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Modal + Constructive is Underexplored
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Constructivity Helps Synthesis
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Whose Proofchecker and Synthesizer were Implemented
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And Applled on Hardware and in Simulation
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(Subtraction) Nim is an Introductory Example

NIM:{{ =c—1Uc:=c—2Uc:=c—3};7c>0%,

{{c::c—1Uc::c—2Uc::c—3};?c>0}d}*
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(Subtraction) Nim is an Introductory Example

NIM:{{ =c—1Uc:=c—2Uc:=c—3};7c>0%,

{{c:=c—1Uc:=c—2Uc:=c—3};?7c> 0}

}

=

e If c € {0,2,3} (mod 4), the first player can achieve c € {2,3,4}

c>0—cmod4e{0,23} - (Nmm)(c € {2,3,4})

First player wins
e If c =1 (mod 4), the second player can maifitam ¢ = I (mod 4):

c>0—cmod4=1— [NM](c mod 4 =1)
[Second player wins|

5

14



Stateful Realizers Define + Play Games

If X : Region then X{()) : Region and X[[«]] : Region P"/-
Regions X defined by X C (Realizer x State) U{T}J{L}

Realizers a, b, ¢ are higher-order, continuation-passing programs.
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Natural Deduction Can Prove Games
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Proof Calculus is Sound

Theorem (Soundness of proof calculus)
Every provable sequent (I = ¢) is valid.

/14



Proof Calculus is Sound

Theorem (Soundness of proof calculus)
Every provable sequent (I' = ¢) is valid.

Lemma (Arithmetic-term substitution)
IfT = ¢ then o(T) F o(¢) for admissible substitutions o.

Lemma (Coincidence)

The semantics of formula ¢ depends only on free variables of ¢.

Lemma (Bound effect)

Only bound variables of game « are modified by execution.
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Proofs Are Imperative Programs
Lemma (Weak Existence Property)
IfT = (3x:Q ¢), there exists f : State — Q which witnesses ¢.

Lemma (Weak Disjunction Property)

If T+ ¢ V1 there exists f : State — Bool which chooses a branch of ¢ \/ 1. In each
case, ¢ or ) has a realizer.
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Lemma (Weak Existence Property)
IfT = (3x:Q ¢), there exists f : State — Q which witnesses ¢.

Lemma (Weak Disjunction Property)

If T+ ¢ V1 there exists f : State — Bool which chooses a branch of ¢ \/ 1. In each
case, ¢ or ) has a realizer.

Theorem (Strategy Property for Angel’s Turn)

IfT + (a)@, there exists a realizer that wins ((«)) with goal ¢ assuming T initially.

Theorem (Strategy Property for Demon'’s Turn)
IfT = [a]¢, there exists a realizer that wins [[]] with goal ¢ assuming T initially.
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Realizability Reduces Constructivity to Soundness

Lemma (Weak Existence Property)
IfT = (3x:Q ¢), there exists f : State — Q which witnesses ¢.

Lemma (Weak Disjunction Property)

If T+ ¢ V1 there exists f : State — Bool which chooses a branch of ¢ \/ 1. In each
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Proofs Terms Show Functional Interpretation

e Interpret explicit proof syntax as pure functional program
e Modal separation: proof about program = monadic program

e Application: normalize proofs to simplify further processing
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Definition (Proof term grammar)
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Proofs Terms Show Functional Interpretation

o Interpret explicit proof syntax as pure functional program
e Modal separation: proof about program = monadic program

e Application: normalize proofs to simplify further processing
Definition (Proof term grammar)
Propositional
M,N,O ::=(Ap:¢. M) | (M,N)'| (£-M) | (r- M)

(Co)induction Mrep p:4. Nin O)
| (¢ M) | (yield M) | (x:=f% in p. M)
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Proofs Terms Show Functional Interpretation

o Interpret explicit proof syntax as pure functional program
e Modal separation: proof about program = monadic program

e Application: normalize proofs to simplify further processing

Definition (Proof term grammar)

Propositional
M.N,O = (Ap: 6. M) | (M,N)'| (£ M) | (r- M)
W_L(Mrepp:dj. N in O)
| (¢ M) | (yield M) | (x:=f% in p. M)
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Proof Terms Execute By Simplifying

Definition (Operational semantics)
M +— M’ if M reduces to M’ in one step.

Definition (Normal forms)
Normal proof terms M consist of canonical forms and case analyses.
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Proof Terms Execute By Simplifying

Definition (Operational semantics)
M +— M’ if M reduces to M’ in one step.

Definition (Normal forms)

Normal proof terms M consist of canonical forms and case analyses.

Lemma (Progress)
If - = M: ¢, then either M is normal or M +— M’ for some M’.

Lemma (Preservation)
If-=M:¢and M—*M' then -+ M': ¢.
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Propositional Connectives are an Example

Ao (Ap:¢. M) N [N/p|M B3 [m[M,N]]— M
A (Ax Q. M) f e ME B [m2 M, N]] — N
M— M’ M= M’
1S S

[7T1M]'—>[7T1M/] [7['2M]'—>[7T2M/]

[m1]C  [mi{case M of £ = N |r= 0)]+ (case M of { = [m1N]|r= [m0])

[m2]C [m2(case M of £ = N |r= 0)]+— (case M of { = [mN] | r= [m0])
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