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Abstract. Hybrid systems have a complete axiomatization in differ-
ential dynamic logic relative to continuous systems. They also have a
complete axiomatization relative to discrete systems. Moreover, there is
a constructive reduction of properties of hybrid systems to corresponding
properties of continuous systems or to corresponding properties of dis-
crete systems. We briefly summarize and discuss some of the implications
of these results.

1 Overview

Hybrid systems [2,6,11] are dynamical systems that combine discrete and contin-
uous dynamics. They are important for modeling embedded systems and cyber-
physical systems. Hybrid systems are very natural models for many application
scenarios, especially because each part of the system can be modeled in the most
natural way. Discrete aspects of the system, e.g., discrete switching, computing,
and control decisions can be modeled by discrete dynamics. Continuous aspects
of the system, e.g., motion or continuous physical processes can be modeled by
continuous dynamics. And hybrid systems simply combine either kind of dynam-
ics with each other as one hybrid system in very flexible ways.

This flexibility makes hybrid systems very natural for system modeling. Even
very complicated systems can be modeled as hybrid systems. Yet,reachability in
hybrid systems is undecidable [11]. Even purely discrete systems are already
undecidable, as witnessed by the halting problem. And even purely continuous
systems are already undecidable [23, Theorem 2]. Are hybrid systems funda-
mentally more difficult than purely discrete or purely continuous systems? Or
do they only add natural ways of expressing system models without causing
additional complexities that are fundamentally more difficult to solve? Are hy-
brid systems more complex than discrete systems? Are they more complex than
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continuous systems? And: are continuous systems more complex or are discrete
systems more complex?

Since hybrid systems combine two independent sources of undecidability,
discrete and continuous dynamics, the first intuition may be that hybrid systems
should be fundamentally more difficult than either of the fragments. That turns
out not to be the case, because there are complete proof-theoretical alignments
of the discrete dynamics, continuous dynamics, and hybrid dynamics [23,30]. In
this paper, we explain a few of the consequences of these results.

For background on logic for hybrid systems, we refer to the literature [23,
26, 31]. Dynamic logic [39] has been developed and used very successfully for
conventional discrete programs, both for theoretical [7–10,12,14,15,18,20,21,42]
and practical purposes [4,9,40]. We refer to other sources for more detail on dy-
namic logic for hybrid systems [22–26, 30]. Logic of hybrid systems has been
used to obtain interesting theoretical results [22–30, 32], while, at the same
time, enabling the practical verification of complex applications across different
fields [3, 16, 17, 19, 24, 26, 35, 37, 41] and inspiring algorithmic logic-based verifi-
cation approaches [24, 26, 33, 34, 36, 38, 41]. Extensions to logic for distributed
hybrid systems [27,29] and logic for stochastic hybrid systems [28] can be found
elsewhere.

2 Differential Dynamic Logic

Differential dynamic logic dL [22, 23, 30, 31] is a dynamic logic [39] for hybrid
systems [6, 11]. To set the stage, we give a brief introduction to dL. We refer to
previous work [23,26,30,31] for more details.

Regular Hybrid Programs. We use (regular) hybrid programs (HP) [23] as
hybrid system models. HPs form a Kleene algebra with tests [13]. The atomic
HPs are instantaneous discrete jump assignments x := θ, tests ?H of a first-order
formula1 H of real arithmetic, and differential equation (systems) x′ = θ&H
for a continuous evolution restricted to the domain of evolution described by a
first-order formula H. Compound HPs are generated from these atomic HPs by
nondeterministic choice (∪), sequential composition (;), and Kleene’s nondeter-
ministic repetition (∗). We use polynomials with rational coefficients as terms.
HPs are defined by the following grammar (α, β are HPs, x a variable, θ a term
possibly containing x, and H a formula of first-order logic of real arithmetic):

α, β ::= x := θ | ?H | x′ = θ&H | α ∪ β | α;β | α∗

The first three cases are called atomic HPs, the last three compound HPs. These
operations can define all hybrid systems [26]. We, e.g., write x′ = θ for the un-
restricted differential equation x′ = θ& true. We allow differential equation sys-
tems and use vectorial notation. Vectorial assignments are definable from scalar
assignments (and ;).

1 The test ?H means “if H then skip else abort”.
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A state ν is a mapping from variables to R. Hence ν(x) ∈ R is the value of
variable x in state ν. The set of states is denoted S. We denote the value of term
θ in ν by ν[[θ]]. Each HP α is interpreted semantically as a binary reachability
relation ρ(α) over states, defined inductively by:

– ρ(x := θ) = {(ν, ω) : ω = ν except that ω[[x]] = ν[[θ]]}
– ρ(?H) = {(ν, ν) : ν |= H}
– ρ(x′ = θ&H) = {(ϕ(0), ϕ(r)) : ϕ(t) |= x′ = θ and ϕ(t) |= H for all 0 ≤ t ≤ r

for a solution ϕ : [0, r]→ S of any duration r}; i.e., with ϕ(t)(x′)
def
= dϕ(ζ)(x)

dζ (t),

ϕ solves the differential equation and satisfies H at all times [23]
– ρ(α ∪ β) = ρ(α) ∪ ρ(β)
– ρ(α;β) = ρ(β) ◦ ρ(α)

– ρ(α∗) =
⋃
n∈N

ρ(αn) with αn+1 ≡ αn;α and α0 ≡ ?true.

We refer to our book [26] for a comprehensive background. We also refer to [23,26]
for an elaboration how the case r = 0 (in which the only condition is ϕ(0) |= H)
is captured by the above definition.

dL Formulas. The formulas of differential dynamic logic (dL) are defined by
the grammar (where φ, ψ are dL formulas, θ1, θ2 terms, x a variable, α a HP):

φ, ψ ::= θ1 ≥ θ2 | ¬φ | φ ∧ ψ | ∀xφ | [α]φ

The satisfaction relation ν |= φ is as usual in first-order logic (of real arithmetic)
with the addition that ν |= [α]φ iff ω |= φ for all ω with (ν, ω) ∈ ρ(α). The op-
erator 〈α〉 dual to [α] is defined by 〈α〉φ ≡ ¬[α]¬φ. Consequently, ν |= 〈α〉φ iff
ω |= φ for some ω with (ν, ω) ∈ ρ(α). Operators =, >,≤, <, ∨,→,↔,∃x can be
defined as usual in first-order logic. A dL formula φ is valid, written � φ, iff
ν |= φ for all states ν.

3 Complete Relations

Even though hybrid systems are very expressive, they nevertheless have a com-
plete axiomatization in differential dynamic logic dL [23, 30] relative to elemen-
tary properties of differential equations. The completeness notions are inspired
by those of Cook [5] and Harel et al. [10], yet different, because the data logic
of hybrid systems is perfectly decidable (first-order real arithmetic). Using the
proof calculus of dL, the problem of proving properties of hybrid systems reduces
to proving properties of continuous systems [23]. Furthermore, the proof calculus
of dL reduces the problem of proving properties of hybrid systems to proving
properties of discrete systems [30].

FOD is the first-order logic of differential equations, i.e., first-order real arith-
metic augmented with formulas expressing properties of differential equations,
that is, dL formulas of the form [x′ = θ]F with a first-order formula F . We have
shown that the dL calculus is a sound and complete axiomatization relative to
FOD.



46 André Platzer

Theorem 1 (Continuous relative completeness of dL [23, 30]). The dL
calculus is a sound and complete axiomatization of hybrid systems relative to
its continuous fragment FOD, i.e., every valid dL formula can be derived from
FOD tautologies:

� φ iff TautFOD ` φ

In particular, if we want to prove properties of hybrid systems, all we need
to do is to, instead, prove properties of continuous systems, because the dL
calculus completely handles all other steps in the proofs that deal with discrete
or hybrid systems. Since the proof of Theorem 1 is constructive, there even is a
complete constructive reduction of properties of hybrid systems to corresponding
properties of continuous systems. The dL calculus can prove hybrid systems
properties exactly as good as properties of the corresponding continuous systems
can be verified. One important step in the proof of Theorem 1 shows that all
required invariants and variants for repetitions can be expressed in the logic
dL. Furthermore, the dL calculus defines a decision procedure for dL sentences
(closed formulas) relative to an oracle for FOD.

This result implies that the continuous dynamics dominates the discrete dy-
namics for once the continuous dynamics is handled, all discrete and hybrid
dynamics can be handled as well. This is reassuring, because we get the chal-
lenges of discrete dynamics solved for free (i.e., by the dL calculus) once we
address continuous dynamics.

However, in a certain sense, continuous dynamics may appear to be more
complicated to handle by discrete proof systems than continuous dynamics. Af-
ter all, computers are discrete, so mechanized proofs on computers will ulti-
mately need to understand continuous effects from a purely discrete perspective.
If the continuous dynamics are not just subsuming discrete dynamics but were
inherently more, then that could be understood as an indicator that hybrid sys-
tems verification is fundamentally impossible with discrete means. Of course, if
this were the case, the argument would not even be quite so simple, because
meta-proofs may still enable discrete finitary proof objects to entail infinite con-
tinuous object-properties. In fact, they do, because finite dL proof objects entail
properties in uncountable continuous spaces.

Fortunately, we can settle worries about the insufficiency of discrete ways of
understanding continuous phenomena once and for all by studying the proof-
theoretical relationship between discrete and continuous dynamics. We have
shown not only that the axiomatization of dL is complete relative to the contin-
uous fragment, but that it is also complete relative to the discrete fragment [30].
The discrete fragment of dL is denoted by DL, i.e., the fragment without differ-
ential equations. It is, in fact, sufficient to restrict DL to the operators :=, ∗ and
allow either ; or vector assignments.

Theorem 2 (Discrete relative completeness of dL [30]). The dL calculus
is a sound and complete axiomatization of hybrid systems relative to its discrete
fragment DL, i.e., every valid dL formula can be derived from DL tautologies.

� φ iff TautDL ` φ



Logical Analysis of Hybrid Systems 47

Thus, the dL calculus can prove properties of hybrid systems exactly as good as
properties of discrete systems can be proved. Again, the proof of Theorem 2 is
constructive, entailing that there is a constructive way of reducing properties of
hybrid systems to properties of discrete systems using the dL calculus. Further-
more, the dL calculus defines a decision procedure for dL sentences relative to
an oracle for DL.

As a corollary to Theorems 1 and 2, we can proof-theoretically and construc-
tively equate

hybrid = continuous = discrete

Even though each kind of dynamics comes from fundamentally different princi-
ples, they all meet in terms of their proof problems being interreducible, even
constructively. The complexity of the proof problem of hybrid systems, the com-
plexity of the proof problem of continuous systems, and the complexity of the
proof problem of discrete systems are, thus, equivalent.

Since the proof problems interreduce constructively, every technique that is
successful for one kind of dynamics perfectly lifts to the other kind of dynamics
through the dL calculus. Induction is the primary technique for proving proper-
ties of discrete systems. Hence, by Theorem 2, there is a corresponding induction
technique for continuous systems and for hybrid systems. And, indeed, differ-
ential invariants [25] are such an induction technique for differential equations
that has been used very successfully for hybrid systems with more advanced
differential equations [26,33–35,37]. Differential invariants had already been in-
troduced in 2008 [25] before Theorem 2 was proved [30], but Theorem 2 implies
that a differential invariant induction technique has to exist.

4 Conclusions and Future Work

We have summarized recent results about complete axiomatizations of hybrid
systems relative to continuous systems and relative to discrete systems. These
axiomatizations equate the proof problems for all three classes of systems and
align the complexity of the their proof problems. Practical consequences of this
result include differential invariants and the utility of discretization schemes, but
many other consequences are just waiting to be discovered.
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