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Abstract. This paper introduces semi-competitive differential game lo-
gic dGLs., which enables verification of safety-critical applications that
involve interactions between two agents. In dGLs., these interactions are
specified as games on hybrid systems with two players that may collab-
orate with each other when helpful and may compete when necessary.
The players in the hybrid games of dGL. have individual goals that may
overlap, leading to nonzero-sum games. This makes dGL. especially well-
suited for verifying situations where players, e.g., share safety objectives
but otherwise pursue different goals, so that zero-sum assumptions lead
to overly conservative results. Additionally, dGL. solves the subtlety that
even though each player may benefit from knowledge of the other player’s
goals, e.g., concerning shared safety objectives, unsafe situations might
still occur if every player were to mutually assume the other player would
act to avoid unsafety. The syntax and semantics, as well as a sound and
relatively complete proof calculus are presented for dGLs.. The relation-
ship between dGL,. and zero-sum differential game logic dGL is discussed
and the purpose of dGL;. illustrated in a canonical example.

Keywords: Differential game logic - Hybrid systems - Hybrid games -
Nonzero-sum games - Cooperative games - Competitive games

1 Introduction

The safety of cyber-physical systems (CPS) is of significant interest to avoid
damage to persons and goods due to faulty programs [9,13,24]. Cyber-physical
systems include trains, planes, robots and autonomous cars [8}[13]. Particularly
challenging are situations involving two CPSs, due to their possible interactions
which frequently occur in aerial collision avoidance or steering of autonomous
cars. To verify, for example, two planes on a collision course, different approaches
can be used: The situation could be regarded as one hybrid system, and its safety
verified using differential dynamic logic (d£) [124[20421,/2325]. This corresponds
to all planes being centrally controlled, which is infeasible for larger numbers of
planes. Or the situation can be modeled with games, regarding each plane as a
player which represents the fact that planes are normally steered independently.
Collision avoidance could then be verified assuming adversarial players using
differential game logic (dGL) [9,22]. This assumption results in a zero-sum game,
i.e. exactly one player wins. But if one pilot is trying to avoid a collision, the
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intruder pilot does not in fact have the opposite goal of causing a collision! Flying
under a zero-sum assumption gives safe but unnecessarily conservative results.

Instead, many games are non-zero-sum, where players have individual goals
which often overlap. The planes, for example, both do not want to crash, but they
still want to fly into different directions. Such partially shared goals open up the
possibility of cooperating, which leads to new winning strategies. Alas, the possi-
bility and will to cooperate is no guarantee that everything goes smoothly. Mis-
understandings might still happen, leading for example, to unintentional crashes.

To verify the safety of these two-player non-zero sum games, this paper intro-
duces the semi-competitive differential game logic (dGLs.) which offers a natural
way of expressing and reasoning about non-zero sum hybrid games. dGC,. sup-
ports players that behave semi-competitively, i.e., both players have individual
goals and are open for cooperation but will compete if necessary. They both try
to reach their goal while being aware of the other player’s goal and can collab-
orate to jointly meet their respective goals. This strategy provides a solution to
the challenging question of when players should cooperate. The possibility of co-
operation adds more winning strategies thus enabling safety proofs for situations
that are unsafe under conservative zero-sum game assumptions.

To underline the semantics’ suitability, the paper derives an alternative rep-
resentation of semi-competitive games in dGL. Theoretically, this is possible,
since all mixed (co)inductive concepts are definable in dGL [22]. But as dGL is
fundamentally designed for zero-sum, this requires manual coding, causes redun-
dancies, and duplicates verification effort.

The structure of this paper is as follows: First, Section [2]relates and compares
relevant logics to dGL,.. After that, the logic dGL whose correspondence to dGL,.
will be proved later on, is reviewed in Section [3] Then, Section [] introduces the
notion of semi-competitiveness and defines the syntax and semantics of dGLq..
Section [5| establishes important properties of dGL,. and its relation to dGC. Af-
terward, a proof calculus for dGL,, is introduced in Section [6] and its soundness
and relative completeness proven.

2 Related Work

Non-zero sum games is a wide field of study that has been addressed by various
communities. Game theory provides fundamental definitions of non-zero sum
games and studies of their equilibria [15-17] which lay the basis for our work.
In terms of game theory, the games played in dGLg. are non-zero sum sequential
games with perfect information and binary payoffs. Whether a player can reach
their goal can be considered by backward induction in dGLg., similar to the
determination of a subgame perfect equilibrium [5]. But dGL;. has the advantage
that the backward induction is done without game trees, which might have
uncountable, infinite breadth and unbounded depth due to continuous dynamics
and consequently would be hard to handle.

In the field of synthesis, multi-player non-zero sum games played on a graph
have been investigated by Fisman et al. who developed rational synthesis [10].
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Although the assumptions about the players’ behavior are very similar to dGC.,
their work pursues a different aim: Rational synthesis can be used to construct
correct systems, while dGL,. instead can be used to verify already existing sys-
tems.

In purely discrete settings, non-zero sum games have already been addressed
by Chaterjee et al. who introduced strategy logic [7]. This is a logic that al-
lows modelling two-player non-zero sum games played on a graph. As explicit
quantifications over strategies are possible, the logic is more powerful than e.g.
alternating-time temporal logic (ATL) [3] or propositional game logic [18] but
also more complex. Therefore, it is better suited for theoretical investigations
than for practical use, which dGL,. supports. Additionally, continuous dynamics
cannot be expressed in strategy logic.

For a hybrid setting, there exist rectangular hybrid games [11] or STORMED
games |26] which both model players with hybrid automata. While STORMED
games are able to express more varieties of continuous dynamics than rectangular
hybrid games, it is possible for both of them to perform model checking and
controller synthesis. But unlike dGL., both of these hybrid games assume the
players to act adversarially. Another work on hybrid games which also assumes
adversarial players, by Mitchell et al. [14], computes backwards reachable sets
for hybrid games which resemble winning regions in dGC,.. Unlike dGL., they do
not use a comparatively simple state-based semantics, but instead compute these
sets by numerically solving Hamilton-Jacobi-Isaac partial differential equations.

Other logics dealing with multi-player settings are e.g., coalition logic [19],
ATL [3] or stochastic game logic [4]. These logics are able to verify that a coali-
tion of arbitrarily many players is able to reach a certain goal. The game that
is played is defined in the semantics. That has the disadvantage that validity
demands a formula to be true for all games, which is only the case for very gen-
eral statements. Our logic includes the game’s definition in the formula, so that
safety guarantees can be made for a specific game. Furthermore, the referenced
works [3/4/19] only consider reachability of outcomes, whereas our work includes
goals for all players.

Agotnes et al. |2] include a preference relation in their logic but keep reach-
ability of outcomes and their preferability separate which leaves information
unused. Moreover, games are not composable whereas our logic allows modular-
izing games so that proofs can be reused. Additionally, the players in our work
take each other’s goals into account to improve their strategies.

Closest to our work are the propositional game logic developed by Parikh 18]
which addresses zero-sum two-player games, and differential game logic dGL by
Platzer [22] which extends game logic to include continuous dynamics. Relations
to the p-calculus are discussed in prior work [1]. Our work takes these logics a
step further by allowing non-zero sum games instead.



Semi-Competitive Differential Game Logic 281

3 Preliminaries

For better understanding of the content of the paper, the logic dGL [22] will be
recalled briefly in this section. In dGL, there are two players called Angel and
Demon. These players play a hybrid game which is specified as part of a logical
formula. In the following, syntax, semantics and a proof calculus for dGL will
briefly be explained, based on the book [24].

The syntax of dGL is based on first-order logic. Additionally, there are two
modalities (a)P and [a]P. The first one states that Angel can win the game «
by achieving her goal P. The second modality means that Demon can win game
« by reaching his goal P. Formally, the syntax is defined as follows:

Table 1. Hybrid games

Game Name Meaning

T:=e Assignment game|assigns e to x

x' = f(z)&Q|Continuous game |Angel evolves ordinary differential equation (ODE) to
change value of x while evolution domain constraint
@ has to hold

7Q Test game tests if Angel fulfills @, if not, she loses and Demon
wins automatically

auUp Choice game Angel chooses to play either a or 8

Q; Sequential game |« and (8 are played sequentially

a? Dual game controls in a are swapped between Angel and Demon

a* Repetition game |« is played repeatedly until Angel wants to stop after

finite rounds

Definition 1 (dGL Syntax). Formulas of dGL are defined by the grammar
PQ:=e>é|-P|PAQ|VzP|3xzP | {(a)P | [a] P
where x is a variable, e, € terms, P,Q formulas and a a hybrid game (Table.

The formulas are interpreted over states. Each state is a function w : V — R
which assigns a real value to each variable. The variable values in state w. are
the same as in w, except for x whose value is . The semantics is defined as a
function [-] : Fml — P(S) which returns the states where a formula is true.
The semantics for the first-order formulas is as usual. The semantics for the two
modalities is defined using two functions that retrace from which states a player
must have started to reach their goal at the end of the game.

Definition 2. (Semantics) The dGL semantics is:

= [{@) Pl = sa([P])
= [[d@l = da(lQ])

Angel’s function for her winning region s, (+) is defined as follows:
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~ Gme(X) = {we S |wil € X}
= Sp=f@)&Q(X) = {p(0) € S | o(r) € X for some r > 0 and (differentiable)

¢ 1 [0,7] = S such that p(s) € [Q] and %Z(x)(s) = @(9)[f(x)] for all

0<s<r} Cﬁf{g@(O) €S| o(r) e X for somer >0 with ¢ =2’ = f(z)AQ}
- a(X) =[QINnX
— Saup(X) = a(X) Ugp(X)
— Sasp(X) = alsp(X))
- Cad(X) :Ca(XC)C
e (X) =2 S S| X Uw(z) € 2)

Demon’s winning region is defined by 6,(X) = co(XC)C ( [22, Th. 3.1]), i.e.,
Demon wins whenever Angel fails to reach the opposite of his goal, because he
wins whenever Angel loses.

The proof calculus for dGL shown in Table [2] consists of all proof rules for first-
order logic and one axiom for each game in Angel’s modality. Additionally, there
is also a determinacy axiom that links Angel’s modality to Demon’s. All axioms
for Demon’s modality can be derived using this axiom. Furthermore, the calculus
contains a monotonicity rule and a fixpoint rule that handles repetition games.

Table 2. dGL proof calculus

] {
) {z:=e)p ( ) p(e) ;
(' = f(z)P < 320 (z:==y(t)P (' =[f(y) |
( {

D QP QAP ‘) {@")P < PV (a){a®)P
M __Pm@ FP PV -@Q
()P = ()@ (a"YP = Q

4 Semi-Competitive Differential Game Logic

The logic dGL,. supports two players called Angel and Demon. They semi-
competitively play a game defined in the dGL,. formula.

After the game has ended, both want to have achieved their goal. Each player
has a separate goal which is independent of the other player’s goal. The game is
non-zero sum, both players can win or lose at the same time.

4.1 Semi-Competitiveness

To describe the player’s behavior in the logic, the notion of “semi-competitive-
ness” is introduced in this paper. Semi-competitiveness means that players co-
operate where it is helpful for them, and compete where it is necessary. More
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precisely, a player will only choose options that help them reach their goal. They
will never lose on purpose. If there are multiple options that all make the player
win, the player will always choose an option that also helps the other player
win. If no option makes the player win, they will not altruistically help the other
player instead. In terms of game theory, the players play a cooperative game, if
collaboration is possible, and a non-cooperative game otherwise.

This gameplay is chosen to ensure the greatest cooperation among players,
especially in games with multiple steps. Here, uncooperative behavior in a pre-
vious step might have negative consequences later. For example, if Angel and
Demon pick candy for each other and Angel gives Demon a lemon candy, al-
though he wanted a strawberry candy, he might in turn give Angel a candy she
does not want because he already lost the game and will not help Angel any-
more. If, on the other hand, Angel indeed gives him a strawberry candy, Demon
will give her the candy she wants because now all options make him win, so he
will help Angel.

Additionally, this gameplay ensures monotonicity of the logic, i.e., a greater
goal means more possibilities to win. Monotonicity ensures that the logic behaves
intuitively. Furthermore, it guarantees the existence of fixpoints which are needed
later on to define parts of the semantics. Helping other players is a necessary
assumption to obtain monotonicity: If the players’ behavior does not also help
the other player win and players choose randomly between all options they are
indifferent to, then monotonicity is lost.

4.2 Syntax

The syntax of dGL ;. consists of first-order logic and two modalities. The modality
(a)(P, Q) expresses that Angel has a winning strategy to win the game a by
achieving her goal P while knowing that Demon’s goal is Q. [a](P, Q) means
that Demon has a winning strategy to achieve @ by playing « while knowing
that Angel’s goal is P.

Definition 3 (dGL,. Syntax). The following grammar defines the dGLg. for-
mulas:

—a,fr=x=c|2 = f(2)&Q |?7Q | aUB|a;B ]| al]|a*
-~ PQu=eze[-P[PAQ|VzP|3xP | () (P, Q)| [a](P,Q)

where «, B are hybrid games, P,Q are dGLg. formulas, = is a variable, f is a
function and e, € are terms.

The hybrid games in Definition [3| have the same effects as the ones for dGC
described in Table |1} So in the game ((z := x +1Ux := 2 — 1); {2’ = —1}9)*,
for example, the outermost game is a repetition game. Here, Angel chooses after
each round, if she wants to play again. She might also choose to play 0 rounds.
If she does play a round, Angel first chooses whether to increase or to decrease x
by one. After that follows a continuous game. As it is marked with ¢, this game
is under Demon’s control, so he chooses how long to evolve the ODE to decrease



284 Julia Butte and André Platzer

z. That means, time passes and = changes according to the ODE until Demon
stops time. In this example, the new value of x would be x —t after time ¢. Then,
Angel chooses again whether she wants to play another round or not.

The main difference now to dGL is not in the effects of games but rather
in the behavior of the players: If we have ((z := 1Uz := 0)))z = 1 in dGL,
Demon will choose an option that hinders Angel at achieving her goal due to
his adversarial behavior, i.e., z := 0 here. In dGL,. the formula could be ((z :=
1Uz :=0)%)(z =1, T), including the information that Demon’s goal is true. As
Demon can win in any case, Demon helps Angel by choosing x := 1 due to his
semi-competitive behavior.

Ezxample 1. As the verification of an aerial collision avoidance system is a fully-
fledged case study, the two planes in this example are still standing on the
ground. Angel and Demon are replenishing the stocks for their respective plane,
but Angel is missing 3l of orange juice while Demon needs 51 of tomato juice
(more would not fit in the tank, less and some passengers will stay thirsty).
Fortunately, Angel has plenty of tomato juice and Demon’s stock is full of orange
juice (enough, so that they do not have to worry about running out). In dGC,.,
filling up each other’s stock can be modeled using two continuous games:

0=0At=0— ({t' =1}; {0 =1} (0 =3,t =5)

First, Angel, at a constant rate, fills tomato juice into Demon’s tank. Then,
Demon fills orange juice into her tank. Note how the goals of both players are
visible at the end of the formula. Although these goals are not directly over-
lapping, the players’ semi-competitive behavior ensures their cooperation which
leads to them both winning the game. This would not have been possible if they
played adversarially because they have no control over the variable that matters
for their goal. Even with indifference towards Demon’s goal, Angel could not
have won the game. If she would not care about the amount of tomato juice
she gave to Demon, Demon would probably have refused to cooperate with her,
making her lose as well.

4.3 Semantics

The semantics of the formulas is defined in the following section. This is done
via a function [-] : Fml — P(S) that maps a formula to the set of states where
the formula is true. S is the set of all states. A state is a mapping w : V — R that
maps all variables to a real number. The state w] denotes a state that coincides
with the state w in all variable values, except for x whose value is replaced by r.

The semantics of first-order operators is as expected. To define the semantics
of Angel’s and Demon’s modality, the functions ¢, (-, -) and d,(-, -) resp., are used
which describe the winning region of a game. These functions take two inputs
each: The first one is Angel’s goal and the second is Demon’s goal. Since Angel
and Demon know each other’s goal, this knowledge is needed for determining
the winning regions. Unlike in dGL, Demon’s semantics cannot be defined as
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a function of Angel’s winning region ¢,(-,-) anymore, because their winning
regions are no longer complementary. Instead, their winning regions partially
overlap and there are also states that belong to neither winning region.

Still, the semantics of the assignment, test, and sequential game is simi-
lar to dGL as the effects of the game are the same, and the players’ decisions
cannot differ from those they would make in dGL because these games do not
involve choices. A little tweak for the semantics of the sequential game is needed
nonetheless, as the winning regions in dGL,. take two arguments instead of one.
To win the sequential game «; 3, the player has to reach their winning region for
B after «, so they can reach their goal after 8. The same applies for the other
player except their respective winning region operator is needed, instead, so the
semantics of the sequential game is:

:8(X,Y) = ¢a(ep(X,Y),05(X,Y)) and ba;5(X,Y) = da(sp(X, V), 65(X,Y))

For Angel, the semantics of the continuous game and the choice game also
correspond to the semantics in dGL. The winning region only returns states in
which Angel has an option so that she can win but which one she will actually
choose is invisible. Locally, only her goal matters to her because she has control
which is also why she cannot expect help from Demon in this step. Globally, semi-
competitiveness comes into play through nested games, e.g., the games Angel
chooses from in the choice game. Especially important here is the dual game
because in this game Demon’s goals matter for Angel which then inductively
matter for Angel through the whole game.

Demon’s semantics of the continuous game and choice game does differ from
the one in dGL though. His winning regions are extended by states where Angel,
who is in control, will help him. As they act semi-competitively, Angel will help
him in states where both of their goals can be reached simultaneously. Therefore,
Demon’s semantics for the continuous game d,/—f (250 (X,Y) is:

{p(0) € S| p(r) €Y for all r with ¢ =2’ = f(z) AQ}
U{p(0) eS| e(r)e XNY for some r with ¢ =12’ = f(z) AQ}

The definition of the semantics uses a function from time to states ¢. Over the
course of this function, x changes such that ' = f(x) and the evolution domain
constraint @) holds in every state in ¢. If Demon stays in his goal Y for all states
in ¢, he can definitely win the game (left-hand side of the union). If Angel can
reach a state by evolving the ODE (i.e. there is a state in ¢) where both of their
goals are fulfilled, she will stop there because she behaves semi-competitively,
making both of them win (right-hand side of the union). The definition for the
semantics of the choice game follows a corresponding idea:

8aup(X,Y) = (0(X,Y)Ndg(X,Y)) U (0a(X,Y) N (X,Y))
U(0s(X,Y)N¢s(X,Y))

If Demon can win both « and , i.e. he is in the winning region of o and 3, he
can definitely win the game. If he and Angel can both win «, i.e. the current
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state is part of both Angel’s and Demon’s winning region for «, Demon can also
win the game because Angel will choose « due to her semi-competitive behavior.
A similar argument applies, if both of them can win .

In the dual game, the controls between Angel and Demon are swapped. This
is simulated in the semantics by letting Angel keep control but making her play
for Demon, i.e. trying to achieve his goal. In exchange, Demon plays with Angel’s
goal. As Angel now wins, if Demon’s goal is achieved, her winning region actually
denotes the states where Demon wins, as well as vice versa. Consequently, Angel
and Demon swap goals and winning regions in the definitions of the dual game:

Gai(X,Y) =60V, X) and 0,4(X,Y) = ¢, (Y, X)

The main idea to define the semantics of the repetition game is that al-
lowing one more round of « should not change the winning region. Conse-
quently, the winning region for Angel should be some kind of fixpoint of the
form X U ¢y (o (X,Y),00+(X,Y)) = ¢« (X,Y) as Angel either is already in
her goal, or she can reach it after one more round of a. The problem is that
by the same idea, Demon’s winning region should also be a fixpoint, so using a
definition like this would result in complex nested fixpoints. Additionally, this
fixpoint is not unique yet. To solve the first problem, a case distinction is made
between competitive and cooperative behavior, resulting in two fixpoints. If they
compete, the other’s goal is the complement of the fixpoint because they have
complementary goals, while in the cooperative case, the other’s goal is the same
fixpoint, as they share the same goal. Consequently, a candidate Z for Angel’s
first fixpoint should fulfill X Us,(Z, Z€) = Z and for the second it should fulfill
(XNY)U (sa(Z,Z2)N04(Z,Z)) = Z. The intersection of their winning regions
rules out that one player wins and fulfills both goals (otherwise they would not
cooperate), but the other one loses, e.g., by failing a test. To make the fixpoints
unique, either the greatest or the least fixpoint can be chosen. S as the greatest
possible set fulfills the equation, but this does not contain much information,
so the least fixpoint is used. It can be computed as the intersection of all pre-
fixpoints (sets that fulfill the equation only with set inclusion). Taken together,
the semantics for Angel is:

o (X,Y) = [[{ZC S| XU(Z 2°) C 2}
U(Z S S| (XNY)U(salZ,Z2)N6a(Z,Z))}

The definition of Demon’s winning region follows the same idea. The second
fixpoint is identical because here, both of them win. If Demon competes with
Angel, he can only win for sure if he always stays in his goal, no matter how
many rounds Angel plays. Consequently, Demon needs to be in his goal now,
and he should be in his winning region, even if one more round of « is allowed:
Z =YnN 6a(ZC,Z). Because the least fixpoint in this case is the empty set,
which does not contain much information, the greatest fixpoint is used. It can
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be computed by union of all pre-fixpoints. Thus, the semantics for Demon are:

5a(X,Y)= | J{ZC S| ZCYNbu(2° 2)}
U(Z S S (XNY)U(salZ,2)N6a(Z,2))}

The full definition of the semantics can be found in the long version [6].

Remark 1. As in dGL, goals can still be converted to tests at the end, i.e. there
is an equivalent formulation for each modality where the goals are replaced by
true and the original goals appear as tests at the end of the program. As Angel’s
and Demon’s winning regions are not complementary anymore, this conversion
is much more subtle than in dGL because Angel does not always win if Demon
loses. Additionally, Demon’s ability to win influences his choices and thus Angel’s
ability to win and vice versa. Therefore, tests for both goals must be incorpo-
rated, and Angel and Demon, resp., need to pass them in any order (either test
Angel first, or test Demon first) to ensure that they do not only win because
the other one loses. This also demonstrates that the opponent’s goals matter to
both players. For the full statement, reference the long version [6, L. 8].

5 dGL,. Properties and Relation to Zero-sum dGC

In this section, some important results for dGL,. are proven. The first result
proves monotonicity which ensures that the logic behaves in an intuitive way:
A larger goal can be reached from a larger winning region. The first lemma
states that the logic is monotone if both goals are increased. In this case, both
Angel’s and Demon’s winning region will increase. The proof for this lemma is
a straightforward structural induction over a.

Lemma 1 (Monotonicity). The logic dGLs. is monotone, i.e.
X CA)Y C B implies so(X,Y) C¢o(A, B) and 6,(X,Y) C é.(4, B)

See proof in the long version [6].

The second lemma states that if Angel’s and Demon’s goals are disjoint,
Angel’s winning region expands by increasing her goal while Demon’s goal may
change arbitrarily. Intuitively, all parts in the semantics covering cooperation
are empty since the goals are disjoint. Then, proving that the remaining sets
grow by increasing the goal is fairly easy. After that, the parts where Angel and
Demon cooperate, can be added. Thus, the winning region can only increase.
The proof for Demon’s statement is conducted similarly.

The following lemma is especially helpful if Angel and Demon have opposing
goals, before and after the increase of one goal. In this case, enlarging one goal
means that the other shrinks. Therefore, the first monotonicity lemma [} is not
applicable but Lemma [2] can be used.
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Lemma 2 (Disjoint Monotonicity). If the goals of Angel and Demon are
initially disjoint, then dGLg. is monotone in each argument:

X CAXNY =0 implies so(X,Y) Cso(A, B) and
Y C B, XNY =0 implies 6o,(X,Y) C 6o (A, B)

Sets A and B may overlap. For each case the other goal can be chosen arbitrarily.

See proof in the long version [6].

Another important property is that the logic behaves as intended. But how
can this be checked? If the players have complementary goals, they have to
compete and will behave adversarially. The same setting can also be expressed
in dGL (which is assumed to be defined suitably). Consequently, both formulas
should also have the same truth values. This holds indeed, as Lemma shows:

Lemma 3 (Complementary dGL Equivalence). If Angel and Demon have
complementary goals, the logic dGLg. reduces to dGL, i.e. it holds that

(X, XO) = (X) and 0a(XC,X)=6q(X)

See proof in the long version [6].
In the proof it is shown via structural induction that all parts in the semantics
that differ between dGLg. and dGL cancel out, if the goals oppose.

Remark 2. If there were a super-logic that contained both dGL,. and dGL, the
previous lemma could be rendered as the syntactic equivalences

(a)(P,—P) + ()P and [a](=P,P) < [a]P

Notation 1 In the following, («)(P,—P) will be abbreviated with ()P and
[](=Q, Q) with []Q, as well as (X, XC) with ¢o(X) and 5,(YC,Y) with
04(Y). These two formulas express the same and have the same winning regions
in dGLs. and dGL respectively(Lem. @) The abbreviations allow for staying in
the logic dGLg. without having to write P,Q, X,Y twice.

Consequently, determinacy holds even though it only does for complementary
goals, which will be useful for the proof calculus later on.

Corollary 1 (Complementary Determinacy). Determinacy holds if Angel
and Demon have complementary goals, i.e. the following equivalence is valid:

~(@)(P,~P) < [a](P,~P)

See proof in the long version [6].

To show that dGLg.’s definition is reasonable for the general case, first ob-
serve the following: If Angel and Demon compete in a later game, they will not
cooperate in an earlier game because they will not reach both goals at the same
time anyway. Similarly, if Angel and Demon cooperate in a later game, they
can already do so for earlier games because they can win together. Inductively,



Semi-Competitive Differential Game Logic 289

this means that Angel and Demon can already decide at the start whether to
cooperate or to compete! As competing players try to achieve mutually exclu-
sive goals, each of them might as well play against an adversarial player because
the other one might hinder them at achieving their goal in order to reach their
own. Two cooperating players can also be modeled as an adversarial game: The
coalition is regarded as one player and tries to reach both goals, playing against
an adversarial player with no control. Since one of the two cases always applies,
every semi-competitive game can be split into two adversarial games. Using this
alternative description, the definition of dGC. can be checked against dGL again.
The equivalence holds indeed, as Lemma shows. The ~¢ indicates the removal
of all dual operators to transfer all controls to the coalition player. Although
the conversion is possible, there are two winning regions in dGL instead of one
in dGLg, which doubles the work for proving formulas. On top, the formulas are
linked by disjunction which makes it impossible to get rid of one part if each
formula only holds for certain cases. Additionally, dGL,. offers a much more
intuitive way of expressing games where both players have an individual goal.

Lemma 4 (General dGL Equivalence). Winning regions in dGL,. corre-
spond to those in dGL as follows:

(X, Y)=¢-a(X NY)U(X) and 0,(X,Y)=¢,—«(XNY)Ud.(Y)
where o is a hybrid game, X,Y are sets of states and a~% is defined in Table @

See proof in the long version [6].
As a corollary for Lemma [4], it can be stated that players will cooperate, iff
both can win the game.

Corollary 2 (Joint Cooperation). It holds that
(X, Y)N0a(X,Y) =¢,-a(X NY)

See proof in the long version [6].

6 Proof Calculus

For making practical use of dGL,., a proof calculus is provided in this section.
The proof calculus includes two axioms for each hybrid game, one for Angel
and one for Demon. They correspond to the game’s semantic definitions and
decompose formulas into smaller parts.

Table 3. Hybrid system a~% is the systematization of hybrid game «

(z:=e) l=z:=e¢ (;8) 4=a%p¢
(¢ = f(2)&Q) ™ = 2’ = f(2)&Q (') = o~
Q)" =7Q (@)= (a=H*
(aup)y=adup?



290 Julia Butte and André Platzer

)) <> pe)

& ;>0 (z = y())(P, Q) (' = f(v)
P
)

(z :=e)(p(z), q(=
(2 = f(@))(P,Q
(?R)(P,Q) < R
(aUB)(P,Q) «
(a; BY(P
(a?
(

) I

)
A
(a)(P,Q) v (B)(P,Q)

) () ((B)(P, Q), [BI(P,Q))
< [0](Q, P)
e < PV{a;a™)(P,Q)

PV<a> 1 — Ry (P/\Q)\/((Oé>(R2,R2)/\[a](R2,R2)) — Ro

@@“
\./\_/@

b (a*)(P, Q) — R1V R2
t=] [2=e](p(x), q(2)) <> gle)
T = f@))(P,Q) « V>0 [zi=2()](P, Q) VI>0 (z:=x(1)) (PAQ, Q) (z' = f(x))
vl [PRI(P,Q) ¢ ~RVQ
U] [fg;é Bl(P )’) Q) « ([P, Q) A BI(P,Q)) V ([a(P,Q) Aa)(P,Q)) V (IB1(P, Q) A
] 7P7 Q) < [a]((B)(P,Q), [B](P. Q))
U e (P,Q) < (PAQ)V (o) (P, Q) A a”](P,Q)) V (Q A o a”]Q)
1\[<> P1 — P2 Ql — Q
&g)(Pl’Q 1) = <Oé>(P27Q2)

><> 1 — P2 P1 Q1 — 1

o) (P, Q1) = () (P2, Q2)
det  —=(a)P < [a]-P

Fig. 1. Proof calculus for dGL,.

Additionally, there is the determinacy axiom det, which corresponds to Corol-
lary [I] and links Angel and Demon’s modality, if they have opposing goals. The
fixpoint rule FP is, like the other rules, written with the premises at the top and
the conclusion at the bottom. The rule characterizes («*)(P, Q) as the union
of two least fixpoints. If R; is a pre-fixpoint for the first fixpoint and R, is a
pre-fixpoint for the second, then Ry V Ry holds whenever (a*)(P, Q) holds. As
a subtle detail, R; and Ry do not need to be the same because Angel can rarely
achieve the same by competing and by cooperating with Demon. Unlike axiom
(*), the rule does not feature more instances of repetition games in the premises.
Demon’s induction rule is not included because it can be derived from FP. The
other two proof rules M() and My () correspond to the two monotonicity lemmas.
Unlike the axioms, the monotonicity rules for Demon can be derived by using
(7). For the monotonicity rules, it is irrelevant that this changes the game. But
for Demon’s axioms, the dual game introduced by (?) prevents the use of any
other axiom to derive them.

Additionally, the proof calculus includes all rules for first-order logic. The
proof calculus’ rules are listed in Fig. [T} except for the first-order rules which are
left out for reasons of space limitations and readability.

Ezxample 2. With these proof rules on hand, it can now be proved that Angel is
actually able to win the game seen in Example [1| and gets enough orange juice
to supply all her passengers but not so much that it spills everywhere. In the
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proof, the hybrid game is straightforwardly broken down using the continuous,
dual and assignment axioms:

*

0=0,t=0F y+5=5A0+3=3

0=0,t=0 F Vs>0fo:=o+s](t+5=5,0=3)
V3s>0{o=0+s)(t+5=5N0=3,0=23)

0=0,t=0F [2'=1](t+5=5,0=23)

3R, (:=) ;
0=0,t=0 F 3s>0(t :=t+ s)([z' =1](t =5,0=3),
0 (#' =1)(t =5,0=3))
0=0;t=0 F (¢ =1)([z' =1](t =5,0=13),
(' =1)(t =5,0=3))
. d d
G- . 1) 0=0,t=0F ({ =1}{0 =1}"(0=3,t =5)

Notably, the point where the proof splits into two cases (cooperation or compe-
tition), only occurs in the penultimate step of the proof. In this case it is already
conceivable which option is provable, and the other branch can be eliminated,
but usually this is hard to see. Therefore, this saves considerable effort compared
to using dGL where both cases had to be considered from the start.

To be of any use, soundness of the proof calculus is crucial. Soundness means
that all formulas that can be proven in the proof calculus are actually valid. If a
false formula could be proven, anything could be, rendering it useless. Therefore,
the soundness of the proof calculus is proven in the following theorem:

Theorem 1 (Soundness). The dGLg. proof calculus is sound.

See proof in the long version [6].

Another important property of a proof calculus is completeness. Complete-
ness means that any valid formula can be proven in the proof calculus. But how
can this property be shown for dGLs.? For dGL it is already known that it is
relatively complete [22]. This means that any valid formula can be proved if all
tautologies may be assumed in the antecedent, i.e. the notion is less strict than
completeness. For dGL,. only relative completeness can be proven, as this logic
builds on top of dGL. Adapting the definitions from [22], relative completeness
is defined as:

Definition 4 (Expressiveness [22]). A logic L is expressive (for dGLs.), if for
every formula ¢, there exists an equivalent formula ¢* of L, i.e. = ¢ <> ¢°. The
logic L is called differentially expressive, if it is expressive and all equivalences
of the form (z' = 0)(P,Q) + ((z’ = 0)(P,Q))" and [z = 0](P,Q) + ([z’ =
0](P,Q))° are provable in the proof calculus. It is assumed that the logic L is
closed under first-order logic.

Definition 5 (Relative completeness [22]). A logic is complete relative to
an expressive logic L, if every valid formula can be proved in the calculus from
L tautologies.
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If now, the dGL. proof calculus could be converted to the dGL proof calculus,
relative completeness could be proven almost for free. In the semantics this con-
version is possible by Lemma[d] The proof calculus though, does not contain any
axioms that syntactically rephrase this lemma. The inclusion of a correspond-
ing axiom would also run counter to the intended compositionality principles of
dGL,.. Fortunately, this is also unnecessary, as Theorem [2| shows a core insight:
The two complementarization axioms (C.A. 1, 2) that split one modality with
two individual player goals into two modalities with complementary goals, are
admissible! Consequently, the set of provable formulas is unaffected by adding
them. Hence, similar to Gentzen’s cut elimination theorem, the compositional
axioms of dGL. prove every dGL,. formula that the complementarization axioms
would reduce to dGL, thereby guaranteeing relative completeness for free.

Theorem 2 (Complementarization Elimination). The complementariza-
tion axioms are admissible in the proof calculus:

— Complementarization aziom 1: (a)(P,Q) + (=) (P A Q) V (a)P
— Complementarization aziom 2: [a](P,Q) < (a4 (P AQ) V [a]Q

See proof in the long version [6].
Using Theorem [3] the relative completeness of dGL;. can easily be proven:

Theorem 3 (Completeness). The dGL,. proof calculus is complete relative
to any differentially expressive logic L.

Proof. (Sketch) With complementarization, every formula of dGL,. can be trans-
formed to a formula where all modalities feature opposing goals. The complemen-
tarization axioms are admissible by Theorem [2] so the rewrite can be mimicked
using only the rules available in the dGL,. proof calculus. For opposing goals,
the rules in the proof calculus correspond to the rules of the proof calculus
for dGL which is complete relative to any differentially expressive logic L [22].
Consequently, the proof calculus for dGLg. is also relatively complete.

See full proof in the long version [6].

7 Conclusion

This paper introduces the logic dGL,. for reasoning about hybrid games with
two players that have individual goals. dGL,. helps determine if a player is able
to achieve their goal after playing a given game while taking into account the
goal of the other player to compete or collaborate if needed. Additionally, the pa-
per introduces the notion of “semi-competitiveness” to characterize the players’
behavior.

Syntax, semantics and a proof calculus for dGL,. are given in this paper.
Monotonicity is shown to hold for dGL,. and the winning regions of dGL,. co-
incide with those of zero-sum dGL for complementary goals. Furthermore, com-
plementarization has been proven admissible, illustrating the semi-competitive
behavior of the players and justifying that the semantics is defined suitably.
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In the future, several extensions of dGL,. would be interesting. First, players

might behave suboptimally by not always cooperating when necessary. In this
case, players would need to actively agree on cooperating. As zero-sum three
player games can be reduced to non-zero sum two-player games [17], dGL,. could
also be extended to a three-player logic. This logic could then be used for safety
proofs of more complex scenarios with more players like overtaking maneuvers.
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