
Constructive Hybrid Games?

Brandon Bohrer1 and André Platzer1,2

1 Computer Science Department, Carnegie Mellon University
{bbohrer,aplatzer}@cs.cmu.edu

2 Fakultät für Informatik, Technische Universität München

Abstract. Hybrid games combine discrete, continuous, and adversarial
dynamics. Differential game logic (dGL) enables proving (classical) exis-
tence of winning strategies. We introduce constructive differential game
logic (CdGL) for hybrid games, where proofs that a player can win the
game correspond to computable winning strategies. This constitutes the
logical foundation for synthesis of correct control and monitoring code
for safety-critical cyber-physical systems. Our contributions include novel
semantics as well as soundness and consistency.

Keywords: Game Logic, Constructive Logic, Hybrid Games, Dependent Types

1 Introduction

Differential Game Logic (dGL) provides a calculus for proving the (classical) exis-
tence of winning strategies for hybrid games [42], whose mixed discrete, continu-
ous, and adversarial dynamics are compelling models for cyber-physical systems
(CPSs). Classical existence does not necessarily imply that the resulting winning
strategies are computable, however. To overcome this challenge, this paper intro-
duces Constructive Differential Game Logic (CdGL) with a Curry-Howard corre-
spondence: constructive proofs for constructive hybrid games correspond to pro-
grams implementing their winning strategies. We develop a new type-theoretic
semantics which elucidates this correspondence and an operational semantics
which describes the execution of strategies. Besides its theoretical appeal, this
Curry-Howard interpretation provides the foundation for proof-driven synthe-
sis methods, which excel at synthesizing expressive classes of games for which
synthesis and correctness require interactive proof. Hybrid games are a com-
pelling domain for proof-based synthesis both because many CPS applications
are safety-critical or even life-critical, such as transportation systems, energy
systems, and medical devices and because the combination of discrete, contin-
uous, and adversarial dynamics makes verification and synthesis undecidable in
both theory and practice. Our example model and proof, while short, lay the
groundwork for future case studies.

? This research was sponsored by the AFOSR under grant number FA9550-16-1-0288
and the Alexander von Humboldt Foundation. The first author was also funded by
an NDSEG Fellowship.

© The Author(s) 2020
N. Peltier and V. Sofronie-Stokkermans (Eds.): IJCAR 2020, LNAI 12166, pp. 454–473, 2020.
DOI: 10.1007/978-3-030-51074-9 26

https://orcid.org/0000-0001-5201-9895
https://orcid.org/0000-0001-7238-5710
https://doi.org/10.1007/978-3-030-51074-9_26

Constructive Hybrid Games 455

Challenges and Contributions. In addition to dGL [42], we build directly on
Constructive Game Logic (CGL) [9] for discrete games. Compared to CGL, we
target a domain with readily-available practical applications (hybrid games),
and introduce new type-theoretic and operational semantics which complement
the realizability semantics of CGL while making Curry-Howard particularly clear
and providing a simple notion of strategy execution. We overcome the following
challenges in the process:

– Our semantics must carefully capture the meaning of constructive hybrid
game strategies, including strategies for differential equations (ODEs).

– Soundness must be justified constructively. We adapt previous arguments to
use constructive analysis [6,12] by appealing to constructive formalizations
of ODEs [17,34]. This adaptation to our new semantics makes it possible to
simplify statements of some standard lemmas.

– We study 1D driving control as an example, which demonstrates the strengths
of both games and constructivity. Games and constructivity both introduce
uncertainties: A player is uncertain how their opponent will play, while con-
structive real-number comparisons are never sure of exact equality. These
uncertainties demand more nuanced proof invariants, but these nuances im-
prove our fidelity to real systems.

These contributions are of likely interest to several communities. Other con-
structive program logics could reuse our semantic approach. Our example uses
reach-avoid proofs for hybrid games, a powerful, under-explored [48] approach.

2 Related Work

We discuss related works on games, constructive logic, and hybrid systems.

Games in Logic. Propositional GL was introduced by Parikh [39]. GL is a pro-
gram logic in the spirit of Hoare calculi [26] or especially dynamic logics (DL) [47]:
modalities capture the effect of game execution. GLs are unique in their clear del-
egation of strategy to the proof language rather than the model language, allow-
ing succinct game specifications with sophisticated winning strategies. Succinct
specifications are important: specifications are trusted because proving the wrong
theorem would not ensure correctness. Relatives without this separation include
SL [14], ATL [2], CATL [27], SDGL [23], structured strategies [49], DEL [3,5,56],
evidence logic [4], and Angelic Hoare Logic [35].

Constructive Modal Logics. We are interested in the semantics of games, thus we
review constructive modal semantics generally. This should not be confused with
game semantics [1], which give a semantics to programs in terms of games. The
main semantic approaches for constructive modal logics are intuitionistic Kripke
semantics [58] and realizability semantics [38,32]. CGL [9] used a realizability
semantics which operate on a state, reminiscent of state in Kripke semantics,
whereas we interpret CdGL formulas into type theory.

456 B. Bohrer and A. Platzer

Modal Curry-Howard is relatively little-studied, and each author has their
own emphasis. Explicit proof terms are considered for CGL [9] and a small frag-
ment thereof [30]. Others [59,18,13] focus on intuitionistic semantics for their
logics, fragments of CGL. Our semantics should be of interest for these frag-
ments. We omit proof terms for space. CdGL proof terms would extend CGL proof
terms [9] with a constructive version of existing classical ODE proof terms [8].
Propositional modal logic [37] has been interpreted as a type system.

Hybrid Systems Synthesis. Hybrid games synthesis is one motivation of this
work. Synthesis of hybrid systems (1-player games) is an active area. The unique
strength of proof-based synthesis is expressiveness: it can synthesize every prov-
able system. CdGL proofs support first-order regular games with first-order (e.g.,
semi-algebraic) initial and goal regions. While synthesis and proof are both un-
decidable, interactive proof for undecidable logics is well-understood. The Mod-
elPlex [36] synthesizer for CdGL’s classical systems predecessor dL [44] recently
added [11] proof-based synthesis to improve expressiveness. CdGL aims to pro-
vide a computational foundation for a more systematic proof-based synthesizer
in the more general context of games.

Fully automatic synthesis, in contrast, restricts itself to small fragments in or-
der to sidestep undecidability. Studied classes include rectangular hybrid games
[25], switching systems [52], linear systems with polyhedral sets [31,52], and dis-
crete abstractions [21,20]. A well-known [55] systems synthesis approach trans-
lates specifications into finite-alternation games. Arbitrary first-order games are
our source rather than target language. Their approach is only known to termi-
nate for simpler classes [50,51].

3 Constructive Hybrid Games

Hybrid games in CdGL are 2-player, zero-sum, and perfect-information, where
continuous subgames are ordinary differential equations (ODEs) whose duration
is chosen by a player. Hybrid games should not be confused with differential
games which compete continuously [29,43]. The players considered in this paper
are Angel and Demon where the player currently controlling choices is always
called Angel, while the player waiting to play is always called Demon. For any
game α and formula φ, the modal formula 〈α〉φ says Angel can play α to ensure
postcondition φ, while [α]φ says Demon can play α to ensure postcondition φ.
These generalize safety and liveness modalities from DL. Dual games αd, unique
to GLs, take turns by switching the Angel and Demon roles in game α. The Curry-
Howard interpretation of a proof of a CdGL modality 〈α〉φ or [α]φ is a program
which performs each player’s winning strategy. Games can have several winning
strategies, each corresponding to a different proof and a different program.

3.1 Syntax of CdGL

We introduce the language of CdGL with three classes of expressions e: terms f, g,
games α, β, and formulas φ, ψ. We characterize terms semantically for the sake

Constructive Hybrid Games 457

of generality: a shallow embedding of CdGL inside a proof assistant might use
the host language for terms. For games and formulas, we find it more convenient
to explicitly and syntactically define a closed language.

A (scalar) semantic term is a function from states to reals, which are under-
stood constructively à la Bishop [6,12]. We use Bishop-style real analysis because
it preserves many classical intuitions (e.g., uncountability) about R while ensur-
ing computability. Type-2 [57] computability requires that all functions on real
numbers are computable to arbitrary precision if represented as streams of bits,
yet computability does not require that variables range over only computable
reals. It is a theorem [57] that all such computable functions are continuous, but
not always Lipschitz-continuous nor differentiable.

We introduce commonly used term constructs, which are not exhaustive be-
cause the language of terms is open. The simplest terms are game variables
x, y ∈ V where V is the (at most countable) set of variable identifiers. The game
variables, which are mutable, contain the state of the game, which is globally
scoped. For every base game variable x there is a primed counterpart x′ whose
purpose within an ODE is to track the time derivative of x. Real-valued terms
f, g are simply type-2 computable functions, usually from states to reals. It is
occasionally useful for f to return a tuple of reals, which are computable when
every component is computable. Since terms are functions, operators are com-
binators: f + g is a function which sums the results of f and g.

Definition 1 (Terms). A term f, g is any computable function over the game
state. The following constructs appear in this paper:

f, g ::= · · · | c | x | f + g | f · g | f/g | min(f, g) | max(f, g) | (f)′

where c ∈ R is a real literal, x a game variable, f + g a sum, f · g a product,
and f/g is real division of f by g. Divisors g are assumed to be nonzero. Mini-
mum and maximum of terms f and g are written min(f, g) and max(f, g). Any
differentiable term f has a definable (Section 4.2) spatial differential term (f)′,
which agrees with the time derivative within an ODE.

CdGL is constructive, so Angel strategies make choices computably. Until his
turn, Demon just observes Angel’s choices, and does not care whether Angel
made them computably. We discuss game-playing informally here, then formally
in Section 4. In red are the ODE and dual games, which respectively distinguish
hybrid games from discrete games and games from systems.

Definition 2 (Games). The set of games α, β is defined recursively as such:

α, β ::= ?φ | x := f | x := ∗ | x′ = f &ψ | α ∪ β | α;β | α∗ | αd

The test game ?φ, is a no-op if Angel proves φ, else Demon wins by default
since Angel “broke the rules”. A deterministic assignment x := f updates game
variable x to the value of term f . Nondeterministic assignments x := ∗ ask Angel
to compute the new value of x : R, i.e., Angel’s strategy for x := ∗ is a term whose
value is assigned to x. The ODE game x′ = f &ψ evolves ODE x′ = f for dura-
tion d ≥ 0 chosen by Angel such that Angel proves the domain constraint formula

458 B. Bohrer and A. Platzer

ψ is true throughout. We require that term f is effectively-locally-Lipschitz on
domain ψ, meaning that at every state satisfying ψ, a neighborhood and co-
efficient L can be constructed such that L is a Lipschitz constant of f in the
neighborhood. Effective local Lipschitz continuity guarantees unique solutions
exist by constructive Picard-Lindelöf [34]. ODEs are explicit-form, so no primed
variable y′ for y ∈ V is mentioned in f or ψ. Systems of ODEs are supported, we
present single equations for readability. In the choice game α∪ β, Angel chooses
whether to play game α or game β. In the sequential composition game α;β,
game α is played first, then β from the resulting state. In the repetition game
α∗, Angel chooses after each repetition of α whether to continue playing, but
must not repeat α infinitely. The exact number of repetitions is not known in
advance, because it may depend on Demon’s reactions. In the dual game αd,
Angel takes the Demon role and vice-versa while playing α. Demon strategies
“wait” until a dual game αd is encountered, then play an Angelic strategy for
α. We parenthesize games with braces {α} when necessary.

Definition 3 (CdGL Formulas). The CdGL formulas φ (also ψ) are:

φ ::= 〈α〉φ | [α]φ | f ∼ g

Above, f ∼ g is a comparison formula for ∼ ∈ {≤, <,=, 6=, >,≥}. The defin-
ing formulas of CdGL (and GL) are the modalities 〈α〉φ and [α]φ. These mean
that Angel or Demon respectively have a constructive strategy to play hybrid
game α and prove postcondition φ. We do not develop modalities for existence
of classical strategies because those cannot be synthesized to executable code.

Standard connectives are defined from games and comparisons. Verum (tt)
is defined 1 > 0 and falsum (ff) is 0 > 1. Conjunction φ ∧ ψ is defined 〈?φ〉ψ,
disjunction φ∨ψ is defined 〈?φ∪?ψ〉tt, and implication φ→ ψ is defined [?φ]ψ.
Real quantifiers ∀xφ and ∃xφ are defined [x := ∗]φ and 〈x := ∗〉φ, respectively. As
usual, equivalence φ↔ ψ reduces to (φ→ ψ) ∧ (ψ → φ), negation ¬φ is defined
as φ→ ff, and inequality is defined by f 6= g ≡ ¬(f = g). Semantics and proof
rules are needed only for core constructs, but we use derived constructs when
they improve readability. Keep these definitions in mind, because the semantics
and rules for some game connectives mirror first-order connectives.

For convenience, we also write derived operators where Demon is given con-
trol of a single choice before returning control to Angel. The Demonic choice
α∩β, defined {αd ∪ βd}d, says Demon chooses which branch to take, but Angel
controls the subgames. Demonic repetition α× is defined likewise by {{αd}∗}d.

We write φ yx (likewise for α and f) for the renaming of variable x for y and
vice versa in formula φ, and write φfx for the result of substitution of term f for
game variable x in φ, if the substitution is admissible (Def. 12 on page 14).

3.2 Example Game

We give an example game and theorem statements, proven in [10]. Automotive
systems are a major class of CPS. As a simple indicative example we consider

Constructive Hybrid Games 459

time-triggered 1-dimensional driving with adversarial timing. For maximum time
T between control cycles, we let Demon choose any duration in [0, T]. When
we need to prohibit pathological “Zeno” behaviors while keeping constraints
realistic, we can further restrict t ∈ [T/2, T].

We write x for the current position of the car, v for its velocity, a for the
acceleration, A > 0 for the maximum positive acceleration, and B > 0 for the
maximum braking rate. We assume x = v = 0 initially to simplify arithmetic.
In time-triggered control, the controller runs at least once every T > 0 time
units. Time and physics are continuous, T gives an upper bound on how often
the controller runs. Local clock t marks the current time within the current
timestep, then resets at each step. The control game (ctrl) says Angel can pick
any acceleration a that is physically achievable (−B ≤ a ≤ A). The clock t is
then reinitialized to 0. The plant game (plant) says Demon can evolve physics for
duration t ∈ [0, T] such that v ≥ 0 throughout, then returns control to Angel.

Typical theorems in DLs and GLs are safety and liveness: are unsafe states
always avoided and are desirable goals eventually reached? Safety and liveness
of the 1D system has been proved previously: safe driving (safety) never goes
past goal g, while live driving eventually reaches g (liveness).

pre ≡ T > 0 ∧A > 0 ∧B > 0 ∧ v = 0 ∧ x = 0 post ≡ (g = x ∧ v = 0)

ctrl ≡ a := ∗; ?−B ≤ a ≤ A; t := 0

plant ≡ {t′ = 1, x′ = v, v′ = a& t ≤ T ∧ v ≥ 0}d

safety ≡ pre→ 〈(ctrl; plant)×〉x ≤ g

liveness ≡ pre→ 〈(ctrl; plant; {?t ≥ T/2}d)∗〉x ≥ g

Liveness theorem liveness requires a lower time bound ({?t ≥ T/2}d) to rule out
Zeno strategies where Demon “cheats” by exponentially decreasing durations to
essentially freeze the progress of time. The limit t ≥ T/2 is chosen for simplicity.
Safety theorem safety omits this constraint because even Zeno behaviors are safe.

Safety and liveness theorems, if designed carelessly, have trivial solutions
including but not limited to Zeno behaviors. It is safe to remain at x = 0 and is
live to maintain a = A, but not vice-versa. In contrast to DLs, GLs easily express
the requirement that the same strategy is both safe and live: we must remain
safe while reaching the goal. We use this reach-avoid specification because it is
immune to trivial solutions. We give a new reach-avoid result for 1D driving.

Example 4 (Reach-avoid). The following is provable in dGL and CdGL:

reachAvoid ≡ pre→ 〈{ctrl; plant; ?x ≤ g; {?t ≥ T/2}d}∗〉post

Angel reaches g = x ∧ v = 0 while safely avoiding states where x ≤ g does
not hold. Angel is safe at every iteration for every time t ∈ [0, T], thus safe
throughout the game. The (dual) test ?t ≥ T/2 appears second, allowing Demon
to win if Angel violates safety during t < T/2.

460 B. Bohrer and A. Platzer

0 g/2 g

x0

max

v

Fig. 1. Safe driving envelope

1D driving is well-studied for
classical systems, but the construc-
tive reach-avoid proof [10] is sub-
tle. The proof constructs an enve-
lope of safe upper and live lower
bounds on velocity as a function of
position (Fig. 1). The blue point in-
dicates where Angel must begin to
brake to ensure time-triggered safety. It is surprising that Angel can achieve
postcondition g = x ∧ v = 0, given that trichotomy (f < g ∨ f = g ∨ f > g)
is constructively invalid. The key [10] is that comparison terms min(f, g) and
max(f, g) are exact in Type 2 computability where bits of min and max may be
computed lazily. Our exact result encourages us that constructivity is not overly
burdensome in practice. When decidable comparisons (f < g + δ ∨ f > g) are
needed, the alternative is a weaker guarantee g− ε ≤ x ≤ g for parameter ε > 0.
This relaxation is often enough to make the theorem provable, and reflects the
fact that real agents only expect to reach their goal within finite precision.

4 Type-theoretic Semantics

In this section, we define the semantics of hybrid games and game formulas in
type theory. We start with assumptions on the underlying type theory.

4.1 Type Theory Assumptions

We assume a Calculus of Inductive and Coinductive Constructions (CIC)-like
type theory [15,16,54] with polymorphism and dependency. We write M for
terms and∆ `M : τ to sayM has type τ in CIC context∆. We assume first-class
(indexed [19]) inductive and coinductive types. We write τ for type families and
κ for kinds: type families inhabited by other type families. Inductive type families
are written µt : κ. τ, which denotes the smallest solution ty of kind κ to the fixed-
point equation ty = τ tyt . Coinductive type families are written ρt : κ. τ, which
denotes the largest solution ty of kind κ to the fixed-point equation ty = τ tyt .
Type-expression τ must be monotone in t so smallest and largest solutions exist
by Knaster-Tarski [24, Thm. 1.12]. Proof assistants like Coq reject definitions
where monotonicity requires nontrivial proof; we did not mechanize our proofs
because they use such definitions.

We use one predicative universe which we write T and Coq writes Type 0.
Predicativity is an important assumption because our semantic definition is a
large elimination, a feature known to interact dangerously with impredicativity.
We write Πx : τ1. τ2 for a dependent function type with argument named x of
type τ1 and where return type τ2 may mention x. We write Σx : τ1. τ2 for a de-
pendent pair type with left component named x of type τ1 and right component
of type τ2, possibly mentioning x. These specialize to the simple function τ1 ⇒ τ2
and product types τ1 * τ2 respectively when x is not mentioned in τ2. Lambdas

Constructive Hybrid Games 461

(λx : τ.M) inhabit dependent function types. Pairs (M,N) inhabit dependent
pair types. Application is M N . Let-binding unpacks pairs, whose left and right
projection are πLM and πRM . We write τ1 + τ2 for a disjoint union inhabited
by ` ·M and r ·M, and write case A of p⇒ B | q ⇒ C for its case analysis.

We assume a real number type R and a Euclidean state type S. The positive
real numbers are written R>0, nonnegative reals R≥0. We assume scalar and
vector sums, products, inverses, and units. States s, t support operations s x
and set s x v which respectively retrieve the value of variable x in s : S or
update it to v. The usual axioms of setters and getters [22] are satisfied. We
write s for the distinguished variable of type S representing the current state.
We will find it useful to consider the semantics of an expression both at current
state s and at states s, t defined in terms of s (e.g., set s x 5).

4.2 Semantics of CdGL

Terms f, g are type-theoretic functions of type S⇒ R. We will need differential
terms (f)′, a definable term construct when f is differentiable. Not every term
f need be differentiable, so we give a virtual definition, defining when (f)′ is
equal to some term g. If (f)′ does not exist, then (f)′ = g is not provable. We
define the (total) differential as the Euclidean dot product (·) of the gradient
(variable name: ∇) with s′, which is the vector of values s x′ assigned to primed
variables x′. To show that ∇ is the gradient, we define the gradient as a limit,
which we express in (ε, δ) style. In this definition, f and g are scalar-valued, and
the minus symbol is used for both scalar and vector difference.

((f)′ s = g s) ≡ Σ∇ : R|s
′|. (g s = ∇·s′)*Πε : R>0.Σδ : R>0.Πr : S.

(‖r − s‖ < δ)⇒ |f r − f s−∇·(r − s)| ≤ ε‖r − s‖

For practical proofs, a library of standard rules for automatic, syntactic differ-
entiation of common arithmetic operations [7] could be proven.

We model a formula φ as a predicate over states, i.e., a type family pφq : S⇒
T. A predicate of kind S ⇒ T is also understood as a region, e.g., pφq is the
region containing states where φ is provable. A CdGL context Γ is interpreted
over a uniform state term s : S where s : S ` s : S, i.e., s usually mentions
s. We define pΓ q(s) to be the CIC context containing s : S and pφq s for each
φ ∈ Γ . The sequent (Γ ` φ) is valid if there exists M such that pΓ q(s) ` M
: pφq s. Formula φ is valid iff sequent (· ` φ) is valid. That is, a valid formula is
provable in every state with a common proof term M . The witness may inspect
the state, but must do so constructively. Formula semantics employ the Angelic
and Demonic semantics of games, which determine how to win a game α whose
postcondition is φ. We write 〈〈α〉〉 : (S ⇒ T) ⇒ (S ⇒ T) for the Angelic
semantics of α and [[α]] : (S⇒ T)⇒ (S⇒ T) for its Demonic semantics.

Definition 5 (Formula semantics). Angel and Demon strategies for a hybrid
game α with goal region P are inhabitants of 〈〈α〉〉 P and [[α]] P, respectively.

p
[α]φ

q
s = [[α]] pφq s

p〈α〉φq s = 〈〈α〉〉 pφq s pf ∼ gq s = ((f s) ∼ (g s))

462 B. Bohrer and A. Platzer

Modality 〈α〉φ is provable in s when 〈〈α〉〉 pφq s is inhabited so Angel has an
α strategy from s to reach region pφq on which φ is provable. Modality [α]φ is
provable in s when [[α]] pφq s is inhabited so Demon has an α strategy from s to
reach region pφq on which φ is provable. For ∼ ∈ {≤, <,=, 6=, >,≥}, the values
of f and g are compared at state s in f ∼ g. The game and formula semantics
are simultaneously inductive. In each case, the connectives which define 〈〈α〉〉
and [[α]] are duals, because [α]φ and 〈α〉φ are dual. Below, P refers to the goal
region of the game and s to the initial state.

Definition 6 (Angel semantics).
We define 〈〈α〉〉 : (S⇒ T)⇒ (S⇒ T) inductively (by a large elimination) on α:

〈〈?ψ〉〉 P s = pψq s *P s

〈〈x := f〉〉 P s = P (set s x (f s))

〈〈x := ∗〉〉 P s = Σv : R. P (set s x v)

〈〈α ∪ β〉〉 P s = 〈〈α〉〉 P s + 〈〈β〉〉 P s

〈〈α;β〉〉 P s = 〈〈α〉〉 (〈〈β〉〉 P) s

〈〈αd〉〉 P s = [[α]] P s

〈〈x′ = f &ψ〉〉 P s = Σd : R≥0.Σsol : [0, d]⇒ R.
(sol, s, d � x′ = f)

* (Πt : [0, d]. pψq (set s x (sol t)))

*P (set s (x, x′)

(sol d, f (set s x (sol d))))

〈〈α∗〉〉 P s =
(
µτ ′ : (S⇒ T). λt : S. (P t⇒ τ ′ t) + (〈〈α〉〉 τ ′ t⇒ τ ′ t)

)
s

Angel wins 〈?ψ〉P by proving both ψ and P at s. Angel wins the determin-
istic assignment x := f by performing the assignment, then proving P . Angel
wins nondeterministic assignment x := ∗ by constructively choosing a value v to
assign, then proving P . Angel wins α ∪ β by choosing between playing α or β,
then winning that game. Angel wins α;β if she wins α with the postcondition
of winning β. Angel wins αd if she wins α in the Demon role. Angel wins ODE
game x′ = f &ψ by choosing some solution sol of some duration d which sat-
isfies the ODE and domain constraint throughout and the postcondition φ at
time d. While top-level postconditions rarely mention x′, intermediate invariant
steps do, thus x and x′ both are updated in the postcondition. The construct
(sol, s, d � x′ = f), saying sol solves x′ = f from state s for time d, is defined:

(sol, s, d � x′ = f) ≡
(
(s x = sol 0) *Πr : [0, d]. ((sol)′ r = f (set s x (sol r)))

)
Note that variable sol stands for a function of the host theory, all of which
are computable and therefore continuous. When (sol, s, d � x′ = f) holds, sol
is also continuously differentiable. Constructive Picard-Lindelöf [34] constructs
a solution for every effectively-locally-Lipschitz ODEs, which need not have a
closed form. The proof calculus we introduce in Section 5 includes both solution-
based proof rules, which are useful for ODEs with simple closed forms, and
invariant-based rules, which enable proof even when closed forms do not exist.

Angel strategies for α∗ are inductively defined: either choose to stop the loop
and prove P now, else play a round of α before repeating inductively. By Knaster-
Tarski [24, Thm. 1.12], this least fixed point exists because the interpretation of
a game is monotone in its postcondition (Lemma 7).

Constructive Hybrid Games 463

Lemma 7 (Monotonicity). Let P,Q : S ⇒ T. If s : S, P s ` M :Q s then
there exists a term N such that s : S, [[α]] P s ` N :[[α]] Q s

Definition 8 (Demon semantics).
We define [[α]] : (S⇒ T)⇒ (S⇒ T) inductively (by a large elimination) on α:

[[?ψ]] P s = pψq s⇒ P s

[[x := f]] P s = P (set s x (f s))

[[x := ∗]] P s = Πv : R. P (set s x v)

[[α ∪ β]] P s = [[α]] P s * [[β]] P s

[[α;β]] P s = [[α]] ([[β]] P) s

[[αd]] P s = 〈〈α〉〉 P s

[[x′ = f &ψ]] P s = Πd : R≥0.Πsol : [0, d]⇒ R.
(sol, s, d � x′ = f)

⇒(Πt : [0, d]. pψq (set s x (sol t)))

⇒P (set s (x, x′)

(sol d, f (set s x (sol d))))

[[α∗]] P s =
(
ρτ ′ : (S⇒ T). λt : S. (τ ′ t⇒ [[α]] τ ′ t) * (τ ′ t⇒ P t)

)
s

Demon wins [?ψ]P by proving P under assumption ψ, which Angel must
provide (Section 7). Demon’s deterministic assignment is identical to Angel’s.
Demon wins x := ∗ by proving ψ for every choice of x. Demon wins α∪β with a
pair of winning strategies. Demon wins α;β by winning α with a postcondition
of winning β. Demon wins αd if he can win α after switching roles with Angel.
Demon wins x′ = f &ψ if for an arbitrary duration and arbitrary solution which
satisfy the domain constraint, he can prove the postcondition. Demon wins [α∗]P
if he can prove P no matter how many times Angel makes him play α. Demon
repetition strategies are coinductive using some invariant τ ′. When Angel decides
to stop the loop, Demon responds by proving P from τ ′. Whenever Angel chooses
to continue, Demon proves that τ ′ is preserved. Greatest fixed points exist by
Knaster-Tarski [24, Thm. 1.12] using Lemma 7.

It is worth comparing the Angelic and Demonic semantics of x := ∗. An Angel
strategy says how to compute x. A Demon strategy simply accepts x ∈ R as its
input, even uncomputable numbers. This is because Angel strategies supply a
computable real while Demon acts with computable outputs given real inputs. In
general, each strategy is constructive but permits its opponent to play classically.
In the cyber-physical setting, the opponent is indeed rarely a computer.

5 Proof Calculus

To enable direct syntactic proof, we give a natural deduction-style system for
CdGL. We write Γ = ψ1, . . . , ψn for a context of formulas and Γ ` φ for the
natural-deduction sequent with conclusion φ and context Γ . We begin with rules
shared by CGL [9] and CdGL, then give the ODE rules. We write Γ y

x for the
renaming of game variable x to y and vice versa in context Γ . Likewise Γ fx is the
substitution of term f for game variable x. To avoid repetition, we write 〈[α]〉φ
to indicate that the same rule applies for 〈α〉φ and [α]φ. These rules write [〈α〉]φ
for the dual of 〈[α]〉φ. We write FV(e), BV(α), and MBV(α) for the free variables
of expression e, bound variables of game α, and must-bound variables of game α

464 B. Bohrer and A. Platzer

([∪]I)
Γ ` [α]φ Γ ` [β]φ

Γ ` [α ∪ β]φ

(〈∪〉I1)
Γ ` 〈α〉φ

Γ ` 〈α ∪ β〉φ

(〈?〉I)
Γ ` φ Γ ` ψ
Γ ` 〈?φ〉ψ

([?]I)
Γ, φ ` ψ
Γ ` [?φ]ψ

([∪]E1)
Γ ` [α ∪ β]φ

Γ ` [α]φ

(〈∪〉I2)
Γ ` 〈β〉φ

Γ ` 〈α ∪ β〉φ

(〈?〉E1)
Γ ` 〈?φ〉ψ
Γ ` φ

([?]E)
Γ ` [?φ]ψ Γ ` φ

Γ ` ψ

([∪]E2)
Γ ` [α ∪ β]φ

Γ ` [β]φ

(hyp)
Γ, φ ` φ

(〈?〉E2)
Γ ` 〈?φ〉ψ
Γ ` ψ

(〈∪〉E)
Γ ` 〈α ∪ β〉φ Γ, 〈α〉φ ` ψ Γ, 〈β〉φ ` ψ

Γ ` ψ

Fig. 2. CdGL proof calculus: Propositional game rules

respectively, i.e., variables which might influence the meaning of an expression,
might be modified during game execution, or are written during every execution.

Figure 2 gives the propositional game rules. Rule [?]E is modus ponens and
[?]I is implication introduction because [?φ]ψ is implication. Angelic choices are
disjunctions introduced by 〈∪〉I1 and 〈∪〉I2 and case-analyzed by 〈∪〉E. Angelic
tests and Demonic choices are conjunctions introduced by 〈?〉I and [∪]I, elimi-
nated by 〈?〉E1, 〈?〉E2, [∪]E1, and [∪]E2. Rule hyp applies an assumption.

([:∗]I)
Γ y
x
` φ

Γ ` [x := ∗]φ

(〈:∗〉I)
Γ ` 〈x := f〉φ
Γ ` 〈x := ∗〉φ

(〈[;]〉I)
Γ ` 〈[α]〉〈[β]〉φ
Γ ` 〈[α;β]〉φ

(〈[:=]〉I)
Γ y
x
, x = f y

x
` φ

Γ ` 〈[x := f]〉φ

([:∗]E)
Γ ` [x := ∗]φ
Γ ` φfx

(〈:∗〉E)
Γ ` 〈x := ∗〉φ Γ ` ∀x (φ→ ψ)

Γ ` ψ (x /∈ FV(ψ))

(M)
Γ ` 〈[α]〉φ Γ y

BV(α)
, φ ` ψ

Γ ` 〈[α]〉ψ

(〈[d]〉I)
Γ ` [〈α〉]φ
Γ ` 〈[αd]〉φ

Fig. 3. CdGL proof calculus: First-order games (y fresh, f computable, φfx admissible)

Figure 3 covers assignment, choice, sequencing, duals, and monotonicity. An-
gelic games have injectors (〈∗〉S,〈∗〉G) and case analysis (〈∗〉E). Duality 〈[d]〉I
switches players by switching modalities. Sequential games (〈[;]〉I) are decom-
posed as nested modalities.

Monotonicity (M) is Lemma 7 in rule form. The second premiss writes Γ y
BV(α)

to indicate that the bound variables of α must be freshly renamed in Γ for
soundness. Rule M is used for generalization because all GLs are subnormal,
lacking axiom K (modal modus ponens) and necessitation. Common uses include

Constructive Hybrid Games 465

concise right-to-left symbolic execution proofs and, in combination with 〈[;]〉I,
Hoare-style sequential composition reasoning.

Nondeterministic assignments quantify over real-valued game variables. As-
signments 〈[:=]〉I remember the initial value of x in fresh variable y (Γ y

x) for
sake of completeness, then provide an assumption that x has been assigned to f .
Skolemization [:∗]I bound-renames x to y in Γ , written Γ y

x . Specialization [:∗]E
instantiates x to a term f by substituting φfx. Existentials are introduced by giv-
ing a witness f in 〈:∗〉I. Herbrandization 〈:∗〉E unpacks existentials, soundness
requires x is not free in ψ.

(〈∗〉E)
Γ ` 〈α∗〉φ Γ, φ ` ψ Γ, 〈α〉〈α∗〉φ ` ψ

Γ ` ψ ([∗]E)
Γ ` [α∗]φ

Γ ` φ ∧ [α][α∗]φ

(〈∗〉S)
Γ ` φ

Γ ` 〈α∗〉φ

([∗]R)
Γ ` φ ∧ [α][α∗]φ

Γ ` [α∗]φ

(〈∗〉G)
Γ ` 〈α〉〈α∗〉φ
Γ ` 〈α∗〉φ

(loop)
Γ ` J J ` [α]J J ` φ

Γ ` [α∗]φ

(FP)
Γ ` 〈α∗〉φ φ ` ψ 〈α〉ψ ` ψ

Γ ` ψ

(〈∗〉I)

Γ ` ϕ ϕ,0 <M ` φ
ϕ, (M � 0 ∧M0 =M) ` 〈α〉(ϕ ∧M0 �M)

Γ ` 〈α∗〉φ

Fig. 4. CdGL proof calculus: loops (M0 fresh)

Figure 4 provides rules for repetitions. In rule 〈∗〉I,M indicates an arbitrary
termination metric where � and < denote strict and nonstrict comparison in an
arbitrary (effectively) well-founded [28] partial order. Metavariable 0 represents
a terminal value at which iteration stops; we will choose 0 = 0 in our example,
but 0 need not be 0 in general. M0 is a fresh variable which remembers M.
Angel plays α∗ by repeating an α strategy which always decreases the termina-
tion metric. Angel maintains a formula ϕ throughout, and stops once 0 < M.
The postcondition need only follow from termination condition 0 <M and con-
vergence formula ϕ. Simple real comparisons x ≥ y are not well-founded, but
inflated comparisons like x ≥ y+1 are. Well-founded metrics ensure convergence
in finitely (but often unboundedly) many iterations. In the simplest case,M is a
real-valued term. GeneralizingM to tuples enables, e.g., lexicographic termina-
tion metrics. For example, the metric in the proof of Example 4 is the distance
to the goal, which must decrease by some minimum amount each iteration.

Repetition games can be folded and unfolded ([∗]E,[∗]R). Rule FP says 〈α∗〉φ
is a least pre-fixed-point. It works backwards: first show ψ holds after α∗, then
preserve ψ when each iteration is unwound. Rule loop is the repetition invariant
rule. Demonic repetition is eliminated by [∗]E.

Like any first-order program logic, CdGL proofs contain first-order reasoning
at the leaves. Decidability of constructive real arithmetic is an open problem [33],
so first-order facts are proven manually in practice. Our semantics embed CdGL
into type theory; we defer first-order arithmetic proving to the host theory. Even

466 B. Bohrer and A. Platzer

effectively-well-founded < need not have decidable guards (0 � M∨M < 0)
since exact comparisons are not computable [6]. We may not be able to distin-
guish M = 0 from very small positive values of M, leading to one unnecessary
loop iteration, after whichM is certainly 0 and the loop terminates. Comparison
up to ε > 0 is decidable [12] (f > g ∨ (f < g + ε)).

(DC)
Γ ` [x′=f &ψ]R Γ ` [x′=f &ψ ∧R]φ

Γ ` [x′=f &ψ]φ

(DG)
Γ ` ∃y [x′=f, y′ = a(x)y + b(x) &ψ]φ

Γ ` [x′=f &ψ]φ

(DI)
Γ ` φ Γ ` ∀x (ψ → [x′ := f](φ)′)

Γ ` [x′=f &ψ]φ

(DW)
Γ ` ∀x ∀x′ (ψ → φ)

Γ ` [x′=f &ψ]φ

(DV)

ψ, h ≥ g ` φ Γ ` d > 0 ∧ ε > 0 ∧ h− g ≥ −dε
Γ ` 〈t := 0; {t′=1, x′=f &ψ}〉t ≥ d Γ ` [x′=f]((h)′ − (g)′) ≥ ε

Γ ` 〈x′=f &ψ〉φ

(bsolve)
Γ ` ∀t :R≥0 ((∀r : [0, t] [t := r;x := sln]ψ)→ [x := sln;x′ := f]φ)

Γ ` [x′=f &ψ]φ

(dsolve)
Γ ` ∃t :R≥0 ((∀r : [0, t] 〈t := r;x := sln〉ψ) ∧ 〈x := sln;x′ := f〉φ)

Γ ` 〈x′=f &ψ〉φ

Fig. 5. CdGL proof calculus: ODEs. In bsolve and dsolve, sln solves x′ = f globally, t
and r fresh, x′ /∈ FV(φ)

Figure 5 gives the ODE rules, which are a constructive version of those from
dGL [42]. For nilpotent ODEs such as the plant of Example 4, reasoning via solu-
tions is possible. Since CdGL supports nonlinear ODEs which often do not have
closed-form solutions, we provide invariant-based rules, which are complete [46]
for invariants of polynomial ODEs. Differential induction DI [41] says φ is an in-
variant of an ODE if it holds initially and if its differential formula [41] (φ)′ holds
throughout, for example (f ≥ g)′ ≡ ((f)′ ≥ (g)′). Soundness of DI requires dif-
ferentiability, and (φ)′ is not provable when φ mentions nondifferentiable terms.
Differential cut DC proves R invariant, then adds it to the domain constraint.
Differential weakening DW says that if φ follows from the domain constraint,
it holds throughout the ODE. Differential ghosts DG permit us to augment an
ODE system with a fresh dimension y, which enables [46] proofs of otherwise
unprovable properties. We restrict the right-hand side of y to be linear in y and
(uniformly) continuous in x because soundness requires that ghosting y′ does
not change the duration of an ODE. A linear right-hand side is guaranteed to
be Lipschitz on the whole existence interval of equation x′ = f, thus ensuring
an unchanged duration by (constructive) Picard-Lindelöf [34]. Differential vari-
ants [41,53] DV is an Angelic counterpart to DI. The schema parameters d and
ε must not mention x, x′, t, t′. To show that f eventually exceeds g, first choose
a duration d and a sufficiently high minimum rate ε at which h− g will change.
Prove that h− g decreases at rate at least ε and that the ODE has a solution of
duration d satisfying constraint ψ. Thus at time d, both h ≥ g and its provable

Constructive Hybrid Games 467

consequents hold. Rules bsolve and dsolve assume as a side condition that sln is
the unique solution of x′ = f on domain ψ. They are convenient for ODEs with
simple solutions, while invariant reasoning supports complicated ODEs.

6 Theory: Soundness

Following constructive counterparts of classical soundness proofs for dGL, we
prove that the CdGL proof calculus is sound: provable formulas are true in the
CIC semantics. For the sake of space, we give statements and some outlines here,
reporting all proofs and lemmas elsewhere [10]. Similar lemmas have been used
to prove soundness of dGL [45], but our new semantics lead to simpler statements
for Lemmas 10 and 11. The coincidence property for terms is not proved but
assumed, since we inherit a semantic treatment of terms from the host theory.
Let s yx be s with the values of x and y swapped. Let sfx be set s x (f s). Defined

CIC term s
V
= t↔ *x∈V (s x = t x) says s and t agree on all x ∈ V .

Lemma 9 (Uniform renaming). Let M y
x rename x and y in proof term M .

– If pΓ q(s) `M :(pφq s) then
p
Γ y
x
q
(s yx) `M y

x :(
p
φ yx

q
s yx).

Lemma 10 (Coincidence). Assume s
V
= t where V ⊇ FV(Γ) ∪ FV(φ).

– If pΓ q(s) ` M :(pφq s) then exists N such that pΓ q(t) ` N :(pφq t).

Lemma 11 (Bound effect). Let P : S⇒ T and let V ⊆ BV(α){, the comple-
ment of bound variables of α.

– There exists M such that pΓ q(s) ` M :(〈〈α〉〉 P s) iff there exists N such

that pΓ q(s) ` N :(〈〈α〉〉 (λt. P t * s
V
= t) s).

– There exists M such that pΓ q(s) ` M :([[α]] P s) iff there exists N such

that pΓ q(s) ` N :([[α]] (λt. P t * s
V
= t) s).

Definition 12 (Term substitution admissibility [40, Def. 6]). For a for-
mula φ, (likewise for context Γ, term f, and game α) we say φfx is admissible if
x never appears free in φ under a binder of {x} ∪ FV(f).

Lemma 13 (Term substitution). Let Mf
x substitute f for x in proof term

M . Let Γ fx and φfx be admissible.

– If pΓ q(sfx) `M :(pφq sfx) then
p
Γ fx

q
(s) `Mf

x :(
p
φfx

q
s).

The converse implication also holds, though its witness is not necessarily M .

Soundness of the proof calculus follows from the lemmas, and soundness of
the ODE rules employing several known results from constructive analysis.

Theorem 14 (Soundness). If Γ `M :φ holds, then sequent (Γ ` φ) is valid.
As a special case, if · `M :φ holds, then formula φ is valid.

468 B. Bohrer and A. Platzer

Proof Sketch. By induction on the derivation. The assignment case holds by
Lemma 13 and Lemma 9. Lemma 10 and Lemma 11 are applied when maintaining
truth of a formula across changing state. The equality and inequality cases of
DI and DV employ the constructive mean-value theorem [10, Thm. 21], which
has been formalized, e.g., in Coq [17]. Rules DW, bsolve, and dsolve follow from
the semantics of ODEs. Rule DC uses the fact that prefixes of solutions are
solutions. Rule DG uses constructive Picard-Lindelöf [34], which constitutes an
algorithm for arbitrarily approximating the solution of any Lipschitz ODE, with
a convergence rate depending on its Lipschitz constant.

We have shown that every provable formula is true in the type-theoretic
semantics. Because the soundness proof is constructive, it amounts to an extrac-
tion algorithm from CdGL into type theory: for each CdGL proof, there exists a
program in type theory which inhabits the corresponding type of the semantics.

7 Theory: Extraction and Execution

Another perspective on constructivity is that provable properties must have
witnesses. We show Existential and Disjunction properties providing witnesses
for existentials and disjunctions. For modal formulas 〈α〉φ and [α]φ we show
proofs can be used as winning strategies: a big-step operational semantics play
allows playing strategies against each other to extract a proof that their goals
hold in some final state t. Our presentation is more concise than defining the
language, semantics, and properties of strategies, while providing key insights.

Lemma 15 (Existential Property). Let s : S. If pΓ q(s) ` M :(p∃xφq s)

then there exist terms f : R and N such that pΓ q(s) ` N :(
p
φfx

q
s).

Lemma 16 (Disjunction Property). If pΓ q(s) ` M :(pφ ∨ ψq s) then there
exists a proof term N such that pΓ q(s) ` N :(pφq s) or pΓ q(s) ` N :(pψq s).

The proofs follow their counterparts in type theory. The Disjunction Property
considers truth at a specific state. Validity of φ ∨ ψ does not imply validity of
either φ or ψ. For example, x < 1 ∨ x > 0 is valid, but its disjuncts are not.

Function play below gives a big-step semantics: Angel and Demon strategies
as and ds for respective goals φ and ψ in game α suffice to construct a final
state t satisfying both. By parametricity, t was found by playing α, because play
cannot inspect P and Q, thus can only prove them via as and ds.

play : Πα : Game.ΠP,Q : (S⇒ T).Πs : S.(
〈〈α〉〉 P s⇒ [[α]] Q s⇒ Σt : S. P t *Q t

)
Applications of play are written playα s as ds (P and Q implicit). Game consis-
tency (Corollary 17) is by play and consistency of type theory. Note that αd is

Constructive Hybrid Games 469

played by swapping the Angel and Demon strategies in α.

playx:=f s as ds = (let t = set s x (f s) in (t, (as t, ds t)))

playx:=∗ s as ds = let t = set s x πLas in (t, (πRas, ds πLas))

playx′=f &ψ s as ds = let (d, sol, solves, c, p) = as s in

(set s x (sol d), (p, ds d sol solves c))

play?φ s as ds = (s, (πRas, ds (πLas)))

playα∪β s as ds = case (as s) of

as′ ⇒ playα s as′ (πLds)

| as′ ⇒ playβ s as′ (πRds)

playα;β s as ds = (let (t, (as′, ds′)) = playα s as ds in playβ t as
′ ds′)

playα∗ s as ds = case (as s) of

as′ ⇒ (s, (as′, πLds))

| as′ ⇒ let (t, (as′′, ds′′)) = playα s as′ (πRds) in

playα∗ t as
′′ ds′′

playαd s as ds = playα s ds as

Corollary 17 (Consistency). It is never the case that both
p〈α〉φq s and

p
[α]¬φq s are inhabited.

Proof. Suppose as :
p〈α〉φq s and ds :

p
[α]¬φq s, then πR(playα s as ds) : ⊥,

contradicting consistency of type theory.

The play semantics show how strategies can be executed. Consistency is a
theorem which ought to hold in any GL and thus helps validate our semantics.

8 Conclusion and Future Work

We extended Constructive Game Logic CGL to CdGL for constructive hybrid
games. We contributed new semantics. We presented a natural deduction proof
calculus for CdGL and used it to prove reach-avoid correctness of 1D driving with
adversarial timing. We showed soundness and constructivity results.

The next step is to implement a proof checker, game interpreter, and syn-
thesis tool for CdGL. Function play is the high-level interpreter algorithm, while
synthesis would commit to one Angel strategy and allow black-box Demon im-
plementations for an external environment. Angel strategies are positive and are
synthesized by extracting witnesses from each introduction rule. Demonic invari-
ants and test conditions describe allowed observable behaviors. Demon strategies
are negative and characterized by observable behaviors, so it suffices to monitor
their compliance with invariants and test conditions extracted from the proof.

470 B. Bohrer and A. Platzer

Acknowledgements. We thank Jon Sterling for suggestions regarding our choice
of type theory and for references to the literature. We thank the anonymous
reviewers for their helpful feedback.

References

1. Abramsky, S., Jagadeesan, R., Malacaria, P.: Full abstraction for PCF. Inf. Com-
put. 163(2), 409–470 (2000), https://doi.org/10.1006/inco.2000.2930

2. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J.
ACM 49(5), 672–713 (2002), https://doi.org/10.1145/585265.585270

3. van Benthem, J.: Logic of strategies: What and how? In: van Benthem, J., Ghosh,
S., Verbrugge, R. (eds.) Models of Strategic Reasoning - Logics, Games, and Com-
munities, LNCS, vol. 8972, pp. 321–332. Springer (2015), https://doi.org/10.
1007/978-ν3-ν662-ν48540-ν8_10

4. van Benthem, J., Pacuit, E.: Dynamic logics of evidence-based beliefs. Studia Log-
ica 99(1-3), 61–92 (2011), https://doi.org/10.1007/s11225-ν011-ν9347-νx

5. van Benthem, J., Pacuit, E., Roy, O.: Toward a theory of play: A logical perspective
on games and interaction. Games (2011), https://doi.org/10.3390/g2010052

6. Bishop, E.: Foundations of constructive analysis. McGraw-Hill (1967)
7. Bohrer, B., Fernández, M., Platzer, A.: dLι: Definite descriptions in differential

dynamic logic. In: Fontaine, P. (ed.) CADE. LNCS, vol. 11716, pp. 94–110. Springer
(2019). https://doi.org/10.1007/978-3-030-29436-6 6

8. Bohrer, B., Platzer, A.: Toward structured proofs for dynamic logics. CoRR
abs/1908.05535 (2019), http://arxiv.org/abs/1908.05535

9. Bohrer, B., Platzer, A.: Constructive game logic. In: Müller, P. (ed.) ESOP. LNCS,
vol. 12075. Springer (2020)

10. Bohrer, B., Platzer, A.: Constructive hybrid games. CoRR abs/2002.02536
(2020), https://arxiv.org/abs/2002.02536

11. Bohrer, B., Tan, Y.K., Mitsch, S., Myreen, M.O., Platzer, A.: VeriPhy: Verified con-
troller executables from verified cyber-physical system models. In: Grossman, D.
(ed.) PLDI. pp. 617–630. ACM (2018). https://doi.org/10.1145/3192366.3192406

12. Bridges, D.S., Vita, L.S.: Techniques of constructive analysis. Springer (2007)
13. Celani, S.A.: A fragment of intuitionistic dynamic logic. Fundam. In-

form. 46(3), 187–197 (2001), http://content.iospress.com/articles/

fundamenta-νinformaticae/fi46-ν3-ν01
14. Chatterjee, K., Henzinger, T.A., Piterman, N.: Strategy logic. In: Caires, L., Vas-

concelos, V.T. (eds.) CONCUR. LNCS, vol. 4703, pp. 59–73. Springer (2007),
https://doi.org/10.1007/978-ν3-ν540-ν74407-ν8_5

15. Coquand, T., Huet, G.P.: The calculus of constructions. Inf. Comput. 76(2/3),
95–120 (1988), https://doi.org/10.1016/0890-ν5401(88)90005-ν3

16. Coquand, T., Paulin, C.: Inductively defined types. In: Martin-Löf, P., Mints, G.
(eds.) COLOG. LNCS, vol. 417, pp. 50–66. Springer (1988), https://doi.org/10.
1007/3-ν540-ν52335-ν9_47

17. Cruz-Filipe, L., Geuvers, H., Wiedijk, F.: C-CoRN, the constructive Coq repository
at Nijmegen. In: Asperti, A., Bancerek, G., Trybulec, A. (eds.) MKM. LNCS,
vol. 3119. Springer (2004), https://doi.org/10.1007/978-ν3-ν540-ν27818-ν4_
7, accessed: commits 9c44dae and 6411967

18. Degen, J., Werner, J.: Towards intuitionistic dynamic logic. Log. and Log. Philos-
ophy 15(4), 305–324 (2006). https://doi.org/10.12775/LLP.2006.018

https://doi.org/10.1006/inco.2000.2930
https://doi.org/10.1145/585265.585270
https://doi.org/10.1007/978-3-662-48540-8_10
https://doi.org/10.1007/978-3-662-48540-8_10
https://doi.org/10.1007/s11225-011-9347-x
https://doi.org/10.3390/g2010052
https://doi.org/10.1007/978-3-030-29436-6_6
http://arxiv.org/abs/1908.05535
https://arxiv.org/abs/2002.02536
https://doi.org/10.1145/3192366.3192406
http://content.iospress.com/articles/fundamenta-informaticae/fi46-3-01
http://content.iospress.com/articles/fundamenta-informaticae/fi46-3-01
https://doi.org/10.1007/978-3-540-74407-8_5
https://doi.org/10.1016/0890-5401(88)90005-3
https://doi.org/10.1007/3-540-52335-9_47
https://doi.org/10.1007/3-540-52335-9_47
https://doi.org/10.1007/978-3-540-27818-4_7
https://doi.org/10.1007/978-3-540-27818-4_7
https://doi.org/10.12775/LLP.2006.018

Constructive Hybrid Games 471

19. Dybjer, P.: Inductive families. Formal Asp. Comput. 6(4), 440–465 (1994).
https://doi.org/10.1007/BF01211308

20. Filippidis, I., Dathathri, S., Livingston, S.C., Ozay, N., Murray, R.M.: Con-
trol design for hybrid systems with TuLiP: The temporal logic planning tool-
box. In: Conference on Control Applications. pp. 1030–1041. IEEE (2016).
https://doi.org/10.1109/CCA.2016.7587949

21. Finucane, C., Jing, G., Kress-Gazit, H.: LTLMoP: Experimenting with lan-
guage, temporal logic and robot control. In: IROS. pp. 1988–1993. IEEE (2010).
https://doi.org/10.1109/IROS.2010.5650371

22. Foster, J.N.: Bidirectional programming languages. Tech. Rep. MS-CIS-10-08,
Department of Computer & Information Science, University of Pennsylvania,
Philadelphia, PA (March 2010)

23. Ghosh, S.: Strategies made explicit in dynamic game logic. Workshop on Logic and
Intelligent Interaction at ESSLLI pp. 74 –81 (2008)

24. Harel, D., Kozen, D., Tiuryn, J.: Dynamic logic. MIT Press (2000)

25. Henzinger, T.A., Horowitz, B., Majumdar, R.: Rectangular hybrid games. In:
Baeten, J.C.M., Mauw, S. (eds.) CONCUR. LNCS, vol. 1664, pp. 320–335. Springer
(1999). https://doi.org/10.1007/3-540-48320-9 23

26. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969). https://doi.org/10.1145/363235.363259

27. van der Hoek, W., Jamroga, W., Wooldridge, M.J.: A logic for strategic reasoning.
In: Dignum, F., Dignum, V., Koenig, S., Kraus, S., Singh, M.P., Wooldridge, M.J.
(eds.) AAMAS. ACM (2005), https://doi.org/10.1145/1082473.1082497

28. Hofmann, M., van Oosten, J., Streicher, T.: Well-foundedness in realiz-
ability. Arch. Math. Log. 45(7), 795–805 (2006), https://doi.org/10.1007/

s00153-ν006-ν0003-ν5

29. Isaacs, R.: Differential games: A mathematical theory with applications to warfare
and pursuit, control and optimization. Series in Applied Mathematics (SIAM),
Wiley, New York (1965)

30. Kamide, N.: Strong normalization of program-indexed lambda calculus. Bull. Sect.
Log. Univ. Lódź 39(1-2), 65–78 (2010)

31. Kloetzer, M., Belta, C.: A fully automated framework for control of linear systems
from temporal logic specifications. IEEE Trans. Automat. Contr. 53(1), 287–297
(2008). https://doi.org/10.1109/TAC.2007.914952

32. Lipton, J.: Constructive Kripke semantics and realizability. In: Moschovakis,
Y. (ed.) Logic from Computer Science. pp. 319–357. Springer (1992).
https://doi.org/10.1007/978-1-4612-2822-6 13

33. Lombardi, H., Mahboubi, A.: Théories géométriques pour l’algèbre des nombres
réels. Contemporary Mathematics 697, 239–264 (2017)

34. Makarov, E., Spitters, B.: The Picard algorithm for ordinary differential equa-
tions in Coq. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP. LNCS,
vol. 7998. Springer (2013), https://doi.org/10.1007/978-ν3-ν642-ν39634-ν2_
34

35. Mamouras, K.: Synthesis of strategies using the Hoare logic of angelic and demonic
nondeterminism. Log. Methods Comput. Sci. 12(3), 1–41 (2016), https://doi.

org/10.2168/LMCS-ν12(3:6)2016

36. Mitsch, S., Platzer, A.: ModelPlex: Verified runtime validation of verified
cyber-physical system models. Form. Methods Syst. Des. 49(1), 33–74 (2016).
https://doi.org/10.1007/s10703-016-0241-z

https://doi.org/10.1007/BF01211308
https://doi.org/10.1109/CCA.2016.7587949
https://doi.org/10.1109/IROS.2010.5650371
https://doi.org/10.1007/3-540-48320-9_23
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/1082473.1082497
https://doi.org/10.1007/s00153-006-0003-5
https://doi.org/10.1007/s00153-006-0003-5
https://doi.org/10.1109/TAC.2007.914952
https://doi.org/10.1007/978-1-4612-2822-6_13
https://doi.org/10.1007/978-3-642-39634-2_34
https://doi.org/10.1007/978-3-642-39634-2_34
https://doi.org/10.2168/LMCS-12(3:6)2016
https://doi.org/10.2168/LMCS-12(3:6)2016
https://doi.org/10.1007/s10703-016-0241-z

472 B. Bohrer and A. Platzer

37. Murphy VII, T., Crary, K., Harper, R., Pfenning, F.: A symmetric modal lambda
calculus for distributed computing. In: LICS. IEEE (2004), https://doi.org/10.
1109/LICS.2004.1319623

38. van Oosten, J.: Realizability: A historical essay. Math. Structures Comput. Sci.
12(3), 239–263 (2002), https://doi.org/10.1017/S0960129502003626

39. Parikh, R.: Propositional game logic. In: FOCS. pp. 195–200. IEEE (1983), https:
//doi.org/10.1109/SFCS.1983.47

40. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reas. 41(2),
143–189 (2008). https://doi.org/10.1007/s10817-008-9103-8

41. Platzer, A.: Differential-algebraic dynamic logic for differential-algebraic programs.
J. Log. Comput. 20(1), 309–352 (2010). https://doi.org/10.1093/logcom/exn070

42. Platzer, A.: Differential game logic. ACM Trans. Comput. Log. 17(1), 1:1–1:51
(2015). https://doi.org/10.1145/2817824

43. Platzer, A.: Differential hybrid games. ACM Trans. Comput. Log. 18(3), 19:1–
19:44 (2017). https://doi.org/10.1145/3091123

44. Platzer, A.: Logical Foundations of Cyber-Physical Systems. Springer, Switzerland
(2018). https://doi.org/10.1007/978-3-319-63588-0

45. Platzer, A.: Uniform substitution for differential game logic. In: Galmiche, D.,
Schulz, S., Sebastiani, R. (eds.) IJCAR. LNCS, vol. 10900, pp. 211–227. Springer
(2018). https://doi.org/10.1007/978-3-319-94205-6 15

46. Platzer, A., Tan, Y.K.: Differential equation invariance axiomatization. J. ACM
67(1) (2020). https://doi.org/10.1145/3380825

47. Pratt, V.R.: Semantical considerations on Floyd-Hoare logic. In: FOCS. pp. 109–
121. IEEE (1976). https://doi.org/10.1109/SFCS.1976.27

48. Quesel, J.D., Platzer, A.: Playing hybrid games with keymaera. In: Gramlich, B.,
Miller, D., Sattler, U. (eds.) IJCAR. LNCS, vol. 7364, pp. 439–453. Springer (2012).
https://doi.org/10.1007/978-3-642-31365-3 34

49. Ramanujam, R., Simon, S.E.: Dynamic logic on games with structured strategies.
In: Brewka, G., Lang, J. (eds.) Knowledge Representation. pp. 49–58. AAAI Press
(2008), http://www.aaai.org/Library/KR/2008/kr08-ν006.php

50. Shakernia, O., Pappas, G.J., Sastry, S.: Semi-decidable synthesis for triangular hy-
brid systems. In: Benedetto, M.D.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC.
LNCS, vol. 2034, pp. 487–500. Springer (2001). https://doi.org/10.1007/3-540-
45351-2 39

51. Shakernia, O., Sastry, S., Pappas, G.J.: Decidable controller synthesis for classes
of linear systems. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC. LNCS, vol. 1790, pp.
407–420. Springer (2000). https://doi.org/10.1007/3-540-46430-1 34

52. Taly, A., Tiwari, A.: Switching logic synthesis for reachability. In:
Carloni, L.P., Tripakis, S. (eds.) EMSOFT. pp. 19–28. ACM (2010).
https://doi.org/10.1145/1879021.1879025

53. Tan, Y.K., Platzer, A.: An axiomatic approach to liveness for differential equations.
In: ter Beek, M., McIver, A., Oliviera, J.N. (eds.) FM. LNCS, vol. 11800, pp. 371–
388. Springer (2019). https://doi.org/10.1007/978-3-030-30942-8 23

54. The Coq development team: The Coq proof assistant reference manual (2019),
https://coq.inria.fr/

55. Tomlin, C.J., Lygeros, J., Sastry, S.S.: A game theoretic approach to controller
design for hybrid systems. Proc. IEEE 88(7), 949–970 (2000)

56. Van Benthem, J.: Games in dynamic-epistemic logic. Bull. Econ. Research 53(4),
219–248 (2001)

https://doi.org/10.1109/LICS.2004.1319623
https://doi.org/10.1109/LICS.2004.1319623
https://doi.org/10.1017/S0960129502003626
https://doi.org/10.1109/SFCS.1983.47
https://doi.org/10.1109/SFCS.1983.47
https://doi.org/10.1007/s10817-008-9103-8
https://doi.org/10.1093/logcom/exn070
https://doi.org/10.1145/2817824
https://doi.org/10.1145/3091123
https://doi.org/10.1007/978-3-319-63588-0
https://doi.org/10.1007/978-3-319-94205-6_15
https://doi.org/10.1145/3380825
https://doi.org/10.1109/SFCS.1976.27
https://doi.org/10.1007/978-3-642-31365-3_34
http://www.aaai.org/Library/KR/2008/kr08-006.php
https://doi.org/10.1007/3-540-45351-2_39
https://doi.org/10.1007/3-540-45351-2_39
https://doi.org/10.1007/3-540-46430-1_34
https://doi.org/10.1145/1879021.1879025
https://doi.org/10.1007/978-3-030-30942-8_23
https://coq.inria.fr/

Constructive Hybrid Games 473

57. Weihrauch, K.: Computable Analysis - An Introduction. Texts in Theo-
retical Computer Science, Springer (2000), https://doi.org/10.1007/

978-ν3-ν642-ν56999-ν9
58. Wijesekera, D.: Constructive modal logics I. Ann. Pure Appl. Log. 50(3), 271–301

(1990), https://doi.org/10.1016/0168-ν0072(90)90059-νB
59. Wijesekera, D., Nerode, A.: Tableaux for constructive concurrent dynamic logic.

Ann. Pure Appl. Log. 135(1-3), 1–72 (2005), https://doi.org/10.1016/j.apal.
2004.12.001

https://doi.org/10.1007/978-3-642-56999-9
https://doi.org/10.1007/978-3-642-56999-9
https://doi.org/10.1016/0168-0072(90)90059-B
https://doi.org/10.1016/j.apal.2004.12.001
https://doi.org/10.1016/j.apal.2004.12.001

	Constructive Hybrid Games

