
1

Sarah M. Loos and André Platzer

Computer Science Department
Carnegie Mellon University

Differential Refinement Logic

2

Verified Cyber-Physical Systems

[FM11]

3 [FM11, HSCC13]

x!i"

x! j"

p x!k"

x!l"

x!m"

Verified Cyber-Physical Systems

4 [FM11, ITSC11, ICCPS12, HSCC13, ITSC13]

x!i"

x! j"

p x!k"

x!l"

x!m"

Verified Cyber-Physical Systems

5

↵ �
Differential Refinement Logic (dRL)

Time-triggered vs.
Event-triggered

Verified Car
Control

Roadmap

time⇤ event⇤

Proof Calculus

6

↵ �
Differential Refinement Logic (dRL)

Time-triggered vs.
Event-triggered

Verified Car
Control

Roadmap

time⇤ event⇤

Proof Calculus

7

Refinement Relation

↵ �

8

Refinement Relation

↵ �

�
(?�; a := ⇤ [a := �B);x00 = a

�⇤ �

�
(?�; a := ✓ [a := �B);x00 = a &

�⇤

9

Refinement Relation

↵ �

�
(?�; a := ⇤ [a := �B);x00 = a

�⇤

�
(?�; a := ✓ [a := �B);x00 = a &

�⇤

10

Refinement Relation

↵ �

�
(?�; a := ⇤ [a := �B);x00 = a

�⇤

�
(?�; a := ✓ [a := �B);x00 = a &

�⇤

11

Refinement Relation

↵ �

�
(?�; a := ⇤ [a := �B);x00 = a

�⇤

�
(?�; a := ✓ [a := �B);x00 = a &

�⇤

12

Refinement Relation

↵ �

�
(?�; a := ⇤ [a := �B);x00 = a

�⇤

�
(?�; a := ✓ [a := �B);x00 = a &

�⇤

↵ �

13

Syntax of a dRL formula:

�, ::= ✓1 ✓2 | ¬� | � ^ | 8x� | [↵]� | h↵i� | ↵ �FOLR

So, what does dRL look like exactly?

14

Syntax of a dRL formula:

�, ::= ✓1 ✓2 | ¬� | � ^ | 8x� | [↵]� | h↵i� | ↵ �

�, ::= ✓1 ✓2 | ¬� | � ^ | 8x� | [↵]� | h↵i� | ↵ �

So, what does dRL look like exactly?

dL

15

Syntax of a dRL formula:

�, ::= ✓1 ✓2 | ¬� | � ^ | 8x� | [↵]� | h↵i� | ↵ �

�, ::= ✓1 ✓2 | ¬� | � ^ | 8x� | [↵]� | h↵i� | ↵ �

�, ::= ✓1 ✓2 | ¬� | � ^ | 8x� | [↵]� | h↵i� | ↵ � + refinement

So, what does dRL look like exactly?

16

Syntax of a dRL formula:

Syntax of a hybrid program:

�, ::= ✓1 ✓2 | ¬� | � ^ | 8x� | [↵]� | h↵i� | ↵ �

�, ::= ✓1 ✓2 | ¬� | � ^ | 8x� | [↵]� | h↵i� | ↵ �

�, ::= ✓1 ✓2 | ¬� | � ^ | 8x� | [↵]� | h↵i� | ↵ �

So, what does dRL look like exactly?

17

Syntax of a dRL formula:

Syntax of a hybrid program:

�, ::= ✓1 ✓2 | ¬� | � ^ | 8x� | [↵]� | h↵i� | ↵ �

�, ::= ✓1 ✓2 | ¬� | � ^ | 8x� | [↵]� | h↵i� | ↵ �

�, ::= ✓1 ✓2 | ¬� | � ^ | 8x� | [↵]� | h↵i� | ↵ �

↵,� ::= x := ✓ | x0 = ✓ & | ? | ↵ [� | ↵;� | ↵⇤
↵,� ::= x := ✓ | x0 = ✓ & | ? | ↵ [� | ↵;� | ↵⇤

So, what does dRL look like exactly?

18

Syntax of a dRL formula:

Syntax of a hybrid program:

�, ::= ✓1 ✓2 | ¬� | � ^ | 8x� | [↵]� | h↵i� | ↵ �

�, ::= ✓1 ✓2 | ¬� | � ^ | 8x� | [↵]� | h↵i� | ↵ �

�, ::= ✓1 ✓2 | ¬� | � ^ | 8x� | [↵]� | h↵i� | ↵ �

↵,� ::= x := ✓ | x0 = ✓ & | ? | ↵ [� | ↵;� | ↵⇤
↵,� ::= x := ✓ | x0 = ✓ & | ? | ↵ [� | ↵;� | ↵⇤

So, what does dRL look like exactly?

dRL extends by adding
refinement directly into the
grammar of formulas

19

Hybrid Programs model cyber-physical systems

v w↵

Semantics of hybrid programs

⇢(↵) = {(v, w) : when starting in state and
then following transitions of ,
state can be reached.

v
↵

w }

[Platzer08]

20

Semantics of hybrid programs

[Platzer08]

v w⇢(x := ✓) = {(v, w) : w = v except [[x]]w = [[✓]]v}iff except for
the value of

v = w
⇢(x := ✓) = {(v, w) : w = v except [[x]]w = [[✓]]v}

21

Semantics of hybrid programs

[Platzer08]

v w⇢(x := ✓) = {(v, w) : w = v except [[x]]w = [[✓]]v}iff except for
the value of

v = w
⇢(x := ✓) = {(v, w) : w = v except [[x]]w = [[✓]]v}

v
? Iff holds in state v |= v

22

Semantics of hybrid programs

[Platzer08]

v w⇢(x := ✓) = {(v, w) : w = v except [[x]]w = [[✓]]v}iff except for
the value of

v = w
⇢(x := ✓) = {(v, w) : w = v except [[x]]w = [[✓]]v}

v
? Iff holds in state v |= v

v w
x

0 = ✓

x := y(t)

If solves y(t) x

0 = ✓

23

Semantics of hybrid programs

[Platzer08]

v w⇢(x := ✓) = {(v, w) : w = v except [[x]]w = [[✓]]v}iff except for
the value of

v = w
⇢(x := ✓) = {(v, w) : w = v except [[x]]w = [[✓]]v}

v
? Iff holds in state v |= v

v w
x

0 = ✓

x := y(t)

If solves y(t) x

0 = ✓

v wu
↵ �

↵;�

24

Semantics of hybrid programs

[Platzer08]

v w⇢(x := ✓) = {(v, w) : w = v except [[x]]w = [[✓]]v}iff except for
the value of

v = w
⇢(x := ✓) = {(v, w) : w = v except [[x]]w = [[✓]]v}

v
? Iff holds in state v |= v

v w
x

0 = ✓

x := y(t)

If solves y(t) x

0 = ✓

v wu
↵ �

↵;�

Etc…

25

Semantics of box modality

v |= [↵]�

Box Modality:

26

v

w1

w2

w3

v |= [↵]�

Box Modality:

�

�

Semantics of box modality

↵

hi

↵

hi

27

Refinement Relation:

v |= ↵ �

Semantics of refinement

28

v

w1

w2

w3

Refinement Relation:

v |= ↵ �

Semantics of refinement

↵

hi

↵

hi

29

v

w1

w2

w3

Refinement Relation:

v |= ↵ �

v |= ↵ �
v |= ↵ �

v |= ↵ �

Semantics of refinement

↵

hi

↵

hi

30

v

w1

w2

w3

Refinement Relation:

v |= ↵ �

v |= ↵ �
v |= ↵ �

v |= ↵ �

Semantics of refinement

↵

hi

↵

hi

31

↵ �
Differential Refinement Logic (dRL)

Time-triggered vs.
Event-triggered

Verified Car
Control

Roadmap

time⇤ event⇤

Proof Calculus

32

↵ �
Differential Refinement Logic (dRL)

Time-triggered vs.
Event-triggered

Verified Car
Control

Roadmap

time⇤ event⇤

Proof Calculus

33

Combining refinement and box modality

34

Combining refinement and box modality

v

v |= G, v 6|= D

for all G 2 �, D 2 �

35

v

w1

w2

w3

Combining refinement and box modality

v |= G, v 6|= D

for all G 2 �, D 2 �

↵

hi

↵

hi

36

v

w1

w2

w3

v |= ↵ �
v |= ↵ �

v |= ↵ �

Combining refinement and box modality

v |= G, v 6|= D

for all G 2 �, D 2 �

↵

hi

↵

hi

37

v

w1

w2

w3

v |= ↵ �
v |= ↵ �

v |= ↵ �

Combining refinement and box modality

v |= G, v 6|= D

for all G 2 �, D 2 �

↵

hi

↵

hi

38

v

w1

w2

w3

v |= ↵ �
v |= ↵ �

v |= ↵ �

Combining refinement and box modality

�

�

�v |= G, v 6|= D

for all G 2 �, D 2 �

↵

hi

↵

hi

39

v

w1

w2

w3

v |= ↵ �
v |= ↵ �

v |= ↵ �

�

�

Combining refinement and box modality

v |= G, v 6|= D

for all G 2 �, D 2 �

�

↵

hi

↵

hi

40

v w

Sequential Composition

↵1;�1

41

v w

Sequential Composition

↵1;�1

hi ↵2;�2?

42

v w

Sequential Composition

↵1;�1

43

v wu

Sequential Composition

↵1;�1

↵1 �1

44

v wu

Sequential Composition

↵1;�1

↵1 �1

↵2

45

v wu

Sequential Composition

↵1;�1

↵1 �1

↵2 �2?

46

v wu

Sequential Composition

↵1;�1

↵1 �1

↵2 �2✗

47

v wu

Sequential Composition

↵1;�1

↵1 �1

↵2 �2

48

v wu

Sequential Composition

↵1;�1

↵1 �1

↵2 �2

49

v wu

Sequential Composition

↵1;�1

↵1 �1

↵2 �2

hi ↵2;�2

50

Differential Equations

?
(x0 = 1) (x0 = 9)

51

Differential Equations

x 2 [x0,1)

?
(x0 = 1) (x0 = 9)

52

Differential Equations

x 2 [x0,1) x 2 [x0,1)

?
(x0 = 1) (x0 = 9)

53

Differential Equations

x 2 [x0,1) x 2 [x0,1)

?
(x0 = 1) (x0 = 9)(x0 = 1) (x0 = 9)

54

Differential Equations

55

Differential Equations

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

56

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Differential Equations

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

=

57

Differential Equations

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

58

↵ �
Differential Refinement Logic (dRL)

Time-triggered vs.
Event-triggered

Verified Car
Control

Roadmap

time⇤ event⇤

Proof Calculus

59

↵ �
Differential Refinement Logic (dRL)

Time-triggered vs.
Event-triggered

Verified Car
Control

Roadmap

time⇤ event⇤

Proof Calculus

60

Two Modeling Paradigms

Time-triggered

!  Discrete sensing

Event-triggered

!  Continuous sensing

61

Two Modeling Paradigms

Time-triggered

!  Discrete sensing

Event-triggered

!  Continuous sensing

62

Two Modeling Paradigms

Time-triggered

!  Discrete sensing
!  Realistic, easy to implement
!  Difficult to design controllers
!  Challenging to verify

Event-triggered

!  Continuous sensing
!  Unrealistic, hard to implement
!  Easier to design controllers
!  Easier to verify

63

Two Modeling Paradigms

Time-triggered

!  Discrete sensing
!  Realistic, easy to implement
!  Difficult to design controllers
!  Challenging to verify

Event-triggered

!  Continuous sensing
!  Unrealistic, hard to implement
!  Easier to design controllers
!  Easier to verify

↵ �

64

↵ �
Differential Refinement Logic (dRL)

Time-triggered vs.
Event-triggered

Verified Car
Control

Roadmap

time⇤ event⇤

Proof Calculus

65

↵ �
Differential Refinement Logic (dRL)

Time-triggered vs.
Event-triggered

Verified Car
Control

Roadmap

time⇤ event⇤

Proof Calculus

66

Local Lane Control using Refinement

Time-triggered [FM11]

Event-triggered

Controllers satisfy
refinement
“Brake” for epsilon time

“Accelerate” for epsilon
time

Time-triggered (dRL)

67

Contributions
Differential Refinement Logic

! Maintains a modular and hierarchical proof structure
! Abstracts implementation-specific designs
! Leverages iterative system design
! Prove time-triggered model refines event-triggered
! Encouraging evidence of reduced user interaction and

computation time

68

Appendix

69

We have proved that the refinement relation can be
embedded in dL. As a result, dL and dRL are equivalent in
terms of expressibility and provability.

Comparing dRL and dL

However, we can analyze dRL on familiar (challenging) case
studies. We can consider:

• Number of proof steps
• Computation time
• Qualitative difficulty to complete proof
• Proof structure

70

Semantics of hybrid programs

[Platzer08]

⇢(x := ✓) = {(v, w) : w = v except [[x]]w = [[✓]]v}⇢(x := ✓) = {(v, w) : w = v except [[x]]w = [[✓]]v}

v w⇢(x := ✓) = {(v, w) : w = v except [[x]]w = [[✓]]v}iff except for
the value of

v = w
⇢(x := ✓) = {(v, w) : w = v except [[x]]w = [[✓]]v}

v
? Iff holds in state v |= v

v w
x

0 = ✓

x := y(t)

⇢(x

0
= ✓) = {('(0),'(t)) : '(s) |= x

0
= ✓ for all 0 s t}

⇢(?) = {(v, v) : v |= }⇢(?) = {(v, v) : v |= }

If solves y(t) x

0 = ✓

71

Semantics of hybrid programs

[Platzer08]

v wu
↵ �

↵;�

⇢(↵;�) = {(v, w) : (v, u) 2 ⇢(↵), (u,w) 2 ⇢(�)}⇢(↵;�) = {(v, w) : (v, u) 2 ⇢(↵), (u,w) 2 ⇢(�)}

72

Combining refinement and diamond modality

73

Nondeterministic Assignment

74

⇢(x := ✓) = {(v, w) : w = v except [[x]]w = [[✓]]v}vJ✓Kv
x

hi

vJ✓Kv
x

hi

Nondeterministic Assignment

75

x := ⇤
hi

⇢(x := ✓) = {(v, w) : w = v except [[x]]w = [[✓]]v}vJ✓Kv
x

hi

vJ✓Kv
x

hi

vJ✓Kv
x

hi

vd1
x

hi

x := ⇤
hi

x

:=
⇤
hi

vd2
x

hi

vd3
x

hi

Nondeterministic Assignment

76

x := ⇤
hi

⇢(x := ✓) = {(v, w) : w = v except [[x]]w = [[✓]]v}vJ✓Kv
x

hi

vJ✓Kv
x

hi

vJ✓Kv
x

hi

vd1
x

hi

x := ⇤
hi

x

:=
⇤
hi

vd2
x

hi

vd3
x

hi

Nondeterministic Assignment

77

v w
↵ … ↵

↵⇤

Nondeterministic Repetition

↵

78

v w
↵ … ↵

↵⇤

Nondeterministic Repetition

↵

�

79

v w
↵ … ↵

↵⇤

Nondeterministic Repetition

↵

� �?

80

v w
↵ … ↵

↵⇤

Nondeterministic Repetition

↵

� �?

81

v w
↵ … ↵

↵⇤

Nondeterministic Repetition

↵

� �

82

v w
↵ … ↵

↵⇤

Nondeterministic Repetition

↵

� � �?

83

v w
↵ … ↵

↵⇤

Nondeterministic Repetition

↵

� � �?

84

v w
↵ … ↵

↵⇤

Nondeterministic Repetition

↵

� � �

85

v w
↵ … ↵

↵⇤

Nondeterministic Repetition

↵

� � �

�⇤

86

Nondeterministic Repetition (KAT style)

87

Nondeterministic Repetition (KAT style)

…
v w1 w2 w3 w4

�↵

hi

↵

hi

88

Nondeterministic Repetition (KAT style)

…
v w1 w2 w3 w4

�↵

hi

↵

hi

89

Nondeterministic Repetition (KAT style)

…
v w1 w2 w3 w4

�↵

hi

↵

hi

90

Nondeterministic Repetition (KAT style)

…
v w1 w2 w3 w4

�↵

hi

↵

hi �?

91

Nondeterministic Repetition (KAT style)

…
v w1 w2 w3 w4

�↵

hi

↵

hi �?

92

Nondeterministic Repetition (KAT style)

…
v w1 w2 w3 w4

�↵

hi

↵

hi �

93

Nondeterministic Repetition (KAT style)

…
v w1 w2 w3 w4

�↵

hi

↵

hi ��?

94

Nondeterministic Repetition (KAT style)

…
v w1 w2 w3 w4

�↵

hi

↵

hi ��?

95

Nondeterministic Repetition (KAT style)

…
v w1 w2 w3 w4

�↵

hi

↵

hi ��?

96

Nondeterministic Repetition (KAT style)

…
v w1 w2 w3 w4

�↵

hi

↵

hi ��

97

Nondeterministic Repetition (KAT style)

…
v w1 w2 w3 w4

�↵

hi

↵

hi ��� …

98

Nondeterministic Repetition (KAT style)

…
v w1 w2 w3 w4

�↵

hi

↵

hi ��� � …

99

Nondeterministic Repetition (KAT style)

�v w1
…

w2 w3 w4
↵

hi

↵

hi

100

Nondeterministic Repetition (KAT style)

�

� �

…
v

�

w1 w2 w3 w4

�…

↵

hi

↵

hi

101

Proof Tree

102

Proof Tree

H(x) ^ I ` [event⇤]� H(x) ^ I ` time⇤ event⇤

H(x) ^ I ` [time⇤]�
([])H(x) ^ I ` [event⇤]� H(x) ^ I ` time⇤ event⇤

H(x) ^ I ` [time⇤]�
[]

103

Proof Tree

H(x) ^ I ` [event⇤]� H(x) ^ I ` time⇤ event⇤

H(x) ^ I ` [time⇤]�
([])

104
H(x) ^ I ` [event⇤]� H(x) ^ I ` time⇤ event⇤

H(x) ^ I ` [time⇤]�
([])

✓
✓

✓

✓

✓ ✓ ✓
✓

Proof Tree

105
H(x) ^ I ` [event⇤]� H(x) ^ I ` time⇤ event⇤

H(x) ^ I ` [time⇤]�
([])

✓
✓

✓

✓

✓ ✓ ✓
✓

Proof Tree
Open goals

106

Time-triggered is safe

Event-triggered is safe

H(x) ^ I ` [event⇤]� H(x) ^ I ` time⇤ event⇤

H(x) ^ I ` [time⇤]�
([])

Controllers satisfy refinement
 ` Safe" ! Safe

“Braking” is safe for time

“Accelerating” is safe for time
 Safe"(Sa(0)) ^ 0 t " ` H(Sa(t))

"

hi

"

hiH(Sc(0)) ^ 0 t " ` H(Sc(t))

H(x) ^ I ` [event⇤]� H(x) ^ I ` time⇤ event⇤

H(x) ^ I ` [time⇤]�
([])

✓
✓

✓

✓

✓ ✓ ✓
✓

Open goals
Proof Tree

107

Time-triggered is safe

Event-triggered is safe

H(x) ^ I ` [event⇤]� H(x) ^ I ` time⇤ event⇤

H(x) ^ I ` [time⇤]�
([])

Controllers satisfy refinement
 ` Safe" ! Safe

“Braking” is safe for time

“Accelerating” is safe for time
 Safe"(Sa(0)) ^ 0 t " ` H(Sa(t))

"

hi

"

hi

Proof Tree

dL

H(Sc(0)) ^ 0 t " ` H(Sc(t))

108

Time-triggered is safe

H(x) ^ I ` [event⇤]� H(x) ^ I ` time⇤ event⇤

H(x) ^ I ` [time⇤]�
([])

Controllers satisfy refinement
 ` Safe" ! Safe

“Braking” is safe for time

“Accelerating” is safe for time
 Safe"(Sa(0)) ^ 0 t " ` H(Sa(t))

"

hi

"

hi

Proof Tree

FOLR

FOLR

Event-triggered is safe

dL

H(Sc(0)) ^ 0 t " ` H(Sc(t))

FOLR

109

dRL Proof Rules: Partial Order

Reflexive: Transitive:

Antisymmetric:

110

dRL Proof Rules: KAT

111

dRL Proof Rules: Differential Equations

112

dRL Proof Rules: Structural

113

v
? Iff holds in state v |= v

⇢(?) = {(v, v) : v |= }⇢(?) = {(v, v) : v |= }

Test

114

v w
x

0 = ✓

x := y(t)

⇢(x

0
= ✓) = {('(0),'(t)) : '(s) |= x

0
= ✓ for all 0 s t}

If solves y(t) x

0 = ✓

Differential Refinement

115

dRL Proof Rules: Differential Equations

v w
x

0 = ✓

x := y(t)

116

Kleene Algebra with Tests (KAT)

[Kozen97]

!  Kleene algebra with tests is a system for
manipulating programs that are equivalent.

!  KAT doesn’t have continuous dynamics, but we can
see that it is still relevant to hybrid programs

117

Verifying a specific local lane controller

118

Verifying a specific local lane controller

119

!  Designing proof search heuristics that exploit
refinement to automatically create more hierarchical
proof structures.

!  Shifting the proof responsibility completely to
determining refinement.

!  Code synthesis – verifying that refinement relation is
satisfied with each transformation step.

Additional dRL applications

120

Event-triggered vs. Time-triggered
Event-triggered Time-triggered

!  Continuous sensing
!  Unrealistic, hard to implement
!  Easier to design controllers
!  Easier to verify

!  Discrete sensing
!  Realistic, easy to implement
!  Difficult to design controllers
!  Challenging to verify

(ctrl; dyn)⇤

discrete
controller

continuous
dynamics

121

Event-triggered vs. Time-triggered
Event-triggered Time-triggered

!  Continuous sensing
!  Unrealistic, hard to implement
!  Easier to design controllers
!  Easier to verify

!  Discrete sensing
!  Realistic, easy to implement
!  Difficult to design controllers
!  Challenging to verify

(ctrl; x

0 = ✓)⇤

discrete
controller

continuous
dynamics

122

Event-triggered vs. Time-triggered
Event-triggered Time-triggered

!  Continuous sensing
!  Unrealistic, hard to implement
!  Easier to design controllers
!  Easier to verify

!  Discrete sensing
!  Realistic, easy to implement
!  Difficult to design controllers
!  Challenging to verify

discrete
controller

continuous
dynamics

(ctrl; x0 = ✓&H)⇤

123

Event-triggered vs. Time-triggered
Event-triggered Time-triggered

!  Continuous sensing
!  Unrealistic, hard to implement
!  Easier to design controllers
!  Easier to verify

!  Discrete sensing
!  Realistic, easy to implement
!  Difficult to design controllers
!  Challenging to verify

discrete
controller

?

(ctrl; x0 = ✓&H)⇤

124

Event-triggered vs. Time-triggered
Event-triggered Time-triggered

!  Continuous sensing
!  Unrealistic, hard to implement
!  Easier to design controllers
!  Easier to verify

!  Discrete sensing
!  Realistic, easy to implement
!  Difficult to design controllers
!  Challenging to verify

discrete
controller

?

(ctrlt;x
0 = ✓& t ")⇤(ctrlt;x
0 = ✓& t ")⇤

125

Event-triggered vs. Time-triggered
Event-triggered Time-triggered

!  Continuous sensing
!  Unrealistic, hard to implement
!  Easier to design controllers
!  Easier to verify

!  Discrete sensing
!  Realistic, easy to implement
!  Difficult to design controllers
!  Challenging to verify

(ctrlt;x
0 = ✓& t ")⇤

(ctrlt;x
0 = ✓& t ")⇤

126

Event-triggered vs. Time-triggered
Event-triggered Time-triggered

!  Continuous sensing
!  Unrealistic, hard to implement
!  Easier to design controllers
!  Easier to verify

!  Discrete sensing
!  Realistic, easy to implement
!  Difficult to design controllers
!  Challenging to verify

(ctrle; x

0 = ✓&x+
v

2

2B
 S)⇤

(ctrle; x

0 = ✓&x+ 10 S)⇤

(ctrle; x

0 = ✓&x+
v

2

2B
 S)⇤

(ctrle; x

0 = ✓&x+ 10 S)⇤

(ctrlt;x
0 = ✓& t ")⇤

(ctrlt;x
0 = ✓& t ")⇤

127

Event-triggered vs. Time-triggered
Event-triggered Time-triggered

!  Continuous sensing

!  Discrete sensing

(ctrle; x

0 = ✓&x+
v

2

2B
 S)⇤

(ctrle; x

0 = ✓&x+ 10 S)⇤

(ctrle; x

0 = ✓&x+
v

2

2B
 S)⇤

(ctrle; x

0 = ✓&x+ 10 S)⇤

(ctrlt;x
0 = ✓& t ")⇤

(ctrlt;x
0 = ✓& t ")⇤

128

Event-triggered vs. Time-triggered
Event-triggered Time-triggered

!  Continuous sensing

!  Discrete sensing

(ctrle; x

0 = ✓&x+
v

2

2B
 S)⇤

(ctrle; x

0 = ✓&x+ 10 S)⇤

(ctrle; x

0 = ✓&x+
v

2

2B
 S)⇤

(ctrle; x

0 = ✓&x+ 10 S)⇤

(ctrlt;x
0 = ✓& t ")⇤

(ctrlt;x
0 = ✓& t ")⇤

(ctrle; x

0 = ✓&x+
v

2

2B
 S)⇤

(ctrle; x

0 = ✓&x+ 10 S)⇤

129

Event-triggered vs. Time-triggered
Event-triggered Time-triggered

!  Continuous sensing

!  Discrete sensing

(ctrle; x

0 = ✓&x+
v

2

2B
 S)⇤

(ctrle; x

0 = ✓&x+ 10 S)⇤

(ctrle; x

0 = ✓&x+
v

2

2B
 S)⇤

(ctrle; x

0 = ✓&x+ 10 S)⇤

(ctrlt;x
0 = ✓& t ")⇤

(ctrlt;x
0 = ✓& t ")⇤

(ctrle; x

0 = ✓&x+
v

2

2B
 S)⇤

(ctrle; x

0 = ✓&x+ 10 S)⇤

(ctrlt;x
0 = ✓& t ")⇤

130

Event-triggered vs. Time-triggered
Event-triggered Time-triggered

!  Continuous sensing

!  Discrete sensing

(ctrle; x

0 = ✓&x+
v

2

2B
 S)⇤

(ctrle; x

0 = ✓&x+ 10 S)⇤

(ctrle; x

0 = ✓&x+
v

2

2B
 S)⇤

(ctrle; x

0 = ✓&x+ 10 S)⇤

(ctrlt;x
0 = ✓& t ")⇤

(ctrlt;x
0 = ✓& t ")⇤

(ctrle; x

0 = ✓&x+
v

2

2B
 S)⇤

(ctrle; x

0 = ✓&x+ 10 S)⇤

(ctrlt;x
0 = ✓& t ")⇤

131

Event-triggered vs. Time-triggered
Event-triggered Time-triggered

!  Continuous sensing

!  Discrete sensing

(ctrle; x

0 = ✓&x+
v

2

2B
 S)⇤

(ctrle; x

0 = ✓&x+ 10 S)⇤

(ctrle; x

0 = ✓&x+
v

2

2B
 S)⇤

(ctrle; x

0 = ✓&x+ 10 S)⇤

(ctrlt;x
0 = ✓& t ")⇤

(ctrlt;x
0 = ✓& t ")⇤

(ctrle; x

0 = ✓&x+
v

2

2B
 S)⇤

(ctrle; x

0 = ✓&x+ 10 S)⇤

(ctrlt;x
0 = ✓& t ")⇤

132

Event-triggered vs. Time-triggered

event-triggered time-triggered

(ctrle;x
0 = ✓&E(x))⇤

((?Safe; a := ⇤) [a := c;

(ctrlt;x
0 = ✓& t ")⇤

((?Safe"; a := ⇤) [a := c;

133

dRL Proof Rules: Independence

134

Motivation: Adaptive Cruise Control

135

Motivation: Adaptive Cruise Control

Low	packet	loss,	small	margin	for	error.	

✗
✔

136

Motivation: Adaptive Cruise Control

✔
✗

Low	packet	loss,	small	margin	for	error.	

High	packet	loss,	large	margin	for	error.	

✗
✔

137

Efficiency Analysis of ACC

0 1 2 3 4 5 6 7 8 9 10
0.4

0.5

0.6

0.7

0.8

0.9

1

Timeout T (seconds)

E
ffi
c
ie
n
c
y

Controlle r effic iency Effa f

Recept ion probability Effre c

Overall effiency Eff

E�(T) =
1

S

ZZZ
af (vf , vl, D, T) � Pr(t <= T) dD dvl dvf

E�af (T) =
1

S

ZZZ
af (vf , vl, D, T) dD dvl dvf

E�assist(T) =
1

S

ZZZ
Pr(t <= T) dD dvl dvf

E�(T) =
1

S

ZZZ
af (vf , vl, D, T) � Pr(t <= T) dD dvl dvf

E�af (T) =
1

S

ZZZ
af (vf , vl, D, T) dD dvl dvf

E�assist(T) =
1

S

ZZZ
Pr(t <= T) dD dvl dvf

E�(T) =
1

S

ZZZ
af (vf , vl, D, T) � Pr(t <= T) dD dvl dvf

E�af (T) =
1

S

ZZZ
af (vf , vl, D, T) dD dvl dvf

E�assist(T) =
1

S

ZZZ
Pr(t <= T) dD dvl dvf

138

Modular Proof for Distributed Aircraft

8i 6= j : A kx(i)� x(j)k � p

8i 6= j : A kx(i)� x(j)k � p

To Prove:
Safe separation of aircraft.

xHiL
xH jL
p xHkL

xHiL

xHmL

xHiL
xH jL
p xHkL

xHiL

xHmL

xHiL
xH jL
p xHkL

xHiL

xHmL
dHiL

dH jL
p =)

xHiL
xH jL
p xHkL

xHiL

xHmL =)8i 6= j : A
kd(i)� d(j)k � 4r + p^ 8i 6= j : A

kd(i)� d(j)k � 2r + p
8i : A

kx(i)� d(i)k r

8i : A
kx(i)� d(i)k r

^

139

“How can we provide people with cyber-physical
 systems they can bet their lives on?”

 -- Jeanette Wing

140

Differential Dynamic Logic: Axiomatization

[:=] [x := ✓]�(x) $ �(✓)

[Platzer08]

141

↵ �
Differential Refinement Logic (dRL)
 - Proof rules

- Examples

Time-triggered vs.
Event-triggered

event⇤

time⇤

Verified Car
Control

Roadmap

Iterative System
Design

						?Event ?Time

x := ⇤;
x := ⇤;

x := ✓

142

↵ �
Differential Refinement Logic (dRL)
 - Proof rules

- Examples

Time-triggered vs.
Event-triggered

event⇤

time⇤

Verified Car
Control

Roadmap

Iterative System
Design

						?Event ?Time

x := ⇤;
x := ⇤;

x := ✓

143

Verifying a specific local lane controller

144

Verifying a specific local lane controller

safe✓ ⌘ af := Kp

(xl � xf) �

⇣
v

2

2b
�

v

2

2b
+ (

A

b

+ 1)(
A

2
"

2 + "v)
⌘!

+ Ki(z) + Kd(vl � vf)

safe✓ ⌘ af := Kp

(xl � xf) �

⇣
v

2

2b
�

v

2

2b
+ (

A

b

+ 1)(
A

2
"

2 + "v)
⌘!

+ Ki(z) + Kd(vl � vf)

safe✓ ⌘ af := Kp

(xl � xf) �

⇣
v

2

2b
�

v

2

2b
+ (

A

b

+ 1)(
A

2
"

2 + "v)
⌘!

+ Ki(z) + Kd(vl � vf)

145

Verifying a specific local lane controller

safe✓ ⌘ af := Kp

(xl � xf) �

⇣
v

2

2b
�

v

2

2b
+ (

A

b

+ 1)(
A

2
"

2 + "v)
⌘!

+ Ki(z) + Kd(vl � vf)

af := ✓

146

Verifying a specific local lane controller

safe✓ ⌘ af := ✓

147

Verifying a specific local lane controller

�B ✓ A (✓ > �b) ! Safe"

safe✓ ⌘ af := ✓

148

↵ �
Differential Refinement Logic (dRL)
 - Proof rules

- Examples

Time-triggered vs.
Event-triggered

event⇤

time⇤

Verified Car
Control

Roadmap

Iterative System
Design

						?Event ?Time

x := ⇤;
x := ⇤;

x := ✓

149

How Can We Prove Distributed Airspace?

150

How Can We Prove Distributed Airspace?

Sensor limits on aircraft are local.

151

How Can We Prove Distributed Airspace?

Sensor limits on aircraft are local.

152

How Can We Prove Distributed Airspace?

Sensor limits on aircraft are local.

153

How Can We Prove Distributed Airspace?

Sensor limits on aircraft are local.
Sometimes a maneuver may look safe locally…

154

Sometimes a maneuver may look safe locally…

How Can We Prove Distributed Airspace?

Sensor limits on aircraft are local.

155
But is a terrible idea when implemented globally.
Sometimes a maneuver may look safe locally…

How Can We Prove Distributed Airspace?

Sensor limits on aircraft are local.

156
But is a terrible idea when implemented globally.
Sometimes a maneuver may look safe locally…

How Can We Prove Distributed Airspace?

Sensor limits on aircraft are local.

157
But is a terrible idea when implemented globally.
Sometimes a maneuver may look safe locally…

How Can We Prove Distributed Airspace?

Sensor limits on aircraft are local.

158
But is a terrible idea when implemented globally.
Sometimes a maneuver may look safe locally…

How Can We Prove Distributed Airspace?

Sensor limits on aircraft are local.

!

159

Assumptions and Requirements

•  Safety: At all times, the aircraft must be separated by
distance greater than p.
•  Aircraft trajectories must always be flyable.
•  An arbitrary number of aircraft may enter the maneuver
at any time.

Requirements

•  Aircraft maintain constant velocity.
•  Sensors are accurate and have no delay.
•  Collision avoidance maneuvers are executed on the 2D plane.

Assumptions

160

2 4 6 8 10 t
0.2

0.4

0.6

0.8

1.0
d

2 4 6 8 10 t

1

2

3

p

2 4 6 8 10 t

!0.2

!0.1

0.1

0.2

0.3

0.4

0.5
Ω

d2

Hybrid Dynamics

d1

P1 P2

0 1 2 3 4
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

P2

P1

Aircraft are controlled by steering,
through discrete changes in angular
velocity .

2 4 6 8 10 t

!0.2

!0.1

0.1

0.2

0.3

0.4

0.5
Ω

161

• Leaves maneuverability to pilot discretion.
• Requires large buffer disc.
• Requires aircraft to return to the center of the
disc before completing avoidance maneuver.

2 min
r!i
"

min
r!i
"

d!i"

x!i"

disc!i"

Big Disc Control

[LoosRP13]

162

Big Disc Control

2 min
r!i
"

min
r!i
"

d!i"

x!i"

disc!i"

To Prove:
Init ! [BigDisc]Safe

163

Big Disc Control

2 min
r!i
"

min
r!i
"

d!i"

x!i"

disc!i"

To Prove:
Init ! [BigDisc]Safe

Safe ⌘ (8i, j : A i 6= j ! kx(i)� x(j)k � p)

Safe ⌘ (8i, j : A i 6= j ! kx(i)� x(j)k � p)

Safe ⌘ (8i, j : A i 6= j ! kx(i)� x(j)k � p)

164

Big Disc Control

2 min
r!i
"

min
r!i
"

d!i"

x!i"

disc!i"

Init ! [BigDisc]Safe

165

Big Disc Control

2 min
r!i
"

min
r!i
"

d!i"

x!i"

disc!i"

Dubins Model
for 2D motion

[Dubins57]

Init ! [BigDisc]Safe

h

h

166

Big Disc Control

2 min
r!i
"

min
r!i
"

d!i"

x!i"

disc!i"

The disc does not
move when in a
collision avoidance
maneuver

Init ! [BigDisc]Safe

h

h

167

Big Disc Control

2 min
r!i
"

min
r!i
"

d!i"

x!i"

disc!i"

All aircraft evolve
simultaneously

Init ! [BigDisc]Safe

h

h

168

Big Disc Control

2 min
r!i
"

min
r!i
"

d!i"

x!i"

disc!i"

Init ! [BigDisc]Safe

h

h

169

Big Disc Control

2 min
r!i
"

min
r!i
"

d!i"

x!i"

disc!i"

Init ! [BigDisc]Safe

h

170

Big Disc Control

2 min
r!i
"

min
r!i
"

d!i"

x!i"

disc!i"

Init ! [BigDisc]Safe

- Ensures aircraft
control can engage
CA maneuver.

- Aircraft can flyably
remain within disc

171

Big Disc Control

2 min
r!i
"

min
r!i
"

d!i"

x!i"

disc!i"

Init ! [BigDisc]Safe

172

Big Disc Control

2 min
r!i
"

min
r!i
"

d!i"

x!i"

disc!i"

h

✔

Init ! [BigDisc]Safe

173

• Deterministic control makes it well suited for UAVs.
• Smaller discs allow aircraft to fly closer together.
• Aircraft may exit maneuver as soon as it is safe to
do so.

Small Discs Control

x!i"

x! j"

p x!k"

x!l"

x!m"

[PallottinoSBF07, LoosRP13]

174

x!i"

x! j"

p x!k"

x!l"

x!m"

Small Discs Control

175

x!i"

x! j"

p x!k"

x!l"

x!m"

h

✔

Small Discs Control

176

Challenges Contributions
!  CPS needs verification
!  Infinite, continuous, and

evolving state space,
!  Continuous dynamics
!  Discrete control

decisions
!  Distributed dynamics
!  Arbitrary number of

aircraft
!  Emergent behaviors

!  Theorem proving is
powerful for verifying
distributed dynamics

!  Non-linear flight paths and
flyable maneuvers

!  Compositionality – using
small problems to solve the
big ones

!  Hierarchical proofs
!  Undergraduates can

understand and verify
hybrid systems!

Conclusions

x = 2yx = 2y

2 min
r!i
"

min
r!i
"

d!i"

x!i"

disc!i" x!i"

x! j"

p x!k"

x!l"

x!m"

R1

177

178

References (page 1)
Sarah M. Loos, David Renshaw, and André Platzer. Formal Verification of Distributed Aircraft
Controllers. In Calin Belta and Franjo Ivancic, editors, Hybrid Systems: Computation and Control
(HSCC), 2013.

André Platzer and Jan-David Quesel. KeYmaera: A hybrid theorem prover for hybrid systems. In
Alessandro Armando, Peter Baumgartner, and Gilles Dowek, editors, IJCAR, volume 5195 of LNCS, pages
171-178. Springer, 2008

Platzer, André. "Differential dynamic logic for hybrid systems." Journal of Automated Reasoning 41.2
(2008): 143-189.

Nikos Aréchiga, Sarah M. Loos, André Platzer, and Bruce H. Krogh. Using theorem provers to
guarantee closed-loop system properties. In the American Control Conference, ACC, Montréal, Canada,
2012.

Stefan Mitsch, Sarah M. Loos, and André Platzer. Towards Formal Verification of Freeway Traffic
Control. In the International Conference on Cyber-Physical Systems, ICCPS, Beijing, China, 2012.

Lucia Pallottino, Vincenzo Giovanni Scordio, Antonio Bicchi, and Emilio Frazzoli. "Decentralized
cooperative policy for conflict resolution in multivehicle systems." Robotics, IEEE Transactions on 23, no. 6,
pages 1170-1183, 2007.

179

References (page 2)
Akshay Rajhans, Ajinkya Bhave, Sarah M. Loos, Bruce H. Krogh, André Platzer, and David Garlan.
Using parameters in architectural views to support heterogeneous design and verification. In the IEEE
Conference on Decision and Control and European Control Conference. 2011.

Sarah M. Loos and André Platzer. Safe Intersections: At the Crossing of Hybrid Systems and
Verification. In the International IEEE Conference on Intelligent Transportation Systems, ITSC 2011,
Washington, D.C., USA, Proceedings, 2011.

David Renshaw, Sarah M. Loos, and André Platzer. Distributed theorem proving for distributed hybrid
systems. In the International Conference on Formal Engineering Methods, ICFEM’11, Durham, United
Kingdom, Proceedings, LNCS. Springer, 2011.

Sarah M. Loos, André Platzer, and Ligia Nistor. Adaptive cruise control: Hybrid, distributed, and now
formally verified. In the 17th International Symposium on Formal Methods, FM, Limerick, Ireland,
Proceedings, LNCS. Springer, 2011.

André Platzer. Quantified differential dynamic logic for distributed hybrid systems. In Computer Science
Logic. Volume 6247 of LNCS. Springer, 2010.

Dubins, L.E. On curves of minimal length with a constraint on average curvature, and with prescribed
initial and terminal positions and tangents. Am J Math 79(3), pages 497–516, 1957.

