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Refinement Relation  

↵  �

�
(?�; a := ⇤ [ a := �B);x00 = a

�⇤  �

�
(?�; a := ✓ [ a := �B);x00 = a &  

�⇤
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Refinement Relation  

↵  �
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(?�; a := ⇤ [ a := �B);x00 = a

�⇤

�
(?�; a := ✓ [ a := �B);x00 = a &  

�⇤
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Syntax of a dRL formula:  

�, ::= ✓1  ✓2 | ¬� | � ^  | 8x� | [↵]� | h↵i� | ↵  �FOLR

So, what does dRL look like exactly?  
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Syntax of a dRL formula:  

�, ::= ✓1  ✓2 | ¬� | � ^  | 8x� | [↵]� | h↵i� | ↵  �

�, ::= ✓1  ✓2 | ¬� | � ^  | 8x� | [↵]� | h↵i� | ↵  �

So, what does dRL look like exactly?  

dL
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Syntax of a dRL formula:  

�, ::= ✓1  ✓2 | ¬� | � ^  | 8x� | [↵]� | h↵i� | ↵  �

�, ::= ✓1  ✓2 | ¬� | � ^  | 8x� | [↵]� | h↵i� | ↵  �

�, ::= ✓1  ✓2 | ¬� | � ^  | 8x� | [↵]� | h↵i� | ↵  � + refinement

So, what does dRL look like exactly?  
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Syntax of a dRL formula:  

Syntax of a hybrid program:  

�, ::= ✓1  ✓2 | ¬� | � ^  | 8x� | [↵]� | h↵i� | ↵  �

�, ::= ✓1  ✓2 | ¬� | � ^  | 8x� | [↵]� | h↵i� | ↵  �

�, ::= ✓1  ✓2 | ¬� | � ^  | 8x� | [↵]� | h↵i� | ↵  �

So, what does dRL look like exactly?  
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Syntax of a dRL formula:  

Syntax of a hybrid program:  

�, ::= ✓1  ✓2 | ¬� | � ^  | 8x� | [↵]� | h↵i� | ↵  �

�, ::= ✓1  ✓2 | ¬� | � ^  | 8x� | [↵]� | h↵i� | ↵  �

�, ::= ✓1  ✓2 | ¬� | � ^  | 8x� | [↵]� | h↵i� | ↵  �

↵,� ::= x := ✓ | x0 = ✓ &  | ? | ↵ [ � | ↵;� | ↵⇤
↵,� ::= x := ✓ | x0 = ✓ &  | ? | ↵ [ � | ↵;� | ↵⇤

So, what does dRL look like exactly?  
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Syntax of a dRL formula:  

Syntax of a hybrid program:  

�, ::= ✓1  ✓2 | ¬� | � ^  | 8x� | [↵]� | h↵i� | ↵  �

�, ::= ✓1  ✓2 | ¬� | � ^  | 8x� | [↵]� | h↵i� | ↵  �

�, ::= ✓1  ✓2 | ¬� | � ^  | 8x� | [↵]� | h↵i� | ↵  �

↵,� ::= x := ✓ | x0 = ✓ &  | ? | ↵ [ � | ↵;� | ↵⇤
↵,� ::= x := ✓ | x0 = ✓ &  | ? | ↵ [ � | ↵;� | ↵⇤

So, what does dRL look like exactly?  

dRL extends       by adding 
refinement directly into the 
grammar of formulas 
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Hybrid Programs model cyber-physical systems 

v w↵

Semantics of hybrid programs 

⇢(↵) = {(v, w) : when starting in state    and 
then following transitions of    , 
state      can be reached.  

v
↵

w }

[Platzer08] 
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Semantics of hybrid programs 

[Platzer08] 

v w⇢(x := ✓) = {(v, w) : w = v except [[x]]w = [[✓]]v}iff                except for 
the value of        

v = w
⇢(x := ✓) = {(v, w) : w = v except [[x]]w = [[✓]]v}
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Semantics of hybrid programs 

[Platzer08] 

v w⇢(x := ✓) = {(v, w) : w = v except [[x]]w = [[✓]]v}iff                except for 
the value of        

v = w
⇢(x := ✓) = {(v, w) : w = v except [[x]]w = [[✓]]v}

v
? Iff      holds in state  v |=  v
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Semantics of hybrid programs 

[Platzer08] 

v w⇢(x := ✓) = {(v, w) : w = v except [[x]]w = [[✓]]v}iff                except for 
the value of        

v = w
⇢(x := ✓) = {(v, w) : w = v except [[x]]w = [[✓]]v}

v
? Iff      holds in state  v |=  v

v w
x

0 = ✓

x := y(t)

If           solves  y(t) x

0 = ✓
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Semantics of hybrid programs 

[Platzer08] 

v w⇢(x := ✓) = {(v, w) : w = v except [[x]]w = [[✓]]v}iff                except for 
the value of        

v = w
⇢(x := ✓) = {(v, w) : w = v except [[x]]w = [[✓]]v}

v
? Iff      holds in state  v |=  v

v w
x

0 = ✓

x := y(t)

If           solves  y(t) x

0 = ✓

v wu
↵ �

↵;�
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Semantics of hybrid programs 

[Platzer08] 

v w⇢(x := ✓) = {(v, w) : w = v except [[x]]w = [[✓]]v}iff                except for 
the value of        

v = w
⇢(x := ✓) = {(v, w) : w = v except [[x]]w = [[✓]]v}

v
? Iff      holds in state  v |=  v

v w
x

0 = ✓

x := y(t)

If           solves  y(t) x

0 = ✓

v wu
↵ �

↵;�

Etc… 
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Semantics of box modality 

v |= [↵]�

Box Modality: 
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v

w1

w2

w3

v |= [↵]�

Box Modality: 

�

�

Semantics of box modality 

↵

hi

↵

hi
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Refinement Relation: 

v |= ↵  �

Semantics of refinement 
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v

w1

w2

w3

Refinement Relation: 

v |= ↵  �

Semantics of refinement 

↵

hi

↵

hi
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v

w1

w2

w3

Refinement Relation: 

v |= ↵  �

v |= ↵  �
v |= ↵  �

v |= ↵  �

Semantics of refinement 

↵

hi

↵

hi
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v

w1

w2

w3

Refinement Relation: 

v |= ↵  �

v |= ↵  �
v |= ↵  �

v |= ↵  �

Semantics of refinement 

↵

hi

↵

hi
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Combining refinement and box modality 
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Combining refinement and box modality 

v

v |= G, v 6|= D

for all G 2 �, D 2 �
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v

w1

w2

w3

Combining refinement and box modality 

v |= G, v 6|= D

for all G 2 �, D 2 �

↵

hi

↵

hi



36 

v

w1

w2

w3

v |= ↵  �
v |= ↵  �

v |= ↵  �

Combining refinement and box modality 

v |= G, v 6|= D

for all G 2 �, D 2 �

↵

hi

↵

hi
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v

w1

w2

w3

v |= ↵  �
v |= ↵  �

v |= ↵  �

Combining refinement and box modality 

v |= G, v 6|= D

for all G 2 �, D 2 �

↵

hi

↵

hi
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v

w1

w2

w3

v |= ↵  �
v |= ↵  �

v |= ↵  �

Combining refinement and box modality 

�

�

�v |= G, v 6|= D

for all G 2 �, D 2 �

↵

hi

↵

hi
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v

w1

w2

w3

v |= ↵  �
v |= ↵  �

v |= ↵  �

�

�

Combining refinement and box modality 

v |= G, v 6|= D

for all G 2 �, D 2 �

�

↵

hi

↵

hi
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v w

Sequential Composition 

↵1;�1
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v w

Sequential Composition 

↵1;�1

hi ↵2;�2? 
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v w

Sequential Composition 

↵1;�1
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v wu

Sequential Composition 

↵1;�1

↵1 �1
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v wu

Sequential Composition 

↵1;�1

↵1 �1

↵2
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v wu

Sequential Composition 

↵1;�1

↵1 �1

↵2 �2? 
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v wu

Sequential Composition 

↵1;�1

↵1 �1

↵2 �2✗ 
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v wu

Sequential Composition 

↵1;�1

↵1 �1

↵2 �2



48 

v wu

Sequential Composition 

↵1;�1

↵1 �1

↵2 �2
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v wu

Sequential Composition 

↵1;�1

↵1 �1

↵2 �2

hi ↵2;�2
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Differential Equations 

?
(x0 = 1)  (x0 = 9)
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Differential Equations 

x 2 [x0,1)

?
(x0 = 1)  (x0 = 9)
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Differential Equations 

x 2 [x0,1) x 2 [x0,1)
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(x0 = 1)  (x0 = 9)
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Differential Equations 

x 2 [x0,1) x 2 [x0,1)
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(x0 = 1)  (x0 = 9)(x0 = 1)  (x0 = 9)
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Differential Equations 
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Two Modeling Paradigms 

Time-triggered  

!  Discrete sensing 
 

Event-triggered  

!  Continuous sensing 
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Two Modeling Paradigms 

Time-triggered  

!  Discrete sensing 
 

Event-triggered  

!  Continuous sensing 
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Two Modeling Paradigms 

Time-triggered  

!  Discrete sensing 
!  Realistic, easy to implement  
!  Difficult to design controllers 
!  Challenging to verify 
 

Event-triggered  

!  Continuous sensing 
!  Unrealistic, hard to implement 
!  Easier to design controllers 
!  Easier to verify 
 



63 

Two Modeling Paradigms 

Time-triggered  

!  Discrete sensing 
!  Realistic, easy to implement  
!  Difficult to design controllers 
!  Challenging to verify 
 

Event-triggered  

!  Continuous sensing 
!  Unrealistic, hard to implement 
!  Easier to design controllers 
!  Easier to verify 
 

↵  �
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Local Lane Control using Refinement 

Time-triggered [FM11] 

Event-triggered 

Controllers satisfy 
refinement  
“Brake” for epsilon time 

“Accelerate” for epsilon 
time 

Time-triggered (dRL) 
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Contributions 
Differential Refinement Logic 

! Maintains a modular and hierarchical proof structure 
! Abstracts implementation-specific designs 
! Leverages iterative system design 
! Prove time-triggered model refines event-triggered 
! Encouraging evidence of reduced user interaction and 

computation time  
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Appendix 
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We have proved that the refinement relation can be 
embedded in dL.  As a result, dL and dRL are equivalent in 
terms of expressibility and provability.  
 
 

Comparing dRL and dL 

 
However, we can analyze dRL on familiar (challenging) case 
studies.  We can consider:    
 

 
• Number of proof steps 
• Computation time 
• Qualitative difficulty to complete proof 
• Proof structure 
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Semantics of hybrid programs 

[Platzer08] 

⇢(x := ✓) = {(v, w) : w = v except [[x]]w = [[✓]]v}⇢(x := ✓) = {(v, w) : w = v except [[x]]w = [[✓]]v}

v w⇢(x := ✓) = {(v, w) : w = v except [[x]]w = [[✓]]v}iff                except for 
the value of        

v = w
⇢(x := ✓) = {(v, w) : w = v except [[x]]w = [[✓]]v}

v
? Iff      holds in state  v |=  v

v w
x

0 = ✓

x := y(t)

⇢(x

0
= ✓) = {('(0),'(t)) : '(s) |= x

0
= ✓ for all 0  s  t}

⇢(? ) = {(v, v) : v |=  }⇢(? ) = {(v, v) : v |=  }

If           solves  y(t) x

0 = ✓



71 

Semantics of hybrid programs 

[Platzer08] 

v wu
↵ �

↵;�

⇢(↵;�) = {(v, w) : (v, u) 2 ⇢(↵), (u,w) 2 ⇢(�)}⇢(↵;�) = {(v, w) : (v, u) 2 ⇢(↵), (u,w) 2 ⇢(�)}
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Combining refinement and diamond modality 
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Nondeterministic Assignment 
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⇢(x := ✓) = {(v, w) : w = v except [[x]]w = [[✓]]v}vJ✓Kv
x

hi

vJ✓Kv
x

hi

Nondeterministic Assignment 
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x := ⇤
hi

⇢(x := ✓) = {(v, w) : w = v except [[x]]w = [[✓]]v}vJ✓Kv
x

hi

vJ✓Kv
x

hi

vJ✓Kv
x

hi

vd1
x

hi

x := ⇤
hi

x

:=
⇤
hi

vd2
x

hi

vd3
x

hi

Nondeterministic Assignment 
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x := ⇤
hi

⇢(x := ✓) = {(v, w) : w = v except [[x]]w = [[✓]]v}vJ✓Kv
x

hi

vJ✓Kv
x

hi

vJ✓Kv
x

hi

vd1
x

hi

x := ⇤
hi

x

:=
⇤
hi

vd2
x

hi

vd3
x

hi

Nondeterministic Assignment 
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v w
↵ …  ↵

↵⇤

Nondeterministic Repetition 

↵
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v w
↵ …  ↵

↵⇤

Nondeterministic Repetition 

↵

�
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v w
↵ …  ↵

↵⇤

Nondeterministic Repetition 

↵

� �? 
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v w
↵ …  ↵

↵⇤

Nondeterministic Repetition 

↵

� �? 
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v w
↵ …  ↵

↵⇤

Nondeterministic Repetition 

↵
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v w
↵ …  ↵

↵⇤

Nondeterministic Repetition 

↵

� � �? 
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v w
↵ …  ↵

↵⇤

Nondeterministic Repetition 

↵

� � �? 
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v w
↵ …  ↵

↵⇤

Nondeterministic Repetition 

↵

� � �
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v w
↵ …  ↵

↵⇤

Nondeterministic Repetition 

↵

� � �

�⇤
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Nondeterministic Repetition (KAT style) 
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Nondeterministic Repetition (KAT style) 

…  
v w1 w2 w3 w4

�↵

hi

↵

hi
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Nondeterministic Repetition (KAT style) 

…  
v w1 w2 w3 w4

�↵

hi

↵

hi
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Nondeterministic Repetition (KAT style) 

…  
v w1 w2 w3 w4

�↵

hi

↵

hi
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Nondeterministic Repetition (KAT style) 

…  
v w1 w2 w3 w4

�↵

hi

↵

hi �? 
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Nondeterministic Repetition (KAT style) 

…  
v w1 w2 w3 w4

�↵

hi

↵
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Nondeterministic Repetition (KAT style) 

…  
v w1 w2 w3 w4

�↵

hi

↵

hi �



93 

Nondeterministic Repetition (KAT style) 

…  
v w1 w2 w3 w4

�↵

hi

↵

hi ��? 
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Nondeterministic Repetition (KAT style) 

…  
v w1 w2 w3 w4

�↵

hi

↵

hi ��? 
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Nondeterministic Repetition (KAT style) 

…  
v w1 w2 w3 w4

�↵

hi

↵

hi ��? 
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Nondeterministic Repetition (KAT style) 

…  
v w1 w2 w3 w4

�↵

hi

↵

hi ��
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Nondeterministic Repetition (KAT style) 

…  
v w1 w2 w3 w4

�↵

hi

↵

hi ��� …  
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Nondeterministic Repetition (KAT style) 

…  
v w1 w2 w3 w4

�↵

hi

↵

hi ��� � …  
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Nondeterministic Repetition (KAT style) 

�v w1
…  

w2 w3 w4
↵

hi

↵

hi
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Nondeterministic Repetition (KAT style) 

�

� �

…  
v

�

w1 w2 w3 w4

�…  

↵

hi

↵

hi
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Proof Tree 
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Proof Tree 

H(x) ^ I ` [event⇤]� H(x) ^ I ` time⇤  event⇤

H(x) ^ I ` [time⇤]�
([])H(x) ^ I ` [event⇤]� H(x) ^ I ` time⇤  event⇤

H(x) ^ I ` [time⇤]�
[]
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Proof Tree 

H(x) ^ I ` [event⇤]� H(x) ^ I ` time⇤  event⇤

H(x) ^ I ` [time⇤]�
([])
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H(x) ^ I ` [event⇤]� H(x) ^ I ` time⇤  event⇤

H(x) ^ I ` [time⇤]�
([])

✓ 
✓ 

✓ 

✓ 

✓ ✓ ✓ 
✓ 

Proof Tree 
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H(x) ^ I ` [event⇤]� H(x) ^ I ` time⇤  event⇤

H(x) ^ I ` [time⇤]�
([])

✓ 
✓ 

✓ 

✓ 

✓ ✓ ✓ 
✓ 

Proof Tree 
Open goals  
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Time-triggered is safe 
 

Event-triggered is safe 
 

H(x) ^ I ` [event⇤]� H(x) ^ I ` time⇤  event⇤

H(x) ^ I ` [time⇤]�
([])

Controllers satisfy refinement  
 ` Safe" ! Safe

“Braking” is safe for     time 
 

“Accelerating” is safe for     time 
 Safe"(Sa(0)) ^ 0  t  " ` H(Sa(t))

"

hi

"

hiH(Sc(0)) ^ 0  t  " ` H(Sc(t))

H(x) ^ I ` [event⇤]� H(x) ^ I ` time⇤  event⇤

H(x) ^ I ` [time⇤]�
([])

✓ 
✓ 

✓ 

✓ 

✓ ✓ ✓ 
✓ 

Open goals  
Proof Tree 
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Time-triggered is safe 
 

Event-triggered is safe 
 

H(x) ^ I ` [event⇤]� H(x) ^ I ` time⇤  event⇤

H(x) ^ I ` [time⇤]�
([])

Controllers satisfy refinement  
 ` Safe" ! Safe

“Braking” is safe for     time 
 

“Accelerating” is safe for     time 
 Safe"(Sa(0)) ^ 0  t  " ` H(Sa(t))

"

hi

"

hi

Proof Tree 

dL

H(Sc(0)) ^ 0  t  " ` H(Sc(t))
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Time-triggered is safe 
 

H(x) ^ I ` [event⇤]� H(x) ^ I ` time⇤  event⇤

H(x) ^ I ` [time⇤]�
([])

Controllers satisfy refinement  
 ` Safe" ! Safe

“Braking” is safe for     time 
 

“Accelerating” is safe for     time 
 Safe"(Sa(0)) ^ 0  t  " ` H(Sa(t))

"

hi

"

hi

Proof Tree 

FOLR

FOLR

Event-triggered is safe 
 

dL

H(Sc(0)) ^ 0  t  " ` H(Sc(t))

FOLR
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dRL Proof Rules: Partial Order 

Reflexive:  Transitive:  

Antisymmetric:  
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dRL Proof Rules: KAT 
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dRL Proof Rules: Differential Equations 
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dRL Proof Rules: Structural 
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v
? Iff      holds in state  v |=  v

⇢(? ) = {(v, v) : v |=  }⇢(? ) = {(v, v) : v |=  }

Test 
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v w
x

0 = ✓

x := y(t)

⇢(x

0
= ✓) = {('(0),'(t)) : '(s) |= x

0
= ✓ for all 0  s  t}

If           solves  y(t) x

0 = ✓

Differential Refinement 
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dRL Proof Rules: Differential Equations 

v w
x

0 = ✓

x := y(t)
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Kleene Algebra with Tests (KAT) 

[Kozen97] 

!  Kleene algebra with tests is a system for 
manipulating programs that are equivalent. 

!  KAT doesn’t have continuous dynamics, but we can 
see that it is still relevant to hybrid programs 
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Verifying a specific local lane controller 
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Verifying a specific local lane controller 
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!  Designing proof search heuristics that exploit 
refinement to automatically create more hierarchical 
proof structures. 

!  Shifting the proof responsibility completely to 
determining refinement.  

!  Code synthesis – verifying that refinement relation is 
satisfied with each transformation step.  

Additional dRL applications 
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Event-triggered vs. Time-triggered 
Event-triggered  Time-triggered  

!  Continuous sensing 
!  Unrealistic, hard to implement 
!  Easier to design controllers 
!  Easier to verify 
 

!  Discrete sensing 
!  Realistic, easy to implement  
!  Difficult to design controllers 
!  Challenging to verify 
 

(ctrl; dyn)⇤

discrete 
controller  

continuous 
dynamics 
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Event-triggered vs. Time-triggered 
Event-triggered  Time-triggered  

!  Continuous sensing 
!  Unrealistic, hard to implement 
!  Easier to design controllers 
!  Easier to verify 
 

!  Discrete sensing 
!  Realistic, easy to implement  
!  Difficult to design controllers 
!  Challenging to verify 
 

(ctrl; x

0 = ✓)⇤

discrete 
controller  

continuous 
dynamics 
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Event-triggered vs. Time-triggered 
Event-triggered  Time-triggered  

!  Continuous sensing 
!  Unrealistic, hard to implement 
!  Easier to design controllers 
!  Easier to verify 
 

!  Discrete sensing 
!  Realistic, easy to implement  
!  Difficult to design controllers 
!  Challenging to verify 
 

discrete 
controller  

continuous 
dynamics 

(ctrl; x0 = ✓&H)⇤
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Event-triggered vs. Time-triggered 
Event-triggered  Time-triggered  

!  Continuous sensing 
!  Unrealistic, hard to implement 
!  Easier to design controllers 
!  Easier to verify 
 

!  Discrete sensing 
!  Realistic, easy to implement  
!  Difficult to design controllers 
!  Challenging to verify 
 

discrete 
controller  

? 

(ctrl; x0 = ✓&H)⇤
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Event-triggered vs. Time-triggered 
Event-triggered  Time-triggered  

!  Continuous sensing 
!  Unrealistic, hard to implement 
!  Easier to design controllers 
!  Easier to verify 
 

!  Discrete sensing 
!  Realistic, easy to implement  
!  Difficult to design controllers 
!  Challenging to verify 
 

discrete 
controller  

? 

(ctrlt;x
0 = ✓& t  ")⇤(ctrlt;x
0 = ✓& t  ")⇤
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Event-triggered vs. Time-triggered 
Event-triggered  Time-triggered  

!  Continuous sensing 
!  Unrealistic, hard to implement 
!  Easier to design controllers 
!  Easier to verify 
 

!  Discrete sensing 
!  Realistic, easy to implement  
!  Difficult to design controllers 
!  Challenging to verify 
 

(ctrlt;x
0 = ✓& t  ")⇤

(ctrlt;x
0 = ✓& t  ")⇤
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Event-triggered vs. Time-triggered 
Event-triggered  Time-triggered  

!  Continuous sensing 
!  Unrealistic, hard to implement 
!  Easier to design controllers 
!  Easier to verify 
 

!  Discrete sensing 
!  Realistic, easy to implement  
!  Difficult to design controllers 
!  Challenging to verify 
 

(ctrle; x

0 = ✓&x+
v

2

2B
 S)⇤

(ctrle; x

0 = ✓&x+ 10  S)⇤

(ctrle; x

0 = ✓&x+
v

2

2B
 S)⇤

(ctrle; x

0 = ✓&x+ 10  S)⇤

(ctrlt;x
0 = ✓& t  ")⇤

(ctrlt;x
0 = ✓& t  ")⇤
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Event-triggered vs. Time-triggered 
Event-triggered  Time-triggered  

!  Continuous sensing 
 

!  Discrete sensing 
 

(ctrle; x

0 = ✓&x+
v

2

2B
 S)⇤

(ctrle; x

0 = ✓&x+ 10  S)⇤

(ctrle; x

0 = ✓&x+
v

2

2B
 S)⇤

(ctrle; x

0 = ✓&x+ 10  S)⇤

(ctrlt;x
0 = ✓& t  ")⇤

(ctrlt;x
0 = ✓& t  ")⇤
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Event-triggered vs. Time-triggered 
Event-triggered  Time-triggered  

!  Continuous sensing 
 

!  Discrete sensing 
 

(ctrle; x

0 = ✓&x+
v

2

2B
 S)⇤

(ctrle; x

0 = ✓&x+ 10  S)⇤
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0 = ✓&x+
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2

2B
 S)⇤
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(ctrlt;x
0 = ✓& t  ")⇤

(ctrlt;x
0 = ✓& t  ")⇤

(ctrle; x

0 = ✓&x+
v

2

2B
 S)⇤

(ctrle; x

0 = ✓&x+ 10  S)⇤
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Event-triggered vs. Time-triggered 
Event-triggered  Time-triggered  

!  Continuous sensing 
 

!  Discrete sensing 
 

(ctrle; x

0 = ✓&x+
v

2

2B
 S)⇤

(ctrle; x

0 = ✓&x+ 10  S)⇤

(ctrle; x

0 = ✓&x+
v

2

2B
 S)⇤

(ctrle; x

0 = ✓&x+ 10  S)⇤

(ctrlt;x
0 = ✓& t  ")⇤

(ctrlt;x
0 = ✓& t  ")⇤

(ctrle; x

0 = ✓&x+
v

2
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 S)⇤
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0 = ✓&x+ 10  S)⇤

(ctrlt;x
0 = ✓& t  ")⇤
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Event-triggered vs. Time-triggered 
Event-triggered  Time-triggered  

!  Continuous sensing 
 

!  Discrete sensing 
 

(ctrle; x

0 = ✓&x+
v

2

2B
 S)⇤

(ctrle; x

0 = ✓&x+ 10  S)⇤

(ctrle; x

0 = ✓&x+
v

2

2B
 S)⇤

(ctrle; x

0 = ✓&x+ 10  S)⇤

(ctrlt;x
0 = ✓& t  ")⇤

(ctrlt;x
0 = ✓& t  ")⇤

(ctrle; x

0 = ✓&x+
v

2

2B
 S)⇤

(ctrle; x

0 = ✓&x+ 10  S)⇤

(ctrlt;x
0 = ✓& t  ")⇤
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Event-triggered vs. Time-triggered 
Event-triggered  Time-triggered  

!  Continuous sensing 
 

!  Discrete sensing 
 

(ctrle; x

0 = ✓&x+
v

2

2B
 S)⇤

(ctrle; x

0 = ✓&x+ 10  S)⇤

(ctrle; x

0 = ✓&x+
v

2

2B
 S)⇤

(ctrle; x

0 = ✓&x+ 10  S)⇤

(ctrlt;x
0 = ✓& t  ")⇤

(ctrlt;x
0 = ✓& t  ")⇤

(ctrle; x

0 = ✓&x+
v

2

2B
 S)⇤

(ctrle; x

0 = ✓&x+ 10  S)⇤

(ctrlt;x
0 = ✓& t  ")⇤
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Event-triggered vs. Time-triggered 

event-triggered  time-triggered  

(ctrle;x
0 = ✓&E(x))⇤

((?Safe; a := ⇤) [ a := c;

(ctrlt;x
0 = ✓& t  ")⇤

((?Safe"; a := ⇤) [ a := c;
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dRL Proof Rules: Independence 
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Motivation: Adaptive Cruise Control 
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Motivation: Adaptive Cruise Control 

Low	packet	loss,	small	margin	for	error.	

✗ 
✔ 
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Motivation: Adaptive Cruise Control 

✔ 
✗ 

Low	packet	loss,	small	margin	for	error.	

High	packet	loss,	large	margin	for	error.	

✗ 
✔ 
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Efficiency Analysis of ACC 
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Modular Proof for Distributed Aircraft 

8i 6= j : A kx(i)� x(j)k � p

8i 6= j : A kx(i)� x(j)k � p

To Prove: 
Safe separation of aircraft. 

xHiL
xH jL
p xHkL

xHiL

xHmL

xHiL
xH jL
p xHkL

xHiL

xHmL

xHiL
xH jL
p xHkL

xHiL

xHmL
dHiL

dH jL
p =)

xHiL
xH jL
p xHkL

xHiL

xHmL =)8i 6= j : A
kd(i)� d(j)k � 4r + p^ 8i 6= j : A

kd(i)� d(j)k � 2r + p
8i : A

kx(i)� d(i)k  r

8i : A
kx(i)� d(i)k  r

^
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“How can we provide people with cyber-physical 
 systems they can bet their lives on?”  

      -- Jeanette Wing 
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Differential Dynamic Logic: Axiomatization 

[:=] [x := ✓]�(x) $ �(✓)

[Platzer08] 
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↵  �
Differential Refinement Logic (dRL)  
 - Proof rules  

- Examples 
 

Time-triggered vs. 
Event-triggered  

 

event⇤

time⇤

Verified Car 
Control 

 

Roadmap 

Iterative System 
Design 

 
						?Event ?Time

x := ⇤;
x := ⇤;

x := ✓
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↵  �
Differential Refinement Logic (dRL)  
 - Proof rules  

- Examples 
 

Time-triggered vs. 
Event-triggered  

 

event⇤

time⇤

Verified Car 
Control 

 

Roadmap 

Iterative System 
Design 

 
						?Event ?Time

x := ⇤;
x := ⇤;

x := ✓
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Verifying a specific local lane controller 
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Verifying a specific local lane controller 

safe✓ ⌘ af := Kp

 
(xl � xf) �

⇣
v

2

2b
�

v

2

2b
+ (

A

b

+ 1)(
A

2
"

2 + "v)
⌘!

+ Ki(z) + Kd(vl � vf)

safe✓ ⌘ af := Kp

 
(xl � xf) �

⇣
v

2

2b
�

v
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2b
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A

b

+ 1)(
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2
"

2 + "v)
⌘!

+ Ki(z) + Kd(vl � vf)

safe✓ ⌘ af := Kp

 
(xl � xf) �

⇣
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�
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+ (

A

b

+ 1)(
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"
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+ Ki(z) + Kd(vl � vf)
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Verifying a specific local lane controller 

safe✓ ⌘ af := Kp

 
(xl � xf) �

⇣
v

2

2b
�

v

2

2b
+ (

A

b

+ 1)(
A

2
"

2 + "v)
⌘!

+ Ki(z) + Kd(vl � vf)

af := ✓
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Verifying a specific local lane controller 

safe✓ ⌘ af := ✓



147 

Verifying a specific local lane controller 

�B  ✓  A (✓ > �b) ! Safe"

safe✓ ⌘ af := ✓
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↵  �
Differential Refinement Logic (dRL)  
 - Proof rules  

- Examples 
 

Time-triggered vs. 
Event-triggered  

 

event⇤

time⇤

Verified Car 
Control 

 

Roadmap 

Iterative System 
Design 

 
						?Event ?Time

x := ⇤;
x := ⇤;

x := ✓
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How Can We Prove Distributed Airspace? 
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But is a terrible idea when implemented globally. 
Sometimes a maneuver may look safe locally… 

How Can We Prove Distributed Airspace? 

Sensor limits on aircraft are local. 

!
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Assumptions and Requirements 

•  Safety: At all times, the aircraft must be separated by 
distance greater than p. 
•  Aircraft trajectories must always be flyable. 
•  An arbitrary number of aircraft may enter the maneuver 
at any time. 

Requirements 

•  Aircraft maintain constant velocity. 
•  Sensors are accurate and have no delay. 
•  Collision avoidance maneuvers are executed on the 2D plane.  
 

Assumptions 
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Hybrid Dynamics 
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Aircraft are controlled by steering, 
through discrete changes in angular 
velocity    .  
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• Leaves maneuverability to pilot discretion. 
• Requires large buffer disc. 
• Requires aircraft to return to the center of the 
disc before completing avoidance maneuver. 

2 min
r!i
"

min
r!i
"

d!i"

x!i"

disc!i"

Big Disc Control 

[LoosRP13] 
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Big Disc Control 

2 min
r!i
"

min
r!i
"

d!i"

x!i"

disc!i"

To Prove: 
Init ! [BigDisc]Safe
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Big Disc Control 

2 min
r!i
"

min
r!i
"

d!i"

x!i"

disc!i"

To Prove: 
Init ! [BigDisc]Safe

Safe ⌘ (8i, j : A i 6= j ! kx(i)� x(j)k � p)

Safe ⌘ (8i, j : A i 6= j ! kx(i)� x(j)k � p)

Safe ⌘ (8i, j : A i 6= j ! kx(i)� x(j)k � p)
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Big Disc Control 

2 min
r!i
"

min
r!i
"

d!i"

x!i"

disc!i"

Init ! [BigDisc]Safe
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Big Disc Control 

2 min
r!i
"

min
r!i
"

d!i"

x!i"

disc!i"

Dubins Model 
for 2D motion 

[Dubins57] 

Init ! [BigDisc]Safe

h 

h 
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Big Disc Control 

2 min
r!i
"

min
r!i
"

d!i"

x!i"

disc!i"

The disc does not 
move when in a 
collision avoidance 
maneuver 

Init ! [BigDisc]Safe

h 

h 
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Big Disc Control 

2 min
r!i
"

min
r!i
"

d!i"

x!i"

disc!i"

All aircraft evolve 
simultaneously 

Init ! [BigDisc]Safe

h 

h 
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Big Disc Control 

2 min
r!i
"

min
r!i
"

d!i"

x!i"

disc!i"

Init ! [BigDisc]Safe

h 

h 
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Big Disc Control 

2 min
r!i
"

min
r!i
"

d!i"

x!i"

disc!i"

Init ! [BigDisc]Safe

h 
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Big Disc Control 

2 min
r!i
"

min
r!i
"

d!i"

x!i"

disc!i"

Init ! [BigDisc]Safe

- Ensures aircraft 
control can engage 
CA maneuver. 
 
- Aircraft can flyably 
remain within disc 
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Big Disc Control 

2 min
r!i
"

min
r!i
"

d!i"

x!i"

disc!i"

Init ! [BigDisc]Safe
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Big Disc Control 

2 min
r!i
"

min
r!i
"

d!i"

x!i"

disc!i"

h 

✔ 

Init ! [BigDisc]Safe
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• Deterministic control makes it well suited for UAVs. 
• Smaller discs allow aircraft to fly closer together. 
• Aircraft may exit maneuver as soon as it is safe to 
do so.  

Small Discs Control 

x!i"

x! j"

p x!k"

x!l"

x!m"

[PallottinoSBF07, LoosRP13] 
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x!i"

x! j"

p x!k"

x!l"

x!m"

Small Discs Control 
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x!i"

x! j"

p x!k"

x!l"

x!m"

h 

✔ 

Small Discs Control 
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Challenges Contributions 
!  CPS needs verification 
!  Infinite, continuous, and 

evolving state space,  
!  Continuous dynamics 
!  Discrete control 

decisions 
!  Distributed dynamics 
!  Arbitrary number of 

aircraft 
!  Emergent behaviors 

!  Theorem proving is 
powerful for verifying 
distributed dynamics  

!  Non-linear flight paths and 
flyable maneuvers 

!  Compositionality – using 
small problems to solve the 
big ones 

!  Hierarchical proofs  
!  Undergraduates can 

understand and verify 
hybrid systems!  

Conclusions 

x = 2yx = 2y

2 min
r!i
"

min
r!i
"

d!i"

x!i"

disc!i" x!i"

x! j"

p x!k"

x!l"

x!m"

R1
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