'F (La(y1 U"2)) Ba (€)
I [La(m1)] Pa (§) A [La(72)] Pa (€) I'F(La(m)) Pa (&) V (La(72)) Pa ()
P Lt o 2 (PO L tn o) B 0
LU It [La(1)] ¢ A [La(y2)] ¢ () I't (La(m)) ¢V (La(72)) ¢

I [La(yUn2)]¢ 't (La(mUn2)) ¢
! The substitution of z, by 8 must be admissible in ¢, see Doxastic Assignment
2 Formula ¢ does not contain doxastic modalities or variables, or learning operators

Fig. 2. Dynamic doxastic fragment of the d*C calculus, with I" being I'r; I's; I'r; I'o

Learned test results in the belief about the test result, as in public announce-
ments. The test contracts the set of possible worlds, so we must remove the set
of possibility formulas from the context, as they may no longer hold. The un-
derlying dynamic modality determines whether this belief is a precondition for
1 or a necessity (¢ implies at least one transition, [J does not).

Learned sequential composition is merely reduced to regular sequential com-
position. Doxastic assignment and choice deserve further attention below.

Doxastic Assignment. The rule for doxastic assignments relies on its syntac-
tic substitution being equivalent to the semantic substitution effected by learned
assignment. This nontrival result can be captured succinctly by Lemmal[l} whose
full proof is found in [I3]. This result only holds when the substitution is ad-
missible with respect to a given formula ¢, i.e. that syntactic conditions are in
place ensuring the substitution will not change the meaning of the substituted
variables, and therefore, of the formula [I3].

Lemma 1 (Doxastic Substitution Lemma). Let ¢ be a formula. Let o
be an admissible substitution for ¢ which replaces only doxastic variable .
Then, for every n and w = (r,W,V,s), we have val, (w,o (¢)) = val, (¢ (w), ®),
where o (¢) is syntactic substitution, and o (w) is semantic substitution, de-
fined as o (w) = (r,W,o(V),s), with o (V)(t)(xa) = val, (wDt,0(xq)) and
o (V)(t)(ya) = V(t)(ya) = w(t)(Ya) for ya # @a, for allt € w.

Nondeterministic Choice. Learned choice influences dozastic modalities, and
the choice of distinguished world is influenced by dynamic modalities. This makes
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for some subtlety in the rules for learned choice. Consider the potential rule
below, which assumes L, (71 U7y2) is equivalent to Lg (1) U La(7y2)-

P, (_‘5) &k <La(?§)> B, (§) \ <La(? TT’U6)> B, (5)
Py (=€) ;€ (La(?€ U ?True)) By (€)

The sequent contexts tell us that & holds in the distinguished world DW(w),
but not in some other ¢ € w. The disjunction holds, since (Lq(?€)) B, (§) is
trivially true. The program L,(?¢ U ?True) preserves all worlds, including ¢,
because of ? True. Since £ is not true in ¢, agent a cannot therefore believe £. But
if the top is valid and the bottom is not, this rule would be unsound.

This phenomenon occurs because the conclusion of the rule requires us to
prove B, (€) for worlds originated through both ?¢ and ? True. However, the
premise of the rule implies we need only check those from either 7§ or ? True, as
if the ¢ dynamic modality had control over learned nondeterminism. It does not:
outcomes of learned nondeterminism are always considered indistinguishable.

Proof rules for L,(71 U 72) must therefore be as conservative as the most
conservative of their dynamic and doxastic modalities: the only proof rule that
allows disjunction in the premise is (LPU) since both modalities ¢ and P, (-)
are existential. This realization informs the soundness proofs for learned choice.

Proof (Soundness sketch for (LBU)). Let w be an arbitrary PD-model. We must
show that val, (w, (Ls(71 U2)) B (§)) = 1, i.e. that & is true at every world v
reachable by either (¢,v) € p, (1) or (t,v) € py, (72) for t € w.

Let (¢,v) € py (71). By hypothesis, val, (w, (La(71)) Bq (§)) = 1, i.e. £ is true
at every world reachable by 1, and v in particular. The argument is symmetrical
for (t,v) € py (72), but only because the premise is a conjunction. Thus, for any
world v created by Lq(v1 U~2), € is true at that world. Therefore, B, (§). O

6 Validation and Application

We will now use d*C to illustrate how to prove the safety of a small belief-aware

CPS. The scenario is similar to that of Example 2] and it is useful to have a

reference for some of the most used dC proof rules that d*C inherits [16].
I'to—1 Lok

I+ lo] (8¢
Trfle O Trgaw R Tréov

We let the pilot observe the altimeter with 0 = L,(alt, := *; ? Noise), with
Noise = (alt, — alt < €). The control program C climbs or descends by setting
vertical velocity depending on whether descent is believed to be safe, CB U CP =
(?Bg (alty, =T —e > 0);yv == —1) U (?P, (alt, — T —e < 0); yv := 1). The two
tests are mutually exclusive, leading to dual belief operators: descending requires
the strong condition of belief, whereas the mere possibility of being too low
triggers a climb. We use F = ¢ := 0;t = 1, alt = yv & t < T as very simplified
flight dynamics, and an invariant inv = (alt > 0 AT > 0) to handle repetition.

5]
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We will prove the validity of the formula alt > 0,7 > 0+ [(0;C;F)*] alt > 0
by successively applying sound proof rules from dC and Figure[2]to it. The leaves
of the proof tree will be formulas that can be easily discharged using only d_
rules or real arithmetic. Once the proof tree is complete, we will know this safety
formula is valid, and thus that the modeled system is safe.

* i inv F [0] [C] [F] inv *
alt> 0,7 >0+ inv TP ok [0; G F) inv invk alt >0
alt>0,T >0F[(0;C;F)*] alt >0

loop

The middle branch continues in:

inv; B, (Noise) - [CB] [F] inv inv; B, (Noise) F [CP] [F] inv

U Bl my .
inv; B, (Noise) = [C] [F] inv
[L::#[}L?] o [La(Noiso)] G] ] inv

L] [ inv b [Lq(alty == %)] [Lqa(?Noise)] [C] [F] inv

inv = [Lq (alty == *; 7 Noise)] [C] [F] inv

The branch on the right closes using dZ proof rules and standard d_ reasoning
independent of beliefs: if the airplane is above ground and climbs, it remains
above ground. The left branch requires some doxastic reasoning.

inv; By (Noise) , By (alty, — T —e > 0) F alt > T inv; alt > T + [F(=1)] inv
] inv; By (Noise) , B, (alt, — T —e > 0) b [F(—=1)] inv
L]0 i;] inv; By (Noise) , By (alty, — T — e > 0) F [yv = —1] [F(yv)] tnv
’ inv; B, (Noise) - [?Bg (alty, — T — ¢ > 0) ; yv := —1] [F(yv)] inv

cu

The left side of the cut rule must show that alt > T, and for that we
will use the S5 rationality axioms that allow for reasoning about arithmetic.
Thus, the agent may conclude (1) B, (alt > alt, — ¢) from B, (Noise), and (2)
B, (alt, > T +¢) from B, (alt, — T —e > 0). But (1) and (2) together lead to
B, (alt > T'), which no longer contains any doxastic variables. It is therefore
equivalent to alt > T. We have thus used the belief meta-property (1), relating
ontic and doxastic truth, to obtain an important fact about the world which we
may now use in the right side of the proof.

This right side is a standard dZ proof without doxastics: the rules for differ-
ential equations show that, after evolving for at most 7" time at a speed of —1,
the airplane cannot end up below ground, since it started above T altitude.

This completes the sequent proof. It leveraged a mix of ontic, doxastic and
meta-doxastic statements in order to make the argument for the safety of this
controller. When working with trusted sensors, we also see an intuitive parti-
tioning of the proof: first, doxastic formulas (B, (alt, — T — ¢ > 0)) and meta-
doxastic formulas (B, (Noise)) are used to derive ontic formulas (alt > T'). Sec-
ond, such ontic statements form the basis for arguments made in dC-exclusive
proof branches that ensure post-control actuation results in safe behavior. This
clear separation of concerns allows CPS engineers to work more intuitively and
compositionally during the design and verification stages of belief-aware CPS.
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The ways in which agents learn and reason influence the ontic facts that can
be deduced, but those facts must in turn be informed by safety requirements
of the CPS’s physical evolution. Doxastics and ontics clearly play off each and
have, in the past, contributed to safety incidents. By making this explicit in
the model, d%C ensures adequate attention is given to such dynamics so that
hopefully, ontic/doxastic concerns can be identified before they lead to tragedy.

7 Related Work

The logic dC takes heavy inspiration from two bodies of work: one for reasoning
about a changing world, and one for reasoning about changing beliefs.

Changing world The logic dC for reasoning about the ontic dynamics of CPS
[T6JI7)19] has shown itself to be capable of verifying interesting and relevant real
world systems [I817]. However, it requires manual modeling discipline to express
noise [14], rather than having noise or beliefs thereof as built-in primitives.
The example used in this paper is so simple that it can still be converted
to dC using modeling tricks [I4]. The trick is to transform alt, into a state
variable and remove the learning operator from the observation program, i.e.
alt, = x;7Noise rather than L,(alt, := *;?Noise). The agent’s control would
then be (alt, — T —e > 0;yv:==—1)U (?alty — T —e < 0; yv = 1).
However, this conversion relies fundamentally on the box dynamic modality
[a] ¢, which checks safety for all executions of alt, := x;?Noise. With liveness
formulas using the diamond dynamic modality («) ¢, safety need only be checked
for one execution. Thus, in liveness formulas, this method would fail to capture
the intended behavior of both the learning operator and the belief modality,
which should still apply to all possible worlds, or, in d£ terms, all executions.
This conversion can also quickly become complex. A more detailed con-
troller for a pilot trying to remain around or above cruising altitude A could
be (7B, (alty, — T —e > A);yv = —1)U (7P, (alt, — T —e > A);yv == —0.5) U
(?Bg (alty, =T —e < 0);yv = 1). This is similar to previous controllers, but
allows for a more gentle descent when the pilot considers the possibility of
being close to A. The equivalent dC controller is (?alt, — T —e > A;yv =
-1 U (Palty, —T+e > A;yv = —0.5) U (?alt, — T — e < 0; yv := 1). However,
this elimination of doxastic modalities requires a change in the arithmetic itself,
e.g. (7P, (alty, — T —e > A) turns into (?alt, — T +¢ > A). Belief must consider
worst case noise, whereas possibility can consider the best case. This can quickly
become complex when going beyond simpler interval-based noise scenarios.
Both dC and d“C controllers allow tests for deciding which action to take,
but represent action triggers in first-order logic or doxastic logic, respectively,
e.g. alty, —T+e > Aand P, (alt, — T — e > A). Decisions in real CPS are based
on belief, and as the conversion from doxastic to non-doxastic action triggers
quickly becomes non-trivial, it is best to avoid subtle modeling mistakes by
working with belief during design and verification. With d*C, safety engineers
can rely on doxastic intuitions during verification, rather than having to infer
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them from formulas such as alt, — T+ ¢ > A, which does not clearly convey the
concept of possibility that is so clear in P, (alt, — T — e > A).

The notion of robustness in hybrid systems control can capture complex
notions of sensor and actuator noise [I1I], but is ultimately restrictive for the
purpose of belief-aware CPS, as discussed at the beginning of Section [2} Adap-
tive control, where no a priori constraints are known, often depends on neural
networks [15], and safety guarantees for systems relying on learning are known
to add significant complexity to such efforts [9].

Changing belief On the other side, we have dynamic epistemic logics (DELs)
[6/3I4UTOLT], of which a good overview can be found in the literature [§]. They
provide several notions of learning for different languages, some similar to our
programs [6]. Public propositional world-change [6] would make ontic change
implicitly observable, which is in direct conflict with the unobservability require-
ments of belief-aware CPS. Furthermore, relevant DEL axiomatizations rely on
creating a conjunction out of properties of each accessible possible world [4g],
which is incompatible with the uncountably many worlds that CPS demand.

Belief revision through the AGM postulates [2] is an axiomatic, declarative
approach to belief change. Because it is such a different approach, it presents
many challenges in its integration with model-theoretic work such as d..

In order to begin addressing safety concerns around ontic/doxastic inter-
actions at design time, CPS engineers and agents must make complex logical
arguments from both ontic facts and beliefs, as in Section [6} Despite their many
successes, the work describe in this section do not address this particular chal-
lenge directly in a principled way.

8 Conclusions

This paper considers interactions between belief and fact, which have signif-
icant safety implications. We proposed belief-aware CPSs as a first-principles
paradigm under which safety concerns with such ontic/doxastic dynamics are
expressly dealt with at design time, before safety violations occur. Our contri-
bution is the logic d*C for modeling and verifying belief-aware CPSs, requiring
simultaneous, complex belief- and world-change. Its formulas can describe ontic,
doxastic and meta-doxastic statements, and its programs can model belief-aware
CPS with belief-triggered controllers that make decisions based only on what
they can observe and reason. We proposed a learning operator for belief-change,
which is capable of transforming any transition-based semantics of change into
a semantics of belief-change. We presented a sequent calculus for d*C, which is
proven to be sound, and used it to show the safety of a simple belief-aware CPS.
This is, to the best of our knowledge, the first calculus for a dynamic logic of
belief/knowledge change that can handle an uncountable domain, as in CPS.
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