
Differential Refinement Logic ∗

Sarah M. Loos
Computer Science Department

Carnegie Mellon University
sloos@cs.cmu.edu

André Platzer
Computer Science Department

Carnegie Mellon University
aplatzer@cs.cmu.edu

Abstract
We introduce differential refinement logic (dRL), a logic with first-
class support for refinement relations on hybrid systems, and a
proof calculus for verifying such relations. dRL simultaneously
solves several seemingly different challenges common in theorem
proving for hybrid systems: 1. When hybrid systems are compli-
cated, it is useful to prove properties about simpler and related sub-
systems before tackling the system as a whole. 2. Some models
of hybrid systems can be implementation-specific. Verification can
be aided by abstracting the system down to the core components
necessary for safety, but only if the relations between the abstrac-
tion and the original system can be guaranteed. 3. One approach to
taming the complexities of hybrid systems is to start with a sim-
plified version of the system and iteratively expand it. However,
this approach can be costly, since every iteration has to be proved
safe from scratch, unless refinement relations can be leveraged in
the proof. 4. When proofs become large, it is difficult to maintain a
modular or comprehensible proof structure. By using a refinement
relation to arrange proofs hierarchically according to the structure
of natural subsystems, we can increase the readability and modu-
larity of the resulting proof. dRL extends an existing specification
and verification language for hybrid systems (differential dynamic
logic, dL) by adding a refinement relation to directly compare hy-
brid systems. This paper gives a syntax, semantics, and proof cal-
culus for dRL. We demonstrate its usefulness with examples where
using refinement results in easier and better-structured proofs.

Categories and Subject Descriptors F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

1. Introduction
As new technologies become indispensable in the next genera-
tion of safety-critical cyber-physical applications such as collision
avoidance maneuvers for aircraft and emergency braking or adap-
tive cruise control in the automotive industry, it is of increasing
importance that these systems be guaranteed error-free. To ensure

∗This material is based upon work supported by National Science
Foundation under NSF CAREER Award CNS-1054246. The first author
was also supported by a Department of Energy Computational Science
Graduate Fellowship, provided under Grant No. DEFG02-97ER25308.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact
the Owner/Author(s). Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax +1 (212)
869-0481.

LICS ’16, July 05 - 08, 2016, New York, NY, USA
Copyright c© 2016 held by owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4391-6/16/07. . . $15.00
DOI: http://dx.doi.org/10.1145/2933575.2934555

there are no mistakes in the models on which these systems are
based (most commonly hybrid systems models [1]), formal veri-
fication methods like model checking and theorem proving have
been developed to prove systems safe under a continuously infi-
nite range of circumstances. To verify safety for cyber-physical sys-
tems, there is an existing specification and verification logic for hy-
brid systems: differential dynamic logic (dL) [19, 21, 22]. The logic
dL supports behavioral reasoning about hybrid programs α with
modalities, where the formula [α]φ expresses that all states after
running α satisfy formula φ. Previously, dL and its proof calculus
have had many successes in proving safety for sophisticated cyber-
physical systems, such as distributed car and aircraft control. How-
ever, verification results for these complicated systems often rely on
equally complicated and creative proofs. Such proofs need consid-
erable foresight to ensure that proofs about simpler systems magi-
cally fit to just the right shape required for simplifying subsequent
arguments about more complex or reoccurring systems. However,
with direct proof support for relating two systems, such implicit
structure in the proofs could be formalized explicitly, thereby sim-
plifying the proofs significantly.

In this paper we introduce differential refinement logic (dRL),
which extends dL with a refinement operator on hybrid programs
to support relational reasoning and direct comparisons of hybrid
programs as first-class citizens in the logic. The proof calculus for
dRL provides structural methods for proving that hybrid program α
refines hybrid program β, written α ≤ β, which simplifies proving
by maintaining good proof structure. When a refinement relation
has been proved between two hybrid programs, the dRL calculus
allows the more restrictive program to automatically inherit all
safety properties proved about the program that is more permissive.
As a result, dRL enables the use of refinement relations on hybrid
programs to reduce a safety argument for α to a safety proof for β.
Refinement relations are first-class in the logic dRL, so refinements
can be established using reachability properties of hybrid systems.

Differential refinement logic (dRL) combines the ability of dif-
ferential dynamic logic (dL) [19, 21, 22] to reason about the dy-
namics of hybrid systems with the ability of Kleene algebras for
tests (KAT) [13] to relate systems. Unlike dL, dRL provides first-
class refinement relations. Unlike KAT, dRL focuses on structural
refinement relations as opposed to equivalence relations and dRL
works for hybrid systems. And unlike dL as well as KAT, dRL
makes it possible to combine arguments about the behavior as well
as the relation of hybrid systems, which we observe to often be used
together for more complex hybrid systems.

Motivating Example. To illustrate dRL’s significance, imagine
the design of a discrete controller that repeatedly sets a control in-
put u for a continuous system x′ = f (x, u) and must remain safely in
the region satisfying formula safe when started from an initial state
satisfying formula init. One design paradigm for such controllers is
event-triggered control, where the controller takes action when cer-

tain events occur. Formally, this corresponds to adding an evolution
domain constraint E(x) to the differential equation x′ = f (x, u) that
will stop the continuous system and yield control to the discrete
system when any of the events have been detected:

init→ [
(
u ∈ G(x); x′ = f (x, u) & E(x)

)∗] safe (1)

This formula expresses that, if started in init, the event-triggered
system inside the [·] modality will always satisfy safe. This system
nondeterministically repeats (operator ∗) a loop that first sets u ar-
bitrarily according to some given condition G(x) (written u ∈ G(x))
and then (after the ;) follows the differential equation x′ = f (x, u).
This continuous evolution may evolve for any nondeterministic
amount of time within the evolution domain E(x), which stops the
continuous system when an event happens. The repetition of the
loop then lets the controller respond to such events. Event-triggered
control systems such as in (1) are conceptually easy but not imple-
mentable faithfully because an implementation would require con-
tinuous sensing for these events.

A different design paradigm is timed-triggered control, where
the controller takes action only every once in a while, after a certain
amount of time ε has passed. This corresponds to adding a time-
bound t ≤ ε as an evolution domain constraint for a stopwatch t
that measures the duration of the current continuous evolution:

init→ [
(
u := g(x); x′ = f (x, u) & t ≤ ε

)∗] safe (2)

Event-triggered systems such as (1) are significantly easier to verify
than time-triggered systems such as (2), which struggle with safely
predicting the impact of reaction delays on control decisions. How-
ever, only time-triggered systems are implementable.

Without dRL, we would have to choose between an event-
triggered paradigm, which is easy to prove, but not a faithful rep-
resentation of the real system, and the time-triggered paradigm,
which is significantly harder to verify. With dRL, we can settle for a
proof for the simpler event-triggered system and then subsequently
relate it with a refinement proof to the faithful time-triggered sys-
tem. Essentially, dRL lets us “have our cake and eat it, too.”

Now dRL observes that the best way of concluding the time-
triggered (2) from a proof of the easier (1) would be to exploit
a refinement relation between their systems. An easy way to es-
tablish this refinement relation is by separately proving refinement
(indicated by ≤) of its respective pieces:

init→
[(

u ∈ G(x); x′ = f (x, u)&E(x)
)∗] safe

≤ ≤

init→
[(

u := g(x); x′ = f (x, u)&t ≤ ε
)∗] safe

This naı̈ve piece-by-piece refinement is great if it works, but, in
fact, does not suffice in this case, because some knowledge of the
invariant properties preserved during the hybrid system run is still
needed to establish the refinement. The differential equation of the
time-triggered (2) does not refine the event-triggered (1) globally in
isolation, but rather only refines it if g(x) has the appropriate behav-
ior of reacting early enough. Hence, dRL provides nested formulas
such as [u := g(x)](α ≤ β), which expresses that α refines β after
all runs of u := g(x). dRL provides such behavioral reasoning in
support of refinement reasoning. To simplify the verification, the
particular discrete controller u ∈ G(x) in (1) is also more permis-
sive than the easily implementable direct assignment u := g(x) in
(2), which showcases another common use of dRL’s refinement.

One important design goal for dRL, thus, is that it provides a
way of performing refinement reasoning in support of behavioral
reasoning: the system in (2) refines the system in (1) such that a
proof of behavioral property (1) implies the behavioral property
(2). But also that dRL provides a way of performing behavioral
reasoning in support of refinement reasoning: the system in (2)
refines the system in (1) after taking into account some of the

behavioral properties of the respective system runs. dRL, thus,
provides a seamless integration of both styles of reasoning by
supporting both [α]φ and α ≤ β as first-class formulas in the logic
that can be nested arbitrarily. Its proof calculus provides ways of
using the former shape to justify the latter and vice versa.

2. Syntax
In this section, we introduce differential refinement logic (dRL),
which adds a refinement relation to differential dynamic logic (dL),
a specification and verification language for hybrid systems [21,
22]. Both dL and dRLmodel cyber-physical systems as hybrid pro-
grams (HPs). HPs combine differential equations with traditional
program constructs and discrete assignments.

Definition 1 (Hybrid program). HPs are defined by the following
grammar (where α, β are HPs, x is a variable, θ is a term possibly
containing x, and φ is a formula of dRL, often first-order):

α, β ::= x := θ | x′ = θ & φ | ?φ | α ∪ β | α; β | α∗

The effect of assignment x := θ is an instantaneous discrete jump
assigning θ to x. The effect of differential equation x′ = θ& φ is a
continuous evolution where the differential equation x′ = θ holds
and (written & for clarity) formula φ holds throughout the evolution
(the state remains in the region described by φ).

The effect of test ?φ is a skip (i.e., no change) if formula φ is
true in the current state and abort (blocking the system run by a
failed assertion), otherwise. Nondeterministic choice α ∪ β is for
alternatives in the behavior of the distributed hybrid system. In the
sequential composition α; β, HP β starts after α finishes (β never
starts if α continues indefinitely). Nondeterministic repetition α∗

repeats α an arbitrary number of times, including zero times. Non-
deterministic assignment x := ∗ assigns an arbitrary real number to
x and is definable as syntactic sugar for x′ = 1 ∪ x′ = −1.

Except for the changes to formulas (addressed in Definition 2),
the syntax and semantics of hybrid programs is unchanged from
that used by dL [19, 21, 22].

Definition 2 (dRL formula). Formulas in dRL are defined by the
following grammar (where φ, ψ are dRL formulas, x is a variable,
θ1, θ2 are terms, and α, β are HPs):

φ, ψ ::= θ1 ≤ θ2 | ¬φ | φ ∧ ψ | ∀x φ | [α]φ | 〈α〉φ | β ≤ α

In addition to formulas of first-order real arithmetic, dRL allows
formulas of the form β ≤ αwith HPs α and β. Formula β ≤ α is true
in a state ν iff all states reachable from that state ν by following the
transitions of β could also be reached from state ν by following
some transitions of α (the transition semantics of HPs are formally
defined in Definition 3). Less formally, the behaviors of α from ν
subsume those of β, or we say that β refines α from the state ν.

Just as in dL, we may write formula [α]φ with an HP α and
a formula φ in dRL. Formula [α]φ is true in a state ν iff formula
φ is true in all states that are reachable from ν by following the
transitions of α. Accordingly, 〈α〉φ is true in a state ν iff formula φ
is true in some state reachable from ν by α.

The formulas β ≤ α and [α]φ make a powerful pair; when both
are true, then we know that formula φ is true in all states reachable
from ν by following the transitions of β, i.e. [β]φ. Also since
β ≤ α is not a separate judgment but a formula in dRL, refinement
arguments and behavioral arguments can be combined freely. For
example, [α]φ ∧ (β ≤ α)→ [β]φ expresses this safety refinement as
a dRL formula. And [γ](β ≤ α) expresses that all behavior of β can
be mimicked by α from all those states reachable by γ.

3. Semantics
The semantics of HPs are defined as a reachability relation as in
dL. A state ν is a mapping from the set V of variables to R. The set

v |= ↵  �

v |= ↵  �

v |= ↵  �
↵

hi

↵

hi

.

. ⌫ !1 !2 !3

.

.

. ⌫ !1 !2 !3

.
.

. ⌫ !1 !2 !3

.
.

. ⌫ !1 !2 !3

.
Figure 1: An illustrated example of the transition semantics for HPs
α and β where ν |= α ≤ β. Every state reachable by transitioning on
α from ν (in this case, ω2 and ω3), is also reachable through β.

of states is denoted S. The value of term θ in state ν is denoted by
~θ�ν.

Definition 3 (Transition semantics of HPs [22]). Each HP α is
interpreted semantically as a binary reachability relation ρ(α) ⊆
S × S over states, defined inductively and as usual in differential
dynamic logic (dL):

• ρ(x := θ) = {(ν, ω) : ω = ν except that ~x�ω = ~θ�ν}
• ρ(?φ) = {(ν, ν) : ν |= φ}
• ρ(x′ = θ& φ) = {(ϕ(0), ϕ(r)) : ϕ(t) |= x′ = θ and ϕ(t) |= φ for

all 0 ≤ t ≤ r for a solution ϕ : [0, r]→ S of any duration r}; i.e.,
with ϕ(t)(x′) def

=
dϕ(ζ)(x)

dζ (t), ϕ solves the differential equation and
satisfies φ at all times.
• ρ(α ∪ β) = ρ(α) ∪ ρ(β)
• ρ(α; β) = {(ν, ω) : (ν, µ) ∈ ρ(α), (µ, ω) ∈ ρ(β)}
• ρ(α∗) =

⋃
n∈N

ρ(αn) with αn+1 ≡ αn;α and α0 ≡ ?true

Definition 4 (dRL semantics). The satisfaction relation ν |= φ for a
dRL formula φ in state ν is defined inductively and, aside from the
refinement relations, it is defined as in differential dynamic logic. If
ν |= φ, we say that φ holds at state ν. A formula φ is valid iff φ holds
at all states, i.e. ν |= φ for all ν ∈ S; we write |= φ to denote that φ
is valid. We use νd

x to be the state ν with the variable x assigned to
real value d.

1. ν |= (θ1 ≤ θ2) iff ~θ1�ν ≤ ~θ2�ν
2. ν |= ¬F iff ν 6|= F, i.e. if it is not the case that ν |= F
3. ν |= F ∧G iff ν |= F and ν |= G
4. ν |= ∀x F iff νd

x |= F for all d ∈ R
5. ν |= [α]φ iff ω |= φ for all ω with (ν, ω) ∈ ρ(α)
6. ν |= 〈α〉φ iff ω |= φ for some ω with (ν, ω) ∈ ρ(α)
7. ν |= α ≤ β iff {ω : (ν, ω) ∈ ρ(α)} ⊆ {ω : (ν, ω) ∈ ρ(β)}

Differential refinement logic dRL introduces the refinement re-
lation for hybrid programs to the semantics (case 7). The formula
α ≤ β is true in state ν iff the set of all states reachable from ν by
following the transitions of HP α is a subset of the states reachable
from ν by following the transitions of HP β; see Fig. 1. We also use
α = β to denote equivalence of hybrid programs α and β, but this is
defined syntactically as α ≤ β ∧ β ≤ α. Thus, ν |= α = β iff α and β
have the same (reachability) behavior when starting in state ν.

4. Proof Calculus
A proof calculus associated with a logical language such as dRL
is a set of syntactic transformations that are each proved sound.
By combining many of these transformations on a complicated
formula, we may simplify and break apart the formula until we
are left with formulas that are simple enough and can be proved
true using quantifier elimination, in which case we have a proof of
our original complicated formula. Because this process is entirely
syntactic, such a proof can be automatically checked by a computer

or even automatically generated by a proof search procedure. In this
section we present sequent proof rules for dRL. The semantics of a
sequent Γ ` ∆ is that of the dRL formula

∧
φ∈Γ φ→

∨
ψ∈∆ ψ.

Γ ` [β]φ,∆ Γ ` α ≤ β,∆

Γ ` [α]φ,∆
([≤])

Γ ` 〈α〉φ,∆ Γ ` α ≤ β,∆

Γ ` 〈β〉φ,∆
(〈≤〉)

Figure 2: dRL interaction rules

The defining proof rules of dRL are the interaction rules where
modalities and refinements meet; see Fig. 2. The refinement rule for
box modalities [≤] expresses that if formula φ holds in every state
reachable on β (i.e., [β]φ), and α is a refinement of β (i.e., α ≤ β),
then φmust also hold in every state reachable on α (i.e., [α]φ). Rule
[≤] makes it possible to replace a HP α by β and a refinement proof.
Dually, rule 〈≤〉 for diamond modalities, which expresses that if α
is a refinement of β, and φ holds in at least one transition on α, then
that same state must also be reachable on β and therefore 〈β〉φ must
be true, since β contains all behaviors that α can have. Both rules
are sound in any sequent context Γ,∆.

The rules in Fig. 2 use refinements to justify reachability. Con-
versely, dynamics can play a role in justifying refinements. The rule

Γ ` α1 ≤ α2,∆ Γ ` [α1] (β1 ≤ β2),∆
Γ ` (α1; β1) ≤ (α2; β2),∆

(;)

proves that the sequential composition α1; β1 refines α2; β2 by
showing that α1 refines α2 and, after all runs of α1, that β1 also
refines β2. It is soundness-critical that the right premise of (;) is
not Γ ` β1 ≤ β2,∆, because the assumptions in Γ may no longer
hold, since running α1 may change the state. The flip-side is that
rule (;) makes the behavior of α1 available when showing the
refinement β1 ≤ β2. A global version of rule (;) with the right
premise ` β1 ≤ β2 would be sound, but loses all knowledge from
the context Γ,∆, α1 and is, thus, rarely applicable. Since α1 ≤ α2
by the left premise, rule [≤] implies that the right premise of rule
(;) can soundly be replaced by Γ ` [α2] (β1 ≤ β2),∆, which gives
a weaker derived rule but occasionally makes proving easier. Rule
(;) exploits dRL’s local semantics of refinement and that dRL al-
lows nested reachability modalities and refinement operators.

The idempotent semiring axioms from KAT [13] as well as un-
rolling of loops on the left (unrolll) or on the right (unrollr) directly
transfer to dRL; see Fig. 3. For hybrid programs, nondeterminis-
tic choice ∪ is the additive operator, and sequential composition ;
is the multiplicative operator. The hybrid program ?⊥, where ⊥ is
the formula false, is a test that always fails. Its transition seman-
tics ρ(?⊥) is the empty set. So, ?⊥ is the additive identity (rule ∪id)
and the multiplicative annihilator (rules ;annih−r and ;annih−l). The hy-
brid program ?>, where > is the formula true, is a test that always
succeeds. It is the multiplicative identity (rules ;id−r and ;id−l), as
it does not change the transition semantics of any hybrid program
when sequentially composed (i.e. ρ(?>) is the identity relation).

The first rules in Fig. 4 capture the fact that the refinement
relation over hybrid programs is a partial order compatible with
∪. The rule ≤trans functions as a cut rule for refinements, while ≤refl
is for closing, and ≤antisym relates refinement with its corresponding
equivalence relation.1 Rules ∪l and ∪r show refinement separately
for choices. The remaining proof rules presented in Fig. 4 take

1Equivalence of hybrid programs (α = β) is syntactic sugar for the
conjunction α ≤ β ∧ β ≤ α, so rule ≤antisym holds by definition.

Γ ` α ∪ (β ∪ γ) = (α ∪ β) ∪ γ,∆
(∪assoc)

Γ ` α∪ ?⊥ = α,∆
(∪id)

Γ ` α ∪ β = β ∪ α,∆
(∪comm)

Γ ` α ∪ α = α,∆
(∪idemp)

Γ ` α; (β; γ) = (α; β); γ,∆
(;assoc)

Γ ` (?>;α) = α,∆
(;id−l)

Γ ` (α; ?>) = α,∆
(;id−r)

Γ ` α; (β ∪ γ) =
(
(α; β) ∪ (α; γ)

)
,∆

(dist-l)

Γ ` (α ∪ β); γ =
(
(α; γ) ∪ (β; γ)

)
,∆

(dist-r)

Γ ` (?⊥;α) = ?⊥,∆
(;annih−l)

Γ ` (α; ?⊥) = ?⊥,∆
(;annih−r)

Γ ` (?> ∪ (α;α∗)) = α∗,∆
(unrolll)

Γ ` (?> ∪ (α∗;α)) = α∗,∆
(unrollr)

Figure 3: Idempotent semiring axioms from KAT

advantage of structural similarities between hybrid programs. For
example, the unloop rule allows both hybrid programs α and β to be
unrolled simultaneously. It is important that we update the context
appropriately by a proper placement of [α∗], as the refinement must
hold after any number of loop executions, which we accomplish by
requiring that α ≤ β holds after an arbitrary number of executions
of α. Rule unloop also makes it possible to transport knowledge
of any invariants that hold during α∗ to the refinement proof α ≤
β. The :=∗ proof rule says that assigning x to a specific term θ
always refines a program which assigns x nondeterministically to
any real value (Example 2 below shows how this rule is applied
in the context of a loop, and Example 3 shows extensions to cover
guarded nondeterministic assignment). While additional relations
exist, we have found the rules listed to be the most crucial structural
rules through experience in proving dRL properties.

The dRL rules for loops in Fig. 4 are inspired by KAT but cru-
cially generalized to the presence of sequent contexts. The struc-
tural refinement rules loopl and loopr exhibit a fundamental asym-
metry of refinement with loop initializers (loopr) compared to with
loop suffixes (loopr). Unlike in loopr, it is crucial for the soundness
of loopl that we add a [α∗] to its premises.

Fig. 5 illustrates a state-transition diagram for α∗; β as well as
γ. From the second premise of loopr, β refines γ at the end, for
all states reachable through α∗ (here represented as ω3 with γ-
successor ω4), so we know that there is an execution of HP γ such
that ω4 is reachable from ω3 directly. And from the first premise of
loopr, we inductively know that the remaining transitions toward
the left of Fig. 6 can also be reached through γ, since α; γ ≤ γ for
all states reachable from α∗.

Γ ` α ≤ α,∆
(≤refl)

Γ ` α ≤ β,∆ Γ ` β ≤ γ,∆

Γ ` α ≤ γ,∆
(≤trans)

Γ ` α ≤ β,∆ Γ ` β ≤ α,∆

Γ ` α = β,∆
(≤antisym)

Γ ` α ≤ γ ∧ β ≤ γ,∆

Γ ` α ∪ β ≤ γ,∆
(∪l)

Γ ` α ≤ β ∨ α ≤ γ,∆

Γ ` α ≤ β ∪ γ,∆
(∪r)

Γ ` (x := θ) ≤ (x := ∗),∆
(:=∗)

Γ ` φ→ ψ,∆

Γ ` ?φ ≤ ?ψ,∆
(?)

Γ ` α1 ≤ α2,∆ Γ ` [α1] (β1 ≤ β2),∆
Γ ` (α1; β1) ≤ (α2; β2),∆

(;)

Γ ` [α∗](α; γ ≤ γ),∆ Γ ` [α∗](β ≤ γ),∆
Γ ` α∗; β ≤ γ,∆

(loopl)

Γ ` β ≤ γ,∆ Γ ` (γ;α) ≤ γ,∆
Γ ` β;α∗ ≤ γ,∆

(loopr)

Γ ` [α∗](α ≤ β),∆
Γ ` α∗ ≤ β∗,∆

(unloop)

Figure 4: dRL proof rules

By contrast, rule loopl does not require modalities in the
premises, making it very different from its counterpart loopl. Fig. 6
illustrates a state-transition diagram for β;α∗ as well as γ. By the
first premise of loopl, the first β refines γ. And then, by the second
premise of loopl, any run of γ;α (such as the run from ν via ω1 to
ω2) can be emulated by just γ since γ;α refines γ.

In Fig. 7, we present rules for handling differential equations
by refinement. The DC rule says that if a differential equation al-
ways evolves within some region H2 (premise), then this differen-
tial equation is equivalent to the same ODE, but with an additional
conjunction with formula H2 as a restriction in the evolution do-
main (conclusion). This rule is reminiscent of differential cuts [22].

The DR rule says that if two differential equations differ only
in their evolution domain, then a refinement relationship is satis-
fied if the evolution domain of the smaller program is a subset of
the evolution domain of the larger program. This rule is reminis-

… �↵

hi

↵

hi
��� � …

.

. ⌫ !1 !2 !3 !4 .

.

.

. ⌫ !1 !2 !3 !4 .

.

.

. ⌫ !1 !2 !3 !4 .

.

.

. ⌫ !1 !2 !3 !4 .

.

.

. ⌫ !1 !2 !3 !4 .

.

Figure 5: Successive refinement from the right for rule loopl

�

� �

…

��…
↵

hi

↵

hi

.

. ⌫ !1 !2 !3 !4 .

.

.

. ⌫ !1 !2 !3 !4 .

.

.

. ⌫ !1 !2 !3 !4 .

.

.

. ⌫ !1 !2 !3 !4 .

.

.

. ⌫ !1 !2 !3 !4 .

.

Figure 6: Successive refinement from the left for rule loopr

Γ ` [x′ = θ& H1]H2,∆

Γ ` (x′ = θ& H1) = (x′ = θ& H1 ∧ H2),∆
(DC)

Γ ` ∀x (H1 → H2),∆
Γ ` (x′ = θ& H1) ≤ (x′ = θ& H2),∆

(DR)

Γ ` ∀x
(
θ‖η‖ = η‖θ‖ ∧

(
‖θ‖ = 0↔ ‖η‖ = 0

))
,∆

Γ ` (x′ = θ) = (x′ = η),∆
(MDF)2

Figure 7: dRL rules for handling differential equations

cent of differential refinements for differential-algebraic dynamic
logic [20], where both the evolution domains and the differential-
algebraic constraints are compared. In the premise, we quantify
universally over the state variables of the hybrid programs x′ = θ,
so the vector x. Quantifying over x prevents the unsound assump-
tion that the context Γ holds throughout the evolution, when in fact
the context is a static property about the initial value of the state x,
and is not guaranteed to hold as x evolves.

The match direction field (MDF) rule concerns the reachability
of two continuous evolutions. Two differential equations are equiv-
alent if they have the same set of reachable states, even if those
states are not reached at the same time (unless a clock variable is in
the ODE). We quantify over x for similar reasons as in rule DR.

We have proved soundness for MDF for constant differential
equations (i.e. in the case where θ does not depend on x) but expect
it to generalize without this assumption. The premise implies that
the unit direction field3 of both differential equation systems are
identical. In other words, they share all equilibrium points4, and
θ
‖θ‖

=
η

‖η‖
holds everywhere else, where ‖θ‖ is the definable Eu-

clidean norm of θ. When the unit direction fields of two differential
equations are identical, then their phase portraits5 are as well. That
is, if the two systems start at the same initial value, then the path
that their trajectory follows through the state space will be identi-
cal. So, while the two systems do not evolve along their trajectories
at the same rates, they do have identical sets of reachable states.

Soundness proofs are omitted for length, but are presented in
full in the extended version [15, Appendix B].

5. Examples
In the following examples, a ∗ at the top of a proof branch denotes
that the branch is closed, either by a proof rule, or by using a
decidable algorithm to resolve any remaining FOLR properties.

Example 1 (α ∪ β = β ↔ α ≤ β). In an idempotent semiring, we
expect there to be a natural partial order induced by: α ∪ β = β ↔
α ≤ β, as described in [12]. And, indeed, this rule can be derived

2This rule is defined only when no variables of x occur in θ. We use ||θ||
to indicate the Euclidean norm.

3Also known as a slope field, the direction field is a graphical represen-
tation of a system of differential equations, which plots a vector of the slope
of the solution of the differential equation at each point in the state space. A
unit direction field is one where each of these vectors has magnitude one.

4An equilibrium point is a point in the state space where the derivative

is zero. More formally, x0 is an equilibrium point for
dx
dt

= f (t, x) if
f (t, x0) = 0 for all t. For linear differential equations, which are polynomial
in t, equilibrium points are constant solutions.

5A phase portrait is the trajectory of a differential equation solution in
the state space from a given initial value.

for the refinement relation for hybrid programs in dRL as follows:

∗

` α ≤ β↔ α ≤ β
ax

` (α ≤ β ∧ β ≤ β)↔ α ≤ β
≤re f l

` α ∪ β ≤ β↔ α ≤ β
∪l

` (α ∪ β ≤ β ∧ β ≤ α ∪ β)↔ α ≤ β
∪r , ≤re f l

` α ∪ β = β↔ α ≤ β
≤antisym

Example 2 (Decomposing a system inside a loop). dRL performs
particularly well when determining refinement between HPs which
differ only slightly, but within the context of a large and compli-
cated system. In this example, the only difference between the two
programs we are comparing is that the program on the left is setting
variable x to a specific value θ, and the program on the right allows
x to be assigned any value, which is reminiscent of one feature of
the example in Section 1 but also of common interest in practice.

∗

` α ≤ α

∗

` [α](x := θ) ≤ (x := ∗)
:=∗

∗

` [α; x := θ] β ≤ β

`
(
α; x := θ; β

)
≤

(
α; x := ∗; β

) ;

` ∀(α;x:=θ;β)(α; x := θ; β
)
≤

(
α; x := ∗; β

) ∀r

` [(α; x := θ; β)∗]
(
α; x := θ; β

)
≤

(
α; x := ∗; β

) []gen

`
(
α; x := θ; β

)∗
≤

(
α; x := ∗; β

)∗ unloop

This is a canonical example of a proof that would be challeng-
ing in dL, but is straightforward using refinement. In order to take
advantage of the similarities between these two HPs without re-
finement in dL, we would first have to deal with the outermost
operator, here the Kleene star, by finding an appropriate loop in-
variant, which is necessarily difficult [23]. By contrast, when using
dRL, it is possible to be oblivious to the complexities of the two
systems where they are the same and focus only on proving re-
finement in the places where they differ. This is an illustration of
breaking a system into parts. The quantifiers ∀(α;x:=θ;β) occur after
the generalization rule []gen is applied. This is shorthand notation
for universal quantification over all variables bound in the hybrid
program α; x := θ; β and over-approximates the reachable states of
the hybrid program by allowing the bound variables to take on any
value.

Example 3 (Guarded nondeterministic assignment). Example 2
refines a discrete assignment by a nondeterministic assignment.
As in the example from Section 1, a more general use case refines
a discrete assignment by a guarded nondeterministic assignment
x := ∗; ?G (abbreviated x ∈ G in Section 1). The nondeterministic
assignment x := ∗ assigns an arbitrary real value to x but the
subsequent test restricts those values to be the ones satisfying the
guard condition G. Using guarded nondeterministic assignment can
make a property easier to verify because it has stripped away all the
details of the value of x except whatever is necessary for the proof
of safety, in this case G ≡ φ(x).

∗

φ(θ) ` (x := θ) ≤ (x := ∗)
:=∗

∗

φ(θ) `
(
> → φ(θ)

) →r , ax

φ(θ) `
(
?> ≤ ?φ(θ)

) ?

φ(θ) ` [x := θ]
(
?> ≤ ?φ(x)

) [:=]

φ(θ) ` (x := θ) ≤ (x := ∗; ?φ(x))
;

Example 4 (Differential equations). It is often easy to determine
whether two atomic hybrid programs are equivalent. For example,
(x := θ1) = (x := θ2) iff θ1 = θ2. However, the same rule does not
apply to differential equations. Consider the following formulas:

` (x′ = 2) = (x′ = 9) (3)
` (x′ = 2, t′ = 1) 6= (x′ = 9, t′ = 1) (4)

In (3), because the duration of the evolution is nondeterministic,
the effect of evolving for an arbitrary duration with a positive
derivative is simply that the value of x after evolution is anything
greater than or equal to the initial value of x. These two programs
differ only in duration, but their reachability relation is the same so
long as there is no variable that observes time. However, in (4), time
is now being recorded in the variable t. If the two evolutions differ
in their duration, the discrepancy is recorded and therefore these
programs are not equivalent. The equivalence (3) proves easily:

∗

` ∀x.
(
(2 · ‖9‖ = 9 · ‖2‖) ∧ (‖2‖ = 0↔ ‖9‖ = 0)

) QE

` (x′ = 2) = (x′ = 9)
MDF

Example 5 (Nondeterministic choice and disjunction of tests). It is
easy to prove with the dRL calculus that a nondeterministic choice
between two tests is equivalent to a single test which joins the two
formulas with a disjunction.

Γ ` (?φ∪ ?ψ) = ?(φ ∨ ψ),∆

We also find a similar dRL proof for an equivalence between
sequential composition and conjunction of tests:

Γ ` (?φ; ?ψ) = ?(φ ∧ ψ),∆

The dRL proofs of these two properties are straightforward, and
therefore omitted for space.

Example 6 (Differential cut and refinement). Changing evolution
domain constraints of differential equations can have a huge impact
on the meaning of the model, because they limit the domain within
which the system is allowed to evolve. Yet, under the appropriate
initial conditions on x and y, we can prove that the differential
equation x′ = y, y′ = 1 will always ensure that x ≥ 0. As a result,
under these initial conditions, adding x ≥ 0 to the evolution domain
does not restrict the set of reachable states, and so the following
refinement property is satisfied:

x ≥ 0 ∧ y ≥ 0 ` (x′ = y, y′ = 1) ≤ (x′ = y, y′ = 1 & x ≥ 0)

The dRL proof for this property is in the extended version [15,
Appendix A]. The proof shows that x ≥ 0 is an invariant of the
differential equation, which first requires us to show that y ≥ 0 is
also invariant. Once both x ≥ 0 and y ≥ 0 have been cut in as
invariants, we then use DR to ignore the helper invariant y ≥ 0 and
close the proof.

The DC and DR rules are especially helpful when a differential
equation does not have a solution, or when the solution is compu-
tationally intractable.

6. Time-Triggered Refines Event-Triggered
Hybrid systems are so called because they have a tight coupling of
both discrete components (such as computer controllers) and con-
tinuous evolutions. Another source of discrete behavior commonly
arises from the measurement of continuous behavior. Continuous
values, like position or velocity, are often delivered at discrete time
intervals from sensors or via communication. This means that a
control decision must be made knowing that updated information
may not be available for some time into the future. When the time
delay between sensor or communication updates is explicitly mod-
eled, the system is called time-triggered. A controller for a time-
triggered system would make choices like, “Accelerate at rate a
until the next sensor update.”

Because time-triggered systems have to make the right choice
until the next sensor update, their controllers can be tricky to get
right. On top of that, explicitly modeling the sensor delays increases
the complexity of the system models. These challenges combine to

make time-triggered models tough verification problems. As a re-
sult, it is common to make a simplifying assumption that the sen-
sors have continuous access to the values they are measuring. This
turns a time-triggered model into an event-triggered (also called
event-driven) model. A controller for an event-triggered system
could make choices like, “When the car is 10 feet away from the
stop sign, start braking.” While this simplification makes modeling
and analyzing the behavior of the system easier, continuous sensing
is usually not a physical possibility, since it’s easy to miss the exact
moment when the car is 10 feet away from the stop sign.

This distinction between event-triggered and time-triggered
models is an important one [10, 25]. It is a modeling decision
that is made early on in the design process and considered a tough
one to reverse. However, in this section we compare these models
using dRL and, through the lens of refinement, we find that they
are formally relatable, and not so fundamentally different after all.

In Section 6.1, we provide a generic model for event-triggered
systems. Because their controllers are more directly connected to
the physical dynamics through continuous sensing, event-triggered
systems are often easier to verify than time-triggered models. From
this event-triggered model, a controller for a time-triggered sys-
tem can be derived which inherits the proof of safety from the
event-driven system. This time-triggered model is presented in Sec-
tion 6.2, and we prove that it refines the event-triggered model us-
ing the dRL proof calculus in Section 6.3. We then discuss how to
use this refinement relation to simplify the proof of a challenging
time-triggered system in Section 6.4.

While we discuss just one case study that builds on the proof of
refinement between event-triggered and time-triggered systems, we
believe the verification of many time-triggered systems could ben-
efit by also building on this common proof of refinement. Because
of the discrete nature of sensors and computers, a vast majority of
safety-critical CPS are time-triggered. And many of those operate
as a switched system, like the generic model presented in Model 2.
In other words, they have a normal operating mode, but after some
threshold is reached, they have a discrete switch in behavior (e.g.
evading another aircraft or braking to stop in time for a stop light).
Many cyber-physical systems will have a collection of such switch-
ing conditions, and we leave as an extension of this work proofs for
these more complicated systems. Each of these systems can im-
mediately inherit the proof of refinement to show that it refines its
event-triggered counter part. We expect that each of these systems
would see a similar reduction in the number of required proof steps
as the local lane control case study.

6.1 Event-Triggered Model
In this section we introduce Model 1, a generic template for an
event-triggered model of a hybrid system. The system may evolve
continuously until an event triggers the controller. The controller
can then switch to a different mode. For example, if the system is
a car and the controlled variable is acceleration, the event could
be that the car passes some point on the road at which time the
controller immediately switches into braking. The controller can
also change the control variable at any time, even before the event
trigger, but it has the additional guarantee that it will be able to
change the control variable exactly when the event occurs.

In Model 1 we can see that the event-triggered model follows
the expected high-level structure: discrete control ctrlEv, followed
by the continuous evolution dynEv, and then nondeterministically
repeat these steps as indicated with ∗ in (5). In (6), we have what
is called a guarded nondeterministic assignment to variable u,
which first allows u to be set nondeterministically to any value
(u := ∗), and then restricts those choices to any that satisfy a for-
mula Safe(x, u). We informally represented this in Section 1 with

Model 1 Event-triggered model

event∗ ≡ (ctrlEv; dynEv)∗ (5)

ctrlEv ≡ u B c ∪ (u B ∗; ?Safe(x, u)) (6)

dynEv ≡ t := 0; x0 := x; (7)(
(x′ = f (x, u), t′ = 1 & E(x) ∧ D(x)) (8)

∪ (x′ = f (x, u), t′ = 1 & ∼E(x) ∧ D(x))
)

(9)

the notation u ∈ Safe(x, u). When Safe(x, u) is not satisfied, the
controller must switch to u B c.

We model the continuous dynamics of the system in (8) and (9).
The program x′ = f (x, u) is a system of differential equations (x
may be a vector of several simultaneously evolving variables) that
depends on constant control variable u. The evolution domain is
D(x), which is some region that the system is not able to evolve
beyond and often comes from some physical limit. For example,
when we model braking in cars as a deceleration, we have an
evolution domain of v ≥ 0, since braking should not cause the car
to start moving backwards. E(x), on the other hand, is the event
trigger for the system. When the system reaches the boundary of
this domain, the evolution is forced to stop, allowing the controller
to execute. After the controller executes, the system must be able
to continue evolving, thus the second differential equation in (9).
The differential equations and the evolution domain stay the same.
However, we use ∼E(x) to represent the topological closure of the
complement of E(x). This means that once the event has been
passed and the controller executed, the system will still evolve
whether or not the controller made a safe choice, making it possible
to detect all unsound control choices in the verification step. We
require that E(x) be a closed domain so that 1) the evolution can
actually reach the event trigger, and 2) the system may transition
between (8) and (9) on that boundary.

Variables t and x0 in (7) are not used anywhere in the program,
and are therefore “ghost” variables, since they don’t affect the state
of the program. However, they do aid in the refinement verification,
since they provide an anchor point between Model 1 and Model 2.

6.2 Time-triggered Model
The template for a time-triggered model, presented in Model 2,
again loops between a discrete control ctrlt, and continuous evo-
lution dynt, as shown in (10). The primary difference between this
model and Model 1 is that the time-triggered model can only ensure
that the controller will be able to take a control action at least every
ε seconds. This is expressed in line (13) by first setting clock t to
zero, and then evolving continuously along the differential equa-
tions with t′ = 1, but only within the evolution domain of t ≤ ε.
Notice that the event trigger E(x) is not in the evolution domain for
the differential equation in the time-triggered model, so the con-
troller’s conditions are only checked sporadically.

Model 2 Time-triggered model

time∗ ≡ (ctrlt; dynt)∗ (10)

ctrlt ≡ u B c ∪ (u B ∗; ?Safeε(x, u)) (11)

dynt ≡ t := 0; x0 := x; (12)

(x′ = f (x, u), t′ = 1 & t ≤ ε ∧ D(x)) (13)

Another major difference between the time-triggered model and
the event-triggered model is in the discrete controller. Because the
discrete controller in the time-triggered model must make a choice
that will be safe for up to ε time, we have to change the guard on

the nondeterministic assignment of control variable u in (11). The
guard Safeε(x, u) depends both on the current choice of u and the
time duration ε, in addition to the current state x.

6.3 Proof of Refinement
We expect any safe controller of the time-triggered model to be
more conservative than even the most admissible (but still safe)
controller for the event-triggered model. In other words, we expect
the time-triggered model to not have as wide a range of control
choices as the event-triggered model. This is because the event-
triggered model has continuous access to sensor data, while the
time-triggered model only samples it discretely. As a result, the
set of possible behaviors of the more conservative time-triggered
controller are expected to be a subset of the possible behaviors
of the event-triggered model. More formally, we expect the time-
triggered model to refine the event-triggered model. This is great
news for us, since generally speaking, event-triggered models are
far easier to verify, but time-triggered models are more reasonable
to implement. Now all we have to do is take advantage of this
refinement relation in the proof structure using dRL refinement
proof rules.

For example, suppose that we want to implement a time-
triggered system that always satisfies some safety condition, φ.
We write the condition that our time-triggered model, time∗, al-
ways satisfies φ using the box modality: [time∗]φ. We would first
apply the [≤] rule, as below, to split the property into two sub-goals.
First, that an event-triggered model satisfies the safety condition,
[event∗]φ. And second, that the original time-triggered model re-
fines the event-triggered model, time∗ ≤ event∗.

Γ ` [event∗]φ,∆ Γ ` (time∗ ≤ event∗),∆
Γ ` [time∗]φ,∆

[≤]

Recall that event∗ and time∗ are generic templates for event-
and time-triggered systems. Without concrete choices for example
for the controllers ctrlEv and ctrlt, it will not be possible to close
this proof. However, we can use dRL proof rules independently
from the concrete controllers to significantly simplify the remain-
ing open goals. This proof is presented in full in [14, Chapter 6.3],
but we give a proof sketch in this section and outline the open goals
that will remain to be proved when concrete models are plugged in.

In this proof, we assume that the event trigger is also an invari-
ant for event∗. This is a reasonable assumption to make, since the
event trigger can be thought of as the last possible moment when
switching to the control choice will still guarantee safety for the
system. Consider the simple example of an event-triggered con-
troller for a car, where the car applies the brakes 10 feet before a
stop sign. This means that we define E(x) ≡ d ≥ 10, where d is
the distance between the car and the stop sign. This event trigger
will not be an invariant for the system, since the car will pass the 10
feet away mark after it starts braking. But also notice that this event
trigger doesn’t take into account the velocity of the car. If the car is
traveling fast enough, braking 10 feet away from the stop sign may
not be enough distance for the car to stop in time.

Instead, a better (and provably safe) event trigger will be sym-
bolically defined. By defining the event trigger to be the last possi-
ble moment when the car can brake and not run the stop sign, we
get E(x) ≡ d ≥ v2

2B , where d again is the distance between the car
and the stop sign, v is the car’s velocity, and B is the braking force
that the car engages when the event trigger occurs. In this case,
when the car hits the boundary of E(x) and starts to brake, it then
evolves along the boundary of E(x), since while the distance to the
stop sign decreases, so does the velocity of the car. This makes E(x)
an invariant of the system in this particular case, but also demon-
strates why this assumption is often satisfied, as event triggers are
usually invariants of the system. This same system invariant should

actually be proved invariant within the proof of safety for the event-
triggered model (the canonical proof style for this property), so that
it may be reused in the proof of (time∗ ≤ event∗).

We require for this proof that the solution to the differential
equation exists and is expressible as a term in dRL. We define
Sx0 ,u(t) to be the solution to x′ = f (x, u) at time t, with x0 as the
initial value of state x.

In the proof that time∗ refines event∗, three open goals remain
to be proved based on concrete implementation specifics. Note that
none of these goals contains a differential equation or any hybrid
programs! These three open goals are all expressed in the decidable
first-order logic over the reals (FOLR).

Open Goal 1 - Discrete Controllers Satisfy Refinement:(
Γ ∧ E(x) ∧ Safeε(x, u)

)
` Safe(x, u)

This open goal appears in the proof branch where we show
that the discrete controllers satisfy the refinement relation-
ship, which depends on the specific choices of Safe(x, u) and
Safeε(x, u). This open goal requires that until reaching the event
trigger, being safe for ε time (Safeε(x, u)) implies Safe(x, u).

Open Goal 2 - Evade Mode:(
Γ ∧ E(x0) ∧ 0 ≤ t ≤ ε ∧ x = Sx0 ,c(t) ∧ D(x)

)
` E(x)

This open goal appears in the proof branch where we show that
the continuous dynamics satisfy refinement. It requires that the
control choice u := c is enough to ensure that the system will
not cross the event-trigger boundary within time ε. In other
words, if the invariant/event trigger is initially satisfied (i.e.
E(x0) is satisfied), then for all time t between 0 and ε, the
solution at time t (named x) must satisfy the invariant (i.e. E(x)).

Open Goal 3 - Normal Mode:(
Γ ∧ E(x0) ∧ Safeε(x0, u) ∧ 0 ≤ t ≤ ε ∧ x = Sx0 ,u(t) ∧ D(x)

)
` E(x)

This open goal is similar to Open Goal 2, except that the con-
trol choice is nondeterministic (u := ∗), since we are in normal
mode rather than evade. We represent this control value with
the variable u. Of course, we may only choose u if it satisfies
Safeε(x0, u). This goal requires that if the invariant/event trig-
ger is initially satisfied (i.e. E(x0)), and the guard was satisfied
initially for any choice of acceleration u (i.e. Safeε(x0, u) is sat-
isfied), then for all time t between 0 and ε, the solution at time t
(named x) must satisfy the invariant (i.e. E(x)).

Because these three open goals are expressions in first-order
logic over the reals, a decidable fragment of dRL, these open goals
are usually much easier to verify. The full proof of refinement, and
a detailed discussion of proving techniques can be found in [14,
Chapter 6.3]. The proof requires 50 steps and crucially leverages
the localness of refinement (i.e. properties with mixed box and re-
finement formulas) to close several branches that depend on partial
knowledge of the program context in which their refinements occur.

When using theorem proving to verify hybrid systems, it is not
uncommon to first prove safety for an event-triggered model of
the system, and then add in modeling of a time delay and reprove
safety for the time-triggered model [11]. Event-triggered models
are easier to prove because they avoid the complications introduced
by delays and reaction times that are modeled in time-triggered
architectures. Now, instead of reproving from nothing, the proof
of safety for the time-triggered system can be built on top of the
proof of safety for the event-triggered system once and for all.

While this refinement proof is somewhat involved, the same
proof can be immediately reused for any time-triggered or event-
triggered systems that fit the generic templates.

6.4 Case Study: Local Lane Control
In [16], a time-triggered model for local lane control (llc) is
defined and verified using the dL proof calculus and associated
theorem prover KeYmaera. The proof verifies collision freedom for
an adaptive cruise control system for two cars driving on a straight
lane. However, proving this safety property using the dL proof
calculus in KeYmaera required enormous effort: 656 interactive
proving steps. The proof of safety for the event-triggered model
for the same system required just 4 interactive steps [14, Chapter
6.4].

Now that we have a template for a time-triggered system that
provably refines an event-triggered system, we can revisit the proof
of safety for llc to see if it could have been completed with less
effort. In order to directly use the template in Model 2 for the lo-
cal lane control system, we make a few modifications from the
original model presented in [16]. First, we add the ghost variable
x0 to keep track of the initial value of x before each continuous
evolution. Next, we assume that when a car applies the brakes, it
does so with exact braking power −B, rather than nondeterminis-
tically within some range. This is because our proof of refinement
in Section 6.3 uses a deterministic control choice for the evasive
maneuver branch. We leave it as future work to extend the refine-
ment proof to allow nondeterministic controllers in both the nor-
mal and evasive modes. And finally, the controller in [16] has an
additional control branch which allows the car to remain stopped
once it brakes to a stop. We remove this branch because the proof
of refinement in Section 6.3 only allows two control modes: nor-
mal and evade. We can argue informally that a stopped car does
not pose a risk of colliding with a car in front of it. Each of these
changes still constitute reasonable representations of the underly-
ing system, however they lessen the impact of direct comparisons
of proof statistics between the two models.

To verify the adapted time-triggered llcmodel, all that remains
is to close the three open goals. This is done easily in KeYmaera
with Goals 1 and 2 closing automatically, and Goal 3 requiring 79
interactive steps. Including the proof of the event-/time-triggered
refinement property and the event-triggered proof, the total number
of interactive steps required to prove safety for this adapted time-
triggered model is 133, an 80% reduction. Computation time also
decreased by 74%. The full models, as well as links to all electronic
proofs can be accessed in [14, Chapter 6.4].

While there are some differences in the structure of the com-
pared models (stated above) that complicate direct comparisons,
these are significant improvements over the original proof in dL,
and should be considered strong evidence that dRL can reduce the
number of user interactions and computation required for proving.

7. Relating Differential Refinement Logic
Every instance of the refinement relation that dRL adds to dL
can be defined equivalently in dL, so we could easily lift the ax-
ioms from dL and add the equivalence transformation to accom-
plish completeness for dRL based on the relative completeness of
dL [22]:

|=dRL α ≤ β ⇐⇒ |=dL ∀x̄
(
〈α〉(x = x̄)→ 〈β〉(x = x̄)

)
(14)

where x is a vector of all bound variables in either α or β, and x̄ is a
vector of fresh variables of equal length to x. While this observation
gives us an easy out for completeness, converting refinement into a
dL property in this way would completely undermine dRL’s goal
– taking advantage of the structure of hybrid programs to prove
refinement relations. In practice, the formula on the right-hand
side of (14) will be significantly more complicated to verify (due
to the added diamond modalities and quantifying over variables)
than verifying properties about α and β directly, making this a

terrible idea in practice. Additionally, (14) can only be expressed
in dL separately for each concrete pair of α, β, but dRL provides
refinement as one operator for all α, β.

The canonical goal of dRL is to be able to statically verify
safety for a hybrid program α by showing that it refines a verified
system β. What we often gain with dRL is a verified system α that
more accurately models the real-world system than β. Yet where
the abstractions and generalizations of β make β easier to verify.

Just as it is possible to rewrite refinement statements using dL,
it is also possible to, vice versa, encode the box modality of dL
purely as a refinement relation:

|=dL [α]φ ⇐⇒ |=dRL α ≤ (x := ∗; ?φ) (15)

where x again is a vector of all bound variables in α, and x := ∗ is
a nondeterministic assignment. The HP x := ∗; ?φ transitions from
some starting state ν to any state that may differ from ν only on the
bound variables of α, here x, and in which φ is satisfied.

Lemma 1 (Expressiveness). dRL and dL are equally expressive:
every formula in one logic has a formula in the other logic that is
equivalent. This remains true when dropping modalities from dRL.

Proof. dL is a fragment of dRL. dRL provides the extension of
adding α ≤ β as a logical formula, which is definable by an equiv-
alent dL formula according to (14). To show that dRL without
modalities can express all dL formula, we show by induction that
all modal formulas [α]φ and 〈α〉φ of dL can be expressed in dRL
without modalities. By induction hypothesis, φ can be assumed to
have been replaced by an equivalent without modalities already.
For the formula [α]φ, (15) gives an equivalent encoding in dRL.
For the formula 〈α〉φ, which is equivalent to ¬[α]¬φ, the dRL for-
mula ¬(α ≤ x := ∗; ?¬φ) is an equivalent encoding. �

These encodings illustrate that the value of dRL is not in an
increased expressiveness or in completeness considerations, but
rather in the practical value that its additional proof structure of
hybrid system relations enables. dRL makes proofs with mixed be-
havioral and refinement arguments possible and natural that would
otherwise be impossible or only emulated with encodings that make
the proof worse or with significant effort in proof planning.

8. Related Work
Refinement and discrete programs. Kleene algebra with tests
make it possible to manipulate programs that are equivalent [13].
Hybrid programs in dL form an idempotent semiring when you
take sequential composition as the multiplicative operator, and non-
deterministic choice as an additive operator. Adding in the Kleene
star and the test gives us a Kleene algebra with tests (KAT). As a re-
sult, we draw heavily on research done on these algebras when de-
signing the corresponding proof calculus for dRL. The proof rules
presented in Fig. 3 are derived directly from KAT axioms. But this
is not the end of the story for dRL, as we still have to handle the
complexities of assignments and differential equations. Even sim-
ple hybrid programs that would seem trivially unrelated when ex-
amined through the lens of KAT, may in fact satisfy the refinement
relation. For example, consider the hybrid programs x := 10 and
x := 1; x′ = x. The program x := 10 assigns the value 10 to vari-
able x. The program x := 1; x′ = x first sets x to 1 and then follows
the solution to the differential equation x′ = x for a nondeterminis-
tic amount of time. While these hybrid programs appear unrelated,
the first hybrid program is actually a refinement of the second. The
continuous evolution that follows x′ = x evolves for a nondeter-
ministic period of time, thus allowing x to take any value greater
than 1, which means it includes a transition where x takes value 10.

Moreover in formal methods for cyber-physical systems, it is
critical to express a refinement relationship between two programs,

since we are always trying to refine the programs we verify into
programs that more closely represent the real conditions in which
they operate. While KAT has rules for handling refinement behav-
iors, its focus is on manipulating equivalent programs. Finally, dRL
leverages the interplay of dL’s modalities for proving properties of
system dynamics with refinement relations on programs.

We present in dRL a local refinement relation, which can take
advantage of the context and the surrounding hybrid program to
prove refinement; several related research areas explore the notion
of global refinement [2, 6, 7, 13, 26]. This difference is most strik-
ing for sequential composition. Under a global definition of refine-
ment, if α1 ≤ α2 and β1 ≤ β2, then α1; β1 ≤ α2; β2. However, we of-
ten want to prove refinement of subsystems within larger programs.
These subsystems usually do not satisfy global refinement, but do
satisfy local refinement only within the particular context of the
larger surrounding system. Some notions of local refinement may
be recovered by augmenting with guards and asserts [2, 6, 7]; how-
ever, this requires defining a formula to represent the exact set of
states reachable through α1. Coming up with such a formula is often
very difficult, particularly in hybrid systems where values evolve
continuously over time, and may require over-approximation.

Refinement and dL. One major challenge for formal verification
of cyber-physical systems is that there will always be a gap be-
tween the behavior of a statically verified model and the behav-
ior of the physical implementation of the system “in the wild.”
This is because the many continuous environment and state vari-
ables can never be fully captured and precisely represented. While
dRL reduces this gap by making more challenging models verifi-
able, it will not be able to fully verify a system against circum-
stances that are not explicitly represented in the model. However,
ModelPlex[17] implements a run-time analysis that samples the ob-
served state of a real system via sensors and checks in real time that
this state refines the reachable states of the statically verified model.
In fact, ModelPlex itself is predicated on a study of a refinement re-
lation, which dRL lifts to the level of a logic.

Semantic versions of refinement relationships are also at the
heart of an approach for a library of proof-aware refactoring op-
erations [18] for hybrid programs in dL, which make it possible to
change a model with maximal reuse of its safety and/or liveness
proof. While these refactoring transformations have been shown to
be effective, each refactoring pattern has to be justified by a seman-
tical argument from scratch. dRL takes the more fundamental ap-
proach of including refinement as a first-class citizen into the logic
and developing a set of proof rules once and for all that can be used
to formally prove any such refinement or pattern formally. Addi-
tionally, we examine refinement within a given logical context, so
dRL supports refinements α ≤ β that only hold under the current
context while not holding generally.

Refinement and hybrid systems While the refinement relation
as a first-class member of dRL is new, the concept of refinement
has been in use for quite some time. Discrete model checking, for
example, has seen tremendous success in using abstraction to keep
the statespace small, then iteratively refining the model to exclude
spurious counter examples (CEGAR [5]).

Refinements are the primary development step in Event-B. Re-
cent work by Banach et al. introduces Hybrid Event-B [3], which
adds continuous variables with continuous evolution of those vari-
ables over time intervals to the Event-B framework. Butler et al. de-
fine a restricted notion of refinement for Hybrid Event-B [4] which
has a two-pronged approach: reducing nondeterminism in an ab-
stract continuous evolution of the system (ignoring its differential
equation) and adding additional discrete actions to a model. dRL
handles both kinds of refinements as special cases. While abstrac-
tions of differential equations are supported in dRL, its refinement

properties are not just assumed but actually proved in dRL via dif-
ferential invariants, differential cuts, and differential refinements.

Approximate bisimulations are another approach for relating
two continuous systems [8, 9]. Unlike exact bisimulation, which
requires two systems to be identical under a mapping between
them, approximate bisimulation only requires that the systems be
close. If a bound can be calculated for the maximal error for
the approximate system, then the original system can be proved
safe if the approximate system is safe with the maximal error
as extra safety margin. In contrast, dRL’s working principle is
compositional by allowing several local reasoning steps about parts
of a system to support a refinement argument. It also gives a general
way of combining behavioral and refinement arguments. Applying
some of the underlying concepts of approximate bisimulation to
dRL could result in an interesting extension where state variables
are allowed to be fuzzed by some bounded margin of error.

9. Conclusion and Future Work
This paper presents differential refinement logic (dRL), a specifica-
tion and verification logic that allows the proof of properties of hy-
brid programs as well as the direct comparison of hybrid programs.
We present a proof calculus for dRL and prove it sound. The rules in
the proof calculus can be partitioned into three types: 1) structural
proof rules, which leverage structural similarities between hybrid
programs, 2) proof rules for differential equation refinements, and
3) rules based on the axioms of Kleene algebra with tests.

As an application of dRL, we also present the first formal proof
that a generic time-triggered system refines its event-triggered
counterpart. This refinement relation is an important one, as it ties
together two architecture types that are classically considered fun-
damentally different and incompatible modeling choices. Event-
triggered systems are generally considered easier to verify, while
time-triggered systems give a more faithful representation of real-
world systems with discrete sensors. By establishing this relation-
ship between the two, we can get the best of both worlds. We first
prove properties about event-triggered systems which are signifi-
cantly easier to verify. By proving a few simple side conditions, the
resulting proofs extend easily in dRL to verify the time-triggered
systems, which give a more realistic model of discrete sensors.

While this paper introduces the foundations of the dRL logic
and provides solid evidence that dRL can simplify many challenges
of verification for hybrid systems, there are still many questions to
be explored, and in particular with a view to automation: How can
an automated or semi-automated proof search take advantage of the
added proof structure that dRL provides? Can refinement aid auto-
matic synthesis for verified implementation of hybrid programs?

In conclusion, dRL improves the feasibility of theorem proving
for hybrid systems by making it easier to break systems into smaller
subsystems, abstract implementation-specific design details, lever-
age an iterative approach to system design, and maintain a modular
proof structure, each by making refinements explicit in the proof.

References
[1] R. Alur. Formal verification of hybrid systems. In 2011 Proceedings

of the International Conference on Embedded Software (EMSOFT),
pages 273–278, 2011.

[2] R.-J. J. Back, A. Akademi, and J. von Wright. Refinement Calculus:
A Systematic Introduction. Springer, 1st edition, 1998.

[3] R. Banach, H. Zhu, W. Su, and R. Huang. Continuous KAOS, ASM,
and formal control system design across the continuous/discrete mod-
eling interface: a simple train stopping application. Formal Aspects of
Computing, 26(2):319–366, 2014.

[4] M. Butler, J.-R. Abrial, and R. Banach. Modelling and refining
hybrid systems in Event-B and Rodin. In L. Petre and E. Sekerinski,

editors, From Action System to Distributed Systems: The Refinement
Approach. Taylor & Francis, 2015.

[5] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided abstraction refinement for symbolic model checking. Journal
of the ACM (JACM), 50(5):752–794, 2003.

[6] J. Desharnais, B. Möller, and G. Struth. Kleene algebra with domain.
ACM Transactions on Computational Logic (TOCL), 7(4):798–833,
2006.

[7] T. Ehm, B. Möller, and G. Struth. Kleene modules. Springer, 2003.

[8] A. Girard and G. J. Pappas. Approximate bisimulation: A bridge
between computer science and control theory. European Journal of
Control, 17(5):568–578, 2011.

[9] A. Girard, A. A. Julius, and G. J. Pappas. Approximate simulation
relations for hybrid systems. Discrete Event Dynamic Systems, 18(2):
163–179, 2008.

[10] H. Kopetz. Event-triggered versus time-triggered real-time systems.
In Operating Systems of the 90s and Beyond, pages 86–101. Springer,
1991.

[11] Y. Kouskoulas, D. W. Renshaw, A. Platzer, and P. Kazanzides. Certi-
fying the safe design of a virtual fixture control algorithm for a surgi-
cal robot. In C. Belta and F. Ivancic, editors, HSCC, pages 263–272.
ACM, 2013.

[12] D. Kozen. The design and analysis of algorithms. Springer, 1992.

[13] D. Kozen. Kleene algebra with tests. ACM Transactions on Program-
ming Languages and Systems (TOPLAS), 19(3):427–443, 1997.

[14] S. M. Loos. Differential refinement logic. Technical Report CMU-CS-
15-144, PhD thesis, School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA, Feb 2016.

[15] S. M. Loos and A. Platzer. Differential refinement logic. Technical Re-
port CMU-CS-16-111, School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA, 2016.

[16] S. M. Loos, A. Platzer, and L. Nistor. Adaptive cruise control: Hybrid,
distributed, and now formally verified. In M. Butler and W. Schulte,
editors, FM 2011, volume 6664 of LNCS, pages 42–56. Springer,
2011.

[17] S. Mitsch and A. Platzer. ModelPlex: Verified runtime validation of
verified cyber-physical system models. Form. Methods Syst. Des.,
2016.

[18] S. Mitsch, J.-D. Quesel, and A. Platzer. Refactoring, refinement, and
reasoning: A logical characterization for hybrid systems. In FM,
volume 8442 of LNCS, pages 481–496. Springer, 2014.

[19] A. Platzer. Differential dynamic logic for hybrid systems. J. Autom.
Reas., 41(2):143–189, 2008. ISSN 0168-7433.

[20] A. Platzer. Differential-algebraic dynamic logic for differential-
algebraic programs. J. Log. Comput., 20(1):309–352, 2010. ISSN
0955-792X.

[21] A. Platzer. Logical Analysis of Hybrid Systems: Proving Theorems for
Complex Dynamics. Springer, Heidelberg, 2010. ISBN 978-3-642-
14508-7.

[22] A. Platzer. Logics of dynamical systems. In LICS, pages 13–24, 2012.

[23] A. Platzer. Differential game logic. ACM Trans. Comput. Log., 17(1):
1:1–1:51, 2015. ISSN 1529-3785.

[24] A. Platzer. A uniform substitution calculus for differential dynamic
logic. In A. P. Felty and A. Middeldorp, editors, CADE, volume 9195
of LNCS, pages 467–481. Springer, 2015.

[25] F. Scheler and W. Schröder-Preikschat. Time-triggered vs. event-
triggered: A matter of configuration? In MMB Workshop Proceed-
ings GI/ITG Workshop on Non-Functional Properties of Embedded
Systems, pages 1–6. VDE, 2006.

[26] J. von Wright. Towards a refinement algebra. Science of Computer
Programming, 51(1):23–45, 2004.

[27] W. Walter. In Ordinary Differential Equations, pages 105–157.
Springer, 1998.

A. Example 6 - continued
Example 6 - continued (Differential cut and refinement). In this
example, we use both differential cut and differential refinement to
prove our property. Ultimately we want to show that x ≥ 0 is an
invariant of the differential equation. However, we can not do this
directly without first showing that y ≥ 0 is also invariant. Once both
x ≥ 0 and y ≥ 0 have been cut in as invariants, we then use DR to
ignore the helper invariant y ≥ 0 and close the proof.

The DC and DR rules can also be especially helpful when a
differential equation does not have a solution, or when that solution
is computationally intractable.

...

x ≥ 0 ∧ y ≥ 0 ` [x′ = y, y′ = 1]y ≥ 0
DI

x ≥ 0 ∧ y ≥ 0 ` (x′ = y, y′ = 1) = (x′ = y, y′ = 1 & y ≥ 0)
DC

branch 2

branch 2

...

x ≥ 0 ∧ y ≥ 0 ` [x′ = y, y′ = 1 & y ≥ 0](x ≥ 0 ∧ y ≥ 0)
DI

x ≥ 0 ∧ y ≥ 0 ` (x′ = y, y′ = 1 & y ≥ 0)

= (x′ = y, y′ = 1 & x ≥ 0 ∧ y ≥ 0)

DC

x ≥ 0 ∧ y ≥ 0 ` (x′ = y, y′ = 1) = (x′ = y, y′ = 1 & x ≥ 0 ∧ y ≥ 0)
≤trans

branch 1

branch 1

∗

` ∀x, y (x ≥ 0 ∧ y ≥ 0→ x ≥ 0)
QE

` (x′ = y, y′ = 1 & x ≥ 0 ∧ y ≥ 0) ≤ (x′ = y, y′ = 1 & x ≥ 0)
DR

x ≥ 0 ∧ y ≥ 0 ` (x′ = y, y′ = 1) ≤ (x′ = y, y′ = 1 & x ≥ 0)
≤trans

B. Soundness Proofs
B.1 Semantic Proofs of Soundness
In the following proofs, we define composition of transition rela-
tions ρ(α) ◦ ρ(β) as the set of transitions that first follow α and then
follow β:

ρ(α) ◦ ρ(β) = {(ν, ω) : (ν, µ) ∈ ρ(α), (µ, ω) ∈ ρ(β)}

We also use this notation when restricting a transition relation
to starting from a fixed state ν. In other words, the set of all states
reachable from ν through α is denoted as follows:

{ν} ◦ ρ(α) = {ω : (ν, ω) ∈ ρ(α)}

Lemma 2. {ν} ◦ ρ(α) ◦ ρ(β) ⊆ {ν} ◦ ρ(α) ◦ ρ(γ) iff ν |= [α](β ≤ γ)

Proof. By the semantic definition of the box modality and refine-
ment, ν |= [α](β ≤ γ) iff {ω}◦ρ(β) ⊆ {ω}◦ρ(γ) for all ω ∈ {ν}◦ρ(α).
Therefore {ν} ◦ ρ(α) ◦ ρ(β) ⊆ {ν} ◦ ρ(α) ◦ ρ(γ). �

Lemma 3. If ν |= [α∗]β ≤ γ, then {ν} ◦ ρ(αn) ◦ ρ(β) ⊆ {ν} ◦
ρ(αn) ◦ ρ(γ).

Proof. By the semantic definition of the box modality and re-
finement, ν |= [α∗]β ≤ γ iff {ω} ◦ ρ(β) ⊆ {ω} ◦ ρ(γ) for all
ω ∈ {ν} ◦ ρ(α∗). By the semantic definition of nondeterministic
repetition, ρ(α∗) =

⋃
ρ(αn), so {ν} ◦ ρ(αn) ⊆ {ν} ◦ ρ(α∗). Therefore,

{ν} ◦ ρ(αn) ◦ ρ(β) ⊆ {ν} ◦ ρ(αn) ◦ ρ(γ).
�

B.1.1 Soundness of (≤re f l)

Γ ` α ≤ α,∆
(≤re f l)

Proof. Let ν be an arbitrary state such that ν |= G for all G ∈ Γ and
such that ν 6|= D for all D ∈ ∆, since the sequent is trivially valid
otherwise.

By the semantic definition of refinement, we say that ν |= α ≤ β
iff {ν} ◦ ρ(α) ⊆ {ν} ◦ ρ(β). For the case of ν |= α ≤ α, this holds by
reflexivity of the subset relation. �

B.1.2 Soundness of (≤trans)

Γ ` α ≤ β,∆ Γ ` β ≤ γ,∆

Γ ` α ≤ γ,∆
(≤trans)

Proof. Let ν be an arbitrary state such that ν |= G for all G ∈ Γ
and such that ν 6|= D for all D ∈ ∆, since the sequent is trivially
valid otherwise. From the premise, we know that ν |= α ≤ β and
ν |= β ≤ γ.

{ν} ◦ ρ(α) (16)
⊆ {ν} ◦ ρ(β) by the semantic definition of ν |= α ≤ β (17)
⊆ {ν} ◦ ρ(γ) by the semantic definition of ν |= β ≤ γ (18)

�

B.1.3 Soundness of (≤antisym)

Γ ` α ≤ β,∆ Γ ` β ≤ α,∆

Γ ` α = β,∆
(≤antisym)

Proof. Recall that equivalence over hybrid programs is syntacti-
cally defined as

(
(α ≤ β) ∧ (β ≤ α)

)
. So proof of soundness for this

rule follows immediately from the ∧r rule. �

B.1.4 Soundness of (;)

Γ ` α1 ≤ α2,∆ Γ ` [α1] (β1 ≤ β2),∆
Γ ` (α1; β1) ≤ (α2; β2),∆

(;)

Proof. Let ν be an arbitrary state such that ν |= G for all G ∈ Γ
and such that ν 6|= D for all D ∈ ∆, since the sequent is trivially
valid otherwise. Therefore, when the premises are valid, we know
ν |= α1 ≤ α2 and ν |= [α1] (β1 ≤ β2).

{ν} ◦ ρ(α1; β1) (19)
= {ν} ◦ ρ(α1) ◦ ρ(β1) by semantic definition of ρ(α; β) (20)
⊆ {ν} ◦ ρ(α1) ◦ ρ(β2) by ν |= [α1] (β1 ≤ β2) and Lemma 2 (21)
⊆ {ν} ◦ ρ(α2) ◦ ρ(β2) by {ν} ◦ ρ(α1) ⊆ {ν} ◦ ρ(α2) (22)
= {ν} ◦ ρ(α2; β2) by semantic definition of ρ(α; β) (23)

In (22) we know {ν} ◦ ρ(α1) ⊆ {ν} ◦ ρ(α2) from the left premise. �

It is tempting to write the (;) rule without the [α1] as such:

Γ ` α1 ≤ α2,∆ Γ ` β1 ≤ β2,∆

Γ ` (α1; β1) ≤ (α2; β2),∆
(unsound ;)

However, we can see that, by dropping [α1] from the right
premise, the context will cause trouble in the following counterex-
ample to the unsound rule:

∗

x = 1 ` x B 2 ≤ x B 2

∗

x = 1 ` x2 = x

x = 1 ` ?> ≤ (?(x2 = x))
?

x = 1 ` (x B 2; ?>) ≤ (x B 2; ?(x2 = x))
unsound ;

It is sometimes advantageous to use an alternative, weaker ver-
sion of the ; rule, where we use Γ ` [α2] (β1 ≤ β2),∆ as the second
antecedent. Soundness of this rule is immediate by the [≤] rule.

B.1.5 Soundness of (unloop)

Γ ` [α∗](α ≤ β),∆
Γ ` α∗ ≤ β∗,∆

(unloop)

The box modality in the premise of this rule is needed for similar
reasons as in the ;-rule. It ensures that only context that remains
invariant throughout the evolution of α∗ can be used as evidence
for the proof of refinement. We prove this property by induction,
showing that after n sequential runs of α, the refinement relation
between α and β still holds.

This proof rule is very commonly used in dRL proofs, as it
keeps in tact the structure of hybrid programs α and β, making it
especially useful when the two programs are already very similar.
Proving similar properties in dL, would require a loop invariant to
handle the unrolling of both α∗ and β∗.

Proof. Let ν be an arbitrary state such that ν |= G for all G ∈ Γ
and such that ν 6|= D for all D ∈ ∆, since the sequent is trivially
valid otherwise. Therefore, when the premise is valid, we know
ν |= [α∗]α ≤ β.

{ν} ◦ ρ(α∗) (24)

= {ν} ◦
⋃
n∈N

ρ(αn) by semantic definition of ρ(α∗) (25)

⊆ {ν} ◦
⋃
n∈N

ρ(βn) by Proposition 1 (26)

= {ν} ◦ ρ(β∗) by semantic definition of ρ(β∗) (27)

�

Proposition 1. If ν |= [α∗]α ≤ β, then {ν} ◦ ρ(αn) ⊆ {ν} ◦ ρ(βn).

Proof. Proof is by induction on n. By definition, α0 = ?> = β0, so
ρ(α0) = ρ(β0).

{ν} ◦ ρ(αn+1) (28)
= {ν} ◦ ρ(αn;α) by definition of αn (29)
= {ν} ◦ ρ(αn) ◦ ρ(α) by semantics of ; (30)
⊆ {ν} ◦ ρ(αn) ◦ ρ(β) by ν |= [α∗]α ≤ β and Lemma 3 (31)
⊆ {ν} ◦ ρ(βn) ◦ ρ(β) by induction hypothesis (32)

= {ν} ◦ ρ(βn+1) by semantics of ; and def. of βn (33)

�

We can prove the following useful variant of the unloop rule
simply by using Proposition 2 instead of Proposition 1. While this
variant is technically a weaker rule, it can be much more useful in
practice (as is necessary for the proof that a time-triggered system
refines event-triggered, see Section 6).

Γ ` [β∗](α ≤ β),∆
Γ ` α∗ ≤ β∗,∆

(unloop)

Proposition 2. If ν |= [β∗]α ≤ β, then {ν} ◦ ρ(αn) ⊆ {ν} ◦ ρ(βn).

Proof. Proof follows similarly to Proposition 1.

{ν} ◦ ρ(αn+1) (34)
= {ν} ◦ ρ(αn;α) by definition of αn (35)
= {ν} ◦ ρ(αn) ◦ ρ(α) by semantics of ; (36)
⊆ {ν} ◦ ρ(βn) ◦ ρ(α) by induction hypothesis (37)
⊆ {ν} ◦ ρ(βn) ◦ ρ(β) by ν |= [β∗](α ≤ β) and Lemma 3 (38)

= {ν} ◦ ρ(βn+1) by semantics of ; and def. of βn (39)

�

B.1.6 Soundness of (?)

Γ ` φ→ ψ,∆

Γ ` ?φ ≤ ?ψ,∆
(?)

Proof. Let ν be an arbitrary state such that ν |= G for all G ∈ Γ
and such that ν 6|= D for all D ∈ ∆, since the sequent is trivially
valid otherwise. Therefore, when the premise is valid, we know
ν |= φ→ ψ.

Case 1: Let ν |= φ. In this case, we also know ν |= ψ, from
ν |= φ→ ψ.

{ν} ◦ ρ(?φ) (40)
= {ν} by ν |= φ and definition of ρ(?φ) (41)
= {ν} ◦ ρ(?ψ) by ν |= ψ and definition of ρ(?ψ) (42)

Case 2: Let ν 6|= φ.

{ν} ◦ ρ(?φ) (43)
= ∅ by ν 6|= φ and definition of ρ(?φ) (44)
⊆ {ν} ◦ ρ(?ψ) (45)

�

B.1.7 Soundness of (∪l)

Γ ` α ≤ γ ∧ β ≤ γ,∆

Γ ` α ∪ β ≤ γ,∆
(∪l)

Proof. Let ν be an arbitrary state such that ν |= G for all G ∈ Γ
and such that ν 6|= D for all D ∈ ∆, since the sequent is trivially
valid otherwise. Therefore, when the premise is valid, we know
ν |= α ≤ γ and ν |= β ≤ γ.

{ν} ◦ ρ(α ∪ β) (46)
= {ν} ◦

(
ρ(α) ∪ ρ(β)

)
by definition of ρ(α ∪ β) (47)

=
(
{ν} ◦ ρ(α)

)
∪

(
{ν} ◦ ρ(β)

)
by set distribution (48)

⊆ {ν} ◦ ρ(γ) see below (49)

We get (49) by {ν}◦ρ(α) ⊆ {ν}◦ρ(γ) (from the semantic definition of
ν |= α ≤ γ) and {ν} ◦ ρ(β) ⊆ {ν} ◦ ρ(γ) (from the semantic definition
of ν |= β ≤ γ).

�

B.1.8 Soundness of (∪r)

Γ ` α ≤ β ∨ α ≤ γ,∆

Γ ` α ≤ β ∪ γ,∆
(∪r)

Proof. Let ν be an arbitrary state such that ν |= G for all G ∈ Γ
and such that ν 6|= D for all D ∈ ∆, since the sequent is trivially
valid otherwise. Therefore, when the premise is valid, we know
that ν |= α ≤ β or ν |= α ≤ γ.
Case 1: Let ν |= α ≤ β.

{ν} ◦ ρ(α) (50)
⊆ {ν} ◦ ρ(β) by the semantics of ν |= α ≤ β (51)
⊆ {ν} ◦

(
ρ(β) ∪ ρ(γ)

)
by set union (52)

= {ν} ◦ ρ(β ∪ γ) by definition of ρ(β ∪ γ) (53)

Case 2: Let ν |= α ≤ γ. This case follows similarly to Case 1. �

B.1.9 Soundness of (:=∗)

Γ ` (x := θ) ≤ (x := ∗),∆
(:=∗)

Proof. Let ν be an arbitrary state such that ν |= G for all G ∈ Γ and
such that ν 6|= D for all D ∈ ∆, since the sequent is trivially valid
otherwise.

{ν} ◦ ρ(x := θ) (54)
= {µ : where µ = ν except that ~x�µ = ~θ�ν} (55)
⊆ {ω : where ω = ν except on the value of x} (56)
= {ν} ◦ ρ(x := ∗) (57)

�

B.1.10 Soundness of (loopl)
Observe that the reason for the fundamental asymmetry of rule
loopl compared to its partner loopr becomes clear when comparing
Proposition 3 and Proposition 4. When α∗ is on the left, as in this
rule, the refinement allows α; β to collapse into γ, but only after
some number of αn have executed. However, when α∗ is on the
right, as in the loopr rule, that collapse happens first.

Γ ` [α∗](α; γ) ≤ γ,∆ Γ ` [α∗]β ≤ γ,∆
Γ ` α∗; β ≤ γ,∆

(loopl)

Proof. Let ν be an arbitrary state such that ν |= G for all G ∈ Γ
and such that ν 6|= D for all D ∈ ∆, since the sequent is trivially
valid otherwise. Therefore, when the premise is valid, we know
ν |= [α∗](α; γ) ≤ γ and ν |= [α∗]β ≤ γ.

{ν} ◦ ρ(α∗; β) (58)
= {ν} ◦ ρ(α∗) ◦ ρ(β) by the definition of ρ(α; β) (59)
⊆ {ν} ◦ ρ(α∗) ◦ ρ(γ) by Lemma 2, ν |= [α∗]β ≤ γ (60)

= {ν} ◦
(⋃

n∈N

ρ(αn)
)
◦ ρ(γ) by definition of ρ(α∗) (61)

=
⋃
n∈N

(
{ν} ◦ ρ(αn) ◦ ρ(γ)

)
by set distribution (62)

⊆ {ν} ◦ ρ(γ) by Prop. 3, ν |= [α∗](α; γ) ≤ γ (63)

�

Proposition 3. For all n ∈ N, {ν} ◦ ρ(αn) ◦ ρ(γ) ⊆ {ν} ◦ ρ(γ) iff
ν |= [α∗](α; γ) ≤ γ.

Proof. Proof by induction on n. When n = 0, α0 =?>. Therefore
{ν} ◦ ρ(α0) ◦ ρ(γ) = {ν} ◦ ρ(?>) ◦ ρ(γ) = {ν} ◦ ρ(γ).

{ν} ◦ ρ(αn+1) ◦ ρ(γ) (64)

= {ν} ◦ ρ(αn) ◦ ρ(α) ◦ ρ(γ) by definition of ρ(αn+1) (65)
= {ν} ◦ ρ(αn) ◦ ρ(α; γ) by definition of ρ(α; γ) (66)
⊆ {ν} ◦ ρ(αn) ◦ ρ(γ) by Lemma 3, ν |= [α∗](α; γ) ≤ γ

(67)
⊆ {ν} ◦ ρ(γ) by induction hypothesis (68)

�

B.1.11 Soundness of (loopr)

Γ ` β ≤ γ,∆ Γ ` (γ;α) ≤ γ,∆
Γ ` β;α∗ ≤ γ,∆

(loopr)

Proof. Let ν be an arbitrary state such that ν |= G for all G ∈ Γ
and such that ν 6|= D for all D ∈ ∆, since the sequent is trivially
valid otherwise. Therefore, when the premise is valid, we know
ν |= β ≤ γ and ν |= (γ;α) ≤ γ. (Notice that the premise for loopr is
slightly different from the premise for loopl.)

{ν} ◦ ρ(β;α∗) (69)
= {ν} ◦ ρ(β) ◦ ρ(α∗) by the definition of ρ(α; β) (70)
⊆ {ν} ◦ ρ(γ) ◦ ρ(α∗) by {ν} ◦ ρ(β) ⊆ {ν} ◦ ρ(γ) (71)

= {ν} ◦ ρ(γ) ◦
(⋃

n∈N

ρ(αn)
)

by definition of ρ(α∗) (72)

=
⋃
n∈N

(
{ν} ◦ ρ(γ) ◦ ρ(αn)

)
by set distribution (73)

⊆ {ν} ◦ ρ(γ) by Prop. 4, ν |= (γ;α) ≤ γ (74)

In line (71), we know {ν} ◦ ρ(β) ⊆ {ν} ◦ ρ(γ) from the semantic
definition of ν |= β ≤ γ. �

Proposition 4. For all n ∈ N, {ν} ◦ ρ(γ) ◦ ρ(αn) ⊆ {ν} ◦ ρ(γ) iff
ν |= (γ;α) ≤ γ.

Proof. Proof by induction on n.

{ν} ◦ ρ(γ) ◦ ρ(αn+1) (75)

= {ν} ◦ ρ(γ) ◦ ρ(α) ◦ ρ(αn) by definition of ρ(αn+1) (76)
= {ν} ◦ ρ(γ;α) ◦ ρ(αn) by definition of ρ(γ;α) (77)
⊆ {ν} ◦ ρ(γ) ◦ ρ(αn) by {ν} ◦ ρ(γ;α) ⊆ {ν} ◦ ρ(γ) (78)
⊆ {ν} ◦ ρ(γ) by induction hypothesis (79)

In line (78), we know that {ν}◦ρ(γ;α) ⊆ {ν}◦ρ(γ) from the semantic
definition of ν |= (γ;α) ≤ γ. �

B.1.12 Soundness of [≤]

Γ ` [β]φ,∆ Γ ` α ≤ β,∆

Γ ` [α]φ,∆
([≤])

Proof. Let ν be an arbitrary state such that ν |= G for all G ∈ Γ and
such that ν 6|= D for all D ∈ ∆, since the sequent is trivially valid
otherwise. Therefore, when the premise is valid, we know ν |= [β]φ
and ν |= α ≤ β.

Since ν |= α ≤ β, we know that {ν} ◦ ρ(α) ⊆ {ν} ◦ ρ(β), by
the semantic definition of refinement. From ν |= [β]φ, we know
that ω |= φ for all states ω ∈ {ν} ◦ ρ(β). Therefore, for all states
ω ∈ {ν} ◦ ρ(α), we know that ω |= φ.

By the semantic definition of box modality, ν |= [α]φ iff ω |= φ
for all states ω ∈ {ν} ◦ ρ(α).

�

B.1.13 Soundness of 〈≤〉

Γ ` 〈α〉φ,∆ Γ ` α ≤ β,∆

Γ ` 〈β〉φ,∆
(〈≤〉)

Proof. Let ν be an arbitrary state such that ν |= G for all G ∈ Γ and
such that ν 6|= D for all D ∈ ∆, since the sequent is trivially valid
otherwise. Therefore, when the premise is valid, we know ν |= 〈α〉φ
and ν |= α ≤ β.

From ν |= 〈α〉φ, we know that there exists an ω such that
ω ∈ {ν} ◦ ρ(α) and ω |= φ. Since ν |= α ≤ β, we know that
{ν} ◦ ρ(α) ⊆ {ν} ◦ ρ(β), by the semantic definition of refinement.
Therefore, since ω ∈ {ν} ◦ ρ(α), we also know that ω ∈ {ν} ◦ ρ(β).

By the semantic definition of diamond modality, ν |= 〈β〉φ iff
there exists an ω such that ω |= φ and ω ∈ {ν} ◦ ρ(α).

�

B.1.14 Soundness of (DC)

Γ ` [x′ = θ& H1]H2,∆

Γ ` (x′ = θ& H1) = (x′ = θ& H1 ∧ H2),∆
(DC)

Proof. Let ν be an arbitrary state such that ν |= G for all G ∈ Γ
and such that ν 6|= D for all D ∈ ∆, since the sequent is trivially
valid otherwise. Therefore, when the premise is valid, we know
ν |= [x′ = θ& H1]H2.

In the following, we use shorthand notation for the transition
semantics of x′ = θ& H. For example, let ϕ : [0, r] → S be a
solution of any duration r to x′ = θ, where ϕ(0) = ν.

{ν} ◦ ρ(x′ = θ& H1) (80)
= {ϕ(r) : ϕ(t) |= x′ = θ and ϕ(t) |= H1 for all 0 ≤ t ≤ r} (81)
= {ϕ(r) : ϕ(t) |= x′ = θ, ϕ(t) |= H1, and ϕ(t) |= H2 for all 0 ≤ t ≤ r}

(82)
= {ϕ(r) : ϕ(t) |= x′ = θ and ϕ(t) |= H1 ∧ H2 for all 0 ≤ t ≤ r}

(83)
= {ν} ◦ ρ(x′ = θ& H1 ∧ H2) (84)

We know (81) by the transition semantics of x′ = θ& H1. In
(82), we know that ϕ(t) |= H2 already holds for all 0 ≤ t ≤ r.
This is because, from ν |= [x′ = θ& H1]H2, we know that for all
ϕ(t) ∈ {ν} ◦ ρ(x′ = θ& H1) it must be the case that ϕ(t) |= H2,
by the semantic definition of the box modality. And we know that
ϕ(t) ∈ {ν} ◦ ρ(x′ = θ& H1) for all 0 ≤ t ≤ r, since ϕ(t) is a solution
of duration r.

�

B.1.15 Soundness of (DR)

Γ ` ∀x (H1 → H2),∆
Γ ` (x′ = θ& H1) ≤ (x′ = θ& H2),∆

(DR)

Proof. Let ν be an arbitrary state such that ν |= G for all G ∈ Γ
and such that ν 6|= D for all D ∈ ∆, since the sequent is trivially
valid otherwise. Therefore, when the premise is valid, we know
ν |= ∀x (H1 → H2).

In the following, we use shorthand notation for the transition
semantics of x′ = θ& H. For example, let ϕ : [0, r] → S be a
solution of any duration r to x′ = θ, where ϕ(0) = ν.

{ν} ◦ ρ(x′ = θ& H1) (85)
= {ϕ(r) : ϕ(t) |= x′ = θ and ϕ(t) |= H1 for all 0 ≤ t ≤ r} (86)
⊆ {ϕ(r) : ϕ(t) |= x′ = θ and ϕ(t) |= H2 for all 0 ≤ t ≤ r} (87)
= {ν} ◦ ρ(x′ = θ& H2) (88)

We know (86) by the transition semantics of x′ = θ& H1. We
know that {ϕ(t) : 0 ≤ t ≤ r} ⊆ {νd

x : d ∈ Rn} by the bound variable
effect [24] and because ϕ(0) = ν. We also know that ν |= ∀x (H1 →

H2) iff for all d ∈ Rn, νd
x |= H1 implies νd

x |= H2. Therefore,
{ϕ(t) : ϕ(t) |= H1 and 0 ≤ t ≤ r} ⊆ {ϕ(t) : ϕ(t) |= H2 and 0 ≤
t ≤ r} and (87) holds. Finally, (88) is by the transition semantics of
x′ = θ& H2.

�

B.1.16 Soundness of (MDF)

Γ ` ∀x
(
θ1‖θ2‖ = θ2‖θ1‖ ∧

(
‖θ1‖ = 0↔ ‖θ2‖ = 0

))
,∆

Γ ` (x′ = θ1) = (x′ = θ2),∆
(MDF)6

6We require that this rule be defined only when no variables of x occur
in θ.

Proof. Let ν |= ∀x
(
θ1‖θ2‖ = θ2‖θ1‖ ∧

(
‖θ1‖ = 0↔ ‖θ2‖ = 0

))
.

Let y1(t) and y2(t) be real-valued functions defined on the

domain [0,∞) that solve the initial value problems
dy1(t)

dt
=

~θ1�ν, y1(0) = ~x�ν and
dy2(t)

dt
= ~θ2�ν, y2(0) = ~x�ν. Notice

that ~θ1�ν and ~θ2�ν are constant throughout the evolution of the
differential equation because we restrict θ to be a term that does
not contain any variables of x. We know y1(t) and y2(t) exist and
are globally defined because constant differential equation systems
have closed-form polynomial solutions in t [27, §10.VII]. For the
same reason, we also know that y1(t) and y2(t) are uniquely de-
fined, i.e. for each differential equation system, each state ν, and
each duration r ≥ 0, there is at most one solution ϕ : [0, r] → S
satisfying the conditions of Case 3 of Definition 3. More specifi-
cally, we know that the solutions to the differential equations are
explicitly defined by yi(t) = ~θi�νt + ~x�ν. Then for our proof of
soundness it suffices to show:

∀s≥0 ∃r≥0 y1(r) = y2(s) (89)

Case 1: Assume ‖~θ1�ν‖ = 0. Then y1 is at an equilibrium point
and the solution to the differential equation is the constant function
y1(t) = y1(0) = ~x�ν.

By the premise we know that ‖~θ1�ν‖ = 0 iff ‖~θ2�ν‖ = 0. Then
y2 is also at an equilibrium point and the solution to the differential
equation is the constant function y2(t) = y2(0) = ~x�ν. So we can
easily see that (89) holds from the following:

∀s≥0,r≥0 y1(r) = ~x�ν = y2(s) (90)

Case 2: Assume ‖~θ1�ν‖ > 0. Define λ(s) : [0,∞) → [0,∞) to
be the continuous, real-valued function λ(s) =

‖~θ2�ν‖
‖~θ1�ν‖

s. We know
that λ(s) is always defined on its domain, since ‖~θ1�ν‖ > 0.
We also know that λ(s) ≥ 0, since the domain of s is [0,∞).
By the premise and since x does not occur in θ, we know that
~θ1�ν‖~θ2�ν‖ = ~θ2�ν‖~θ1�ν‖. Therefore,

y1(λ(s)) (91)
= ~θ1�νλ(s) using the closed-form solution of y1(t) (92)

= ~θ1�ν
‖~θ2�ν‖

‖~θ1�ν‖
s by the definition of λ(s) (93)

= ~θ2�ν
‖~θ1�ν‖

‖~θ1�ν‖
s by ~θ1�ν‖~θ2�ν‖ = ~θ2�ν‖~θ1�ν‖ (94)

= ~θ2�νs (95)
= y2(s) using the closed-form solution of y2(t) (96)

�

B.2 Equivalence Proofs from dL Axioms
Lemma 4. If [α]φ↔ [β]φ is a sound axiom schema, then α = β.

Proof. Assume ν 6|= α = β for the sake of contradiction. Without
loss of generality, let ν 6|= α ≤ β. This implies that ∃ω.(ν, ω) ∈ ρ(α)\
ρ(β). Notice that for all states µ where µ = ω on BV(α) ∪ BV(β),
we know that (ν, µ) < ρ(β) by the bound variable effect [24]. Let
{xi} B BV(α) ∪ BV(β). Note that the cardinality of {xi} is finite,
since all hybrid programs must be finite in length and therefore in
the number of bound variables. Let ri B ω(xi), so ω |=

∧
ri = xi.

Assume that we have temporarily extended the language of dRL to
include constant variables for all real numbers.
Then,

ν |= 〈α〉
∧

ri = xi since (ν, ω) ∈ ρ(α) and ω |=
∧

ri = xi, but
ν 6|= 〈β〉

∧
ri = xi since (ν, µ) < ρ(β) for all µ |=

∧
ri = xi.

Therefore, we have a contradiction to [α]φ← [β]φ, and thus a con-
tradiction to [α]φ↔ [β]φ. �

B.2.1 Soundness of (∪assoc)

Γ ` α ∪ (β ∪ γ) = (α ∪ β) ∪ γ,∆
(∪assoc)

Proof. We show that α ∪ (β ∪ γ) = (α ∪ β) ∪ γ using Lemma 4.

∗

Γ `
(
[α]φ ∧ ([β]φ ∧ [γ]φ)

)
↔

(
([α]φ ∧ [β]φ) ∧ [γ]φ

)
,∆
∧assoc, refl

Γ `
(
[α]φ ∧ [β ∪ γ]φ

)
↔

(
[α ∪ β]φ ∧ [γ]φ

)
,∆

[∪]

Γ ` [α ∪ (β ∪ γ)]φ↔ [(α ∪ β) ∪ γ]φ,∆
[∪]

�

B.2.2 Soundness of (∪comm)

Γ ` α ∪ β = β ∪ α,∆
(∪comm)

Proof. We show that α ∪ β = β ∪ α using Lemma 4.

∗

Γ ` ([α]φ ∧ [β]φ)↔ ([α]φ ∧ [β]φ),∆
refl

Γ ` ([α]φ ∧ [β]φ)↔ ([β]φ ∧ [α]φ),∆
∧comm

Γ ` [α ∪ β]φ↔ [β ∪ α]φ,∆
[∪]

�

B.2.3 Soundness of (∪idemp)

Γ ` (α ∪ α) = α,∆
(∪idemp)

Proof. We show that (α ∪ α) = α using Lemma 4.

∗

Γ ` ([α]φ ∧ [α]φ)↔ [α]φ,∆
Γ ` [α ∪ α]φ↔ [α]φ,∆

[∪]

�

B.2.4 Soundness of (;assoc)

Γ ` α; (β; γ) = (α; β); γ,∆
(;assoc)

Proof. We show that α; (β; γ) = (α; β); γ using Lemma 4.

∗

Γ ` [α][β][γ]φ↔ [α][β][γ]φ,∆
refl

Γ ` [α][(β; γ)]φ↔ [(α; β)][γ]φ,∆
[;]

Γ ` [α; (β; γ)]φ↔ [(α; β); γ]φ,∆
[;]

�

B.2.5 Soundness of (;id−l)

Γ ` (?>;α) = α,∆
(;id−l)

Proof. We show that (?>;α) = α using Lemma 4.

∗

Γ ` (> → [α]φ)↔ [α]φ,∆
refl

Γ ` [?>][α]φ↔ [α]φ,∆
[?]

Γ ` [?>;α]φ↔ [α]φ,∆
[;]

�

The proof of soundness for (;id−r) follows similarly.

B.2.6 Soundness of (dist-l)

Γ ` α; (β ∪ γ) =
(
(α; β) ∪ (α; γ)

)
,∆

(dist-l)

Proof. We show that α; (β ∪ γ) =
(
(α; β) ∪ (α; γ)

)
using Lemma 4.

∗

Γ ` [α][β]φ ∧ [α][γ]φ↔ [α][β]φ ∧ [α][γ]φ,∆
refl

Γ ` [α]([β]φ ∧ [γ]φ)↔ [α][β]φ ∧ [α][γ]φ,∆
[] split

Γ ` [α][β ∪ γ]φ↔ [α; β]φ ∧ [α; γ]φ,∆
[∪], [;]

Γ ` [α; (β ∪ γ)]φ↔ [
(
(α; β) ∪ (α; γ)

)
]φ,∆

[;], [∪]

�

The proof of soundness for (dist-r) follows similarly.

B.2.7 Soundness of (;annih−r)

Γ ` α; ?⊥ =?⊥,∆
(;annih−r)

Proof. We show that α; ?⊥ =?⊥ using Lemma 4.

∗

Γ ` [α]>,∆
[]gen

Γ ` [α](⊥ → φ)↔ (⊥ → φ),∆
→,↔

Γ ` [α][?⊥]φ↔ [?⊥]φ,∆
[?]

Γ ` [α; ?⊥]φ↔ [?⊥]φ,∆
[;]

�

The proof of soundness for (;annih−l) follows similarly.

B.2.8 Soundness of (unrolll)

Γ ` (?> ∪ (α;α∗)) = α∗,∆
(unrolll)

Proof. We show that (?> ∪ (α;α∗)) = α∗ using Lemma 4.

∗

Γ ` (φ ∧ [α;α∗]φ)↔ (φ ∧ [α;α∗]φ),∆
refl

Γ ` ((> → φ) ∧ [α;α∗]φ)↔ (φ ∧ [α;α∗]φ),∆
→

Γ ` ([?>]φ ∧ [α;α∗]φ)↔ (φ ∧ [α;α∗]φ),∆
[?]

Γ ` [(?> ∪ (α;α∗))]φ↔ [α∗]φ,∆
[∪], [∗n]

�

Proof. We show that (α; ?T) = α using Lemma 4.

∗

Γ ` (φ ∧ [α;α∗]φ)↔ (φ ∧ [α;α∗]φ),∆
refl

Γ ` ((> → φ) ∧ [α;α∗]φ)↔ (φ ∧ [α;α∗]φ),∆
→

Γ ` ([?>]φ ∧ [α;α∗]φ)↔ (φ ∧ [α;α∗]φ),∆
[?]

Γ ` [(?> ∪ (α;α∗))]φ↔ [α∗]φ,∆
[∪], [∗n]

�

B.2.9 Soundness of (∪id)

Γ ` α∪ ?⊥ = α,∆
(∪id)

Proof. We show that α∪ ?⊥ = α using Lemma 4.

∗

Γ, ([α]φ ∧ [?⊥]φ) ` [α]φ,∆
∧l, ax

∗

Γ, [α]φ ` [α]φ,∆
ax

∗

Γ, [α]φ,⊥ ` φ,∆
⊥l

Γ, [α]φ ` [?⊥]φ,∆
[?],→r

Γ, [α]φ ` ([α]φ ∧ [?⊥]φ),∆
∧r

Γ ` ([α]φ ∧ [?⊥]φ)↔ [α]φ,∆
∧r ,←r ,→r

Γ ` [α∪ ?⊥]φ↔ [α]φ,∆
[∪]

�

C. dL Calculus
The relevant dL axioms [22] and derived rules used in this paper
are summarized in Fig. 8.

[:=] [x := θ]φ(x)↔ φ(θ)

[?] [?φ]φ↔ (φ→ φ)

[′] [x′ = θ]φ↔ ∀t≥0 [x := y(t)]φ (y′(t) = θ)

[&]
[x′ = θ& φ]φ
↔ ∀t0=x0 [x′ = θ]

(
[x′ = −θ](x0 ≥ t0 → φ)→ φ

)
[∪] [α ∪ β]φ↔ [α]φ ∧ [β]φ

[;] [α; β]φ↔ [α][β]φ

[∗n] [α∗]φ↔ φ ∧ [α][α∗]φ

K [α](φ→ ψ)→ ([α]φ→ [α]ψ)

I [α∗](φ→ [α]φ)→ (φ→ [α∗]φ)

V φ→ [α]φ (FV(φ) ∩ BV(α) = ∅)

[] split [α](φ ∧ ψ)↔ [α]φ ∧ [α]ψ

[]gen
Γ ` ∀αφ,∆

Γ ` [α]φ,∆

∀
φ

∀x φ

Figure 8: Differential dynamic logic axiomatization

	1 Introduction
	2 Syntax
	3 Semantics
	4 Proof Calculus
	5 Examples
	6 Time-Triggered Refines Event-Triggered
	6.1 Event-Triggered Model
	6.2 Time-triggered Model
	6.3 Proof of Refinement
	6.4 Case Study: Local Lane Control

	7 Relating Differential Refinement Logic
	8 Related Work
	9 Conclusion and Future Work
	A ex:DRDCexample - continued
	B Soundness Proofs
	B.1 Semantic Proofs of Soundness
	B.1.1 Soundness of (refl)
	B.1.2 Soundness of (trans)
	B.1.3 Soundness of (antisym)
	B.1.4 Soundness of (;)
	B.1.5 Soundness of (unloop)
	B.1.6 Soundness of (?)
	B.1.7 Soundness of (l)
	B.1.8 Soundness of (r)
	B.1.9 Soundness of (:=*)
	B.1.10 Soundness of (loopl)
	B.1.11 Soundness of (loopr)
	B.1.12 Soundness of []
	B.1.13 Soundness of "426830A "526930B
	B.1.14 Soundness of (DC)
	B.1.15 Soundness of (DR)
	B.1.16 Soundness of (MDF)

	B.2 Equivalence Proofs from Axioms
	B.2.1 Soundness of (assoc)
	B.2.2 Soundness of (comm)
	B.2.3 Soundness of (idemp)
	B.2.4 Soundness of (;assoc)
	B.2.5 Soundness of (;id-l)
	B.2.6 Soundness of (dist-l)
	B.2.7 Soundness of (;annih-r)
	B.2.8 Soundness of (unrolll)
	B.2.9 Soundness of (id)

	C Calculus

