
Constructive Game Logic

Brandon Bohrer and André Platzer

Logical Systems Lab
Computer Science Department
Carnegie Mellon University

ESOP “2020”

1 / 14

Modal and Constructive Logics Prove Programs

2 / 14

Modal + Constructive is Underexplored

2 / 14

Constructivity Helps Synthesis

2 / 14

Foundations and Applications are Broad

3 / 14

Full Constructive Story is Untold

3 / 14

Today’s Story is Extensive

3 / 14

Follow-Up Story is Even Broader

3 / 14

Discrete Foundations Built Today

4 / 14

Were Followed by Continuous Systems

4 / 14

Whose Proofchecker and Synthesizer were Implemented

4 / 14

And Applied on Hardware and in Simulation

4 / 14

(Subtraction) Nim is an Introductory Example

Nim =
{{
{c := c − 1 ∪ c := c − 2 ∪ c := c − 3}; ?c > 0

}
;{

{c := c − 1 ∪ c := c − 2 ∪ c := c − 3}; ?c > 0
}
d
}
∗

• If c ∈ {0, 2, 3} (mod 4), the first player can achieve c ∈ {2, 3, 4}

c > 0→ c mod 4 ∈ {0, 2, 3} → 〈Nim〉(c ∈ {2, 3, 4})

• If c ≡ 1 (mod 4), the second player can maintain c ≡ 1 (mod 4):

c > 0→ c mod 4 = 1→ [Nim](c mod 4 = 1)

Assign Choose move
Test

Take turns

Repeat

First player wins

Second player wins

5 / 14

(Subtraction) Nim is an Introductory Example

Nim =
{{
{c := c − 1 ∪ c := c − 2 ∪ c := c − 3}; ?c > 0

}
;{

{c := c − 1 ∪ c := c − 2 ∪ c := c − 3}; ?c > 0
}
d
}
∗

• If c ∈ {0, 2, 3} (mod 4), the first player can achieve c ∈ {2, 3, 4}

c > 0→ c mod 4 ∈ {0, 2, 3} → 〈Nim〉(c ∈ {2, 3, 4})

• If c ≡ 1 (mod 4), the second player can maintain c ≡ 1 (mod 4):

c > 0→ c mod 4 = 1→ [Nim](c mod 4 = 1)

Assign Choose move
Test

Take turns

Repeat

First player wins

Second player wins

5 / 14

(Subtraction) Nim is an Introductory Example

Nim =
{{
{c := c − 1 ∪ c := c − 2 ∪ c := c − 3}; ?c > 0

}
;{

{c := c − 1 ∪ c := c − 2 ∪ c := c − 3}; ?c > 0
}
d
}
∗

• If c ∈ {0, 2, 3} (mod 4), the first player can achieve c ∈ {2, 3, 4}

c > 0→ c mod 4 ∈ {0, 2, 3} → 〈Nim〉(c ∈ {2, 3, 4})

• If c ≡ 1 (mod 4), the second player can maintain c ≡ 1 (mod 4):

c > 0→ c mod 4 = 1→ [Nim](c mod 4 = 1)

Assign Choose move
Test

Take turns

Repeat

First player wins

Second player wins

5 / 14

(Subtraction) Nim is an Introductory Example

Nim =
{{
{c := c − 1 ∪ c := c − 2 ∪ c := c − 3}; ?c > 0

}
;{

{c := c − 1 ∪ c := c − 2 ∪ c := c − 3}; ?c > 0
}
d
}
∗

• If c ∈ {0, 2, 3} (mod 4), the first player can achieve c ∈ {2, 3, 4}

c > 0→ c mod 4 ∈ {0, 2, 3} → 〈Nim〉(c ∈ {2, 3, 4})

• If c ≡ 1 (mod 4), the second player can maintain c ≡ 1 (mod 4):

c > 0→ c mod 4 = 1→ [Nim](c mod 4 = 1)

Assign Choose move
Test

Take turns

Repeat

First player wins

Second player wins

5 / 14

Stateful Realizers Define + Play Games

If X : Region then X 〈〈α〉〉 : Region and X [[α]] : Region.
Regions X defined by X ⊆ (Realizer× State) ∪ {>} ∪ {⊥}.
Realizers a, b, c are higher-order, continuation-passing programs.

Example Angelic semantics cases:

X 〈〈α ∪ β〉〉 = X〈0〉〈〈α〉〉 ∪ X〈1〉〈〈β〉〉
X 〈〈?φ〉〉 3 (b, ω) ← ((a, b), ω) ∈ X and (a, ω) ∈ [[φ]]

X 〈〈?φ〉〉 3 ⊥ ← ((a, b), ω) ∈ X and (a, ω) /∈ [[φ]]

X 〈〈x := f 〉〉 3 (a, ω[x 7→ f (ω)]) ← (a, ω) ∈ X

X 〈〈αd〉〉 = X [[α]]

Won
Lost

Chose α
Chose β

Modify

6 / 14

Stateful Realizers Define + Play Games

If X : Region then X 〈〈α〉〉 : Region and X [[α]] : Region.
Regions X defined by X ⊆ (Realizer× State) ∪ {>} ∪ {⊥}.
Realizers a, b, c are higher-order, continuation-passing programs.
Example Angelic semantics cases:

X 〈〈α ∪ β〉〉 = X〈0〉〈〈α〉〉 ∪ X〈1〉〈〈β〉〉

X 〈〈?φ〉〉 3 (b, ω) ← ((a, b), ω) ∈ X and (a, ω) ∈ [[φ]]

X 〈〈?φ〉〉 3 ⊥ ← ((a, b), ω) ∈ X and (a, ω) /∈ [[φ]]

X 〈〈x := f 〉〉 3 (a, ω[x 7→ f (ω)]) ← (a, ω) ∈ X

X 〈〈αd〉〉 = X [[α]]

Won
Lost

Chose α
Chose β

Modify

6 / 14

Stateful Realizers Define + Play Games

If X : Region then X 〈〈α〉〉 : Region and X [[α]] : Region.
Regions X defined by X ⊆ (Realizer× State) ∪ {>} ∪ {⊥}.
Realizers a, b, c are higher-order, continuation-passing programs.
Example Angelic semantics cases:

X 〈〈α ∪ β〉〉 = X〈0〉〈〈α〉〉 ∪ X〈1〉〈〈β〉〉
X 〈〈?φ〉〉 3 (b, ω) ← ((a, b), ω) ∈ X and (a, ω) ∈ [[φ]]

X 〈〈?φ〉〉 3 ⊥ ← ((a, b), ω) ∈ X and (a, ω) /∈ [[φ]]

X 〈〈x := f 〉〉 3 (a, ω[x 7→ f (ω)]) ← (a, ω) ∈ X

X 〈〈αd〉〉 = X [[α]]

Won
Lost

Chose α
Chose β

Modify

6 / 14

Stateful Realizers Define + Play Games

If X : Region then X 〈〈α〉〉 : Region and X [[α]] : Region.
Regions X defined by X ⊆ (Realizer× State) ∪ {>} ∪ {⊥}.
Realizers a, b, c are higher-order, continuation-passing programs.
Example Angelic semantics cases:

X 〈〈α ∪ β〉〉 = X〈0〉〈〈α〉〉 ∪ X〈1〉〈〈β〉〉
X 〈〈?φ〉〉 3 (b, ω) ← ((a, b), ω) ∈ X and (a, ω) ∈ [[φ]]

X 〈〈?φ〉〉 3 ⊥ ← ((a, b), ω) ∈ X and (a, ω) /∈ [[φ]]

X 〈〈x := f 〉〉 3 (a, ω[x 7→ f (ω)]) ← (a, ω) ∈ X

X 〈〈αd〉〉 = X [[α]]

Won
Lost

Chose α
Chose β

Modify

6 / 14

Stateful Realizers Define + Play Games

If X : Region then X 〈〈α〉〉 : Region and X [[α]] : Region.
Regions X defined by X ⊆ (Realizer× State) ∪ {>} ∪ {⊥}.
Realizers a, b, c are higher-order, continuation-passing programs.
Example Angelic semantics cases:

X 〈〈α ∪ β〉〉 = X〈0〉〈〈α〉〉 ∪ X〈1〉〈〈β〉〉
X 〈〈?φ〉〉 3 (b, ω) ← ((a, b), ω) ∈ X and (a, ω) ∈ [[φ]]

X 〈〈?φ〉〉 3 ⊥ ← ((a, b), ω) ∈ X and (a, ω) /∈ [[φ]]

X 〈〈x := f 〉〉 3 (a, ω[x 7→ f (ω)]) ← (a, ω) ∈ X

X 〈〈αd〉〉 = X [[α]]

Won
Lost

Chose α
Chose β

Modify

6 / 14

Natural Deduction Makes Proofs Functional Programs

〈∪〉E
Γ ` 〈α ∪ β〉φ Γ, 〈α〉φ ` ψ Γ, 〈β〉φ ` ψ

Γ ` ψ

〈?〉I
Γ ` φ Γ ` ψ

Γ ` 〈?φ〉ψ

〈?〉E1
Γ ` 〈?φ〉ψ

Γ ` φ

〈?〉E2
Γ ` 〈?φ〉ψ

Γ ` ψ

〈∪〉I1
Γ ` 〈α〉φ

Γ ` 〈α ∪ β〉φ

〈∪〉I2
Γ ` 〈β〉φ

Γ ` 〈α ∪ β〉φ

[?]I
Γ, φ ` ψ

Γ ` [?φ]ψ

[?]E
Γ ` [?φ]ψ Γ ` φ

Γ ` ψ

7 / 14

Natural Deduction Can Prove Games

[;]I
Γ ` [α][β]φ

Γ ` [α;β]φ
[:=]I

Γy
x , (x = f y

x) ` φ
Γ ` [x := f]φ

[d]I
Γ ` 〈α〉φ
Γ ` [αd]φ

[∗]I
Γ ` ψ ψ ` [α]ψ ψ ` φ

Γ ` [α∗]φ

〈∗〉I
Γ ` ϕ ϕ,M0 =M � 0 ` 〈α〉(ϕ ∧M0 �M) ϕ,M = 0 ` φ

Γ ` 〈α∗〉φ

8 / 14

Natural Deduction Can Prove Games

[;]I
Γ ` [α][β]φ

Γ ` [α;β]φ
[:=]I

Γy
x , (x = f y

x) ` φ
Γ ` [x := f]φ

[d]I
Γ ` 〈α〉φ
Γ ` [αd]φ

[∗]I
Γ ` ψ ψ ` [α]ψ ψ ` φ

Γ ` [α∗]φ

〈∗〉I
Γ ` ϕ ϕ,M0 =M � 0 ` 〈α〉(ϕ ∧M0 �M) ϕ,M = 0 ` φ

Γ ` 〈α∗〉φ

8 / 14

Proof Calculus is Sound

Theorem (Soundness of proof calculus)

Every provable sequent (Γ ` φ) is valid.

Lemma (Arithmetic-term substitution)

If Γ ` φ then σ(Γ) ` σ(φ) for admissible substitutions σ.

Lemma (Coincidence)

The semantics of formula φ depends only on free variables of φ.

Lemma (Bound effect)

Only bound variables of game α are modified by execution.

9 / 14

Proof Calculus is Sound

Theorem (Soundness of proof calculus)

Every provable sequent (Γ ` φ) is valid.

Lemma (Arithmetic-term substitution)

If Γ ` φ then σ(Γ) ` σ(φ) for admissible substitutions σ.

Lemma (Coincidence)

The semantics of formula φ depends only on free variables of φ.

Lemma (Bound effect)

Only bound variables of game α are modified by execution.

9 / 14

Proofs Are Imperative Programs

Lemma (Weak Existence Property)

If Γ ` (∃x :Q φ), there exists f : State→ Q which witnesses φ.

Lemma (Weak Disjunction Property)

If Γ ` φ ∨ ψ there exists f : State→ Bool which chooses a branch of φ ∨ ψ. In each
case, φ or ψ has a realizer.

Theorem (Strategy Property for Angel’s Turn)

If Γ ` 〈α〉φ, there exists a realizer that wins 〈〈α〉〉 with goal φ assuming Γ initially.

Theorem (Strategy Property for Demon’s Turn)

If Γ ` [α]φ, there exists a realizer that wins [[α]] with goal φ assuming Γ initially.

Theorem (Soundness of proof calculus)

Every provable sequent (Γ ` φ) is valid.

10 / 14

Proofs Are Imperative Programs

Lemma (Weak Existence Property)

If Γ ` (∃x :Q φ), there exists f : State→ Q which witnesses φ.

Lemma (Weak Disjunction Property)

If Γ ` φ ∨ ψ there exists f : State→ Bool which chooses a branch of φ ∨ ψ. In each
case, φ or ψ has a realizer.

Theorem (Strategy Property for Angel’s Turn)

If Γ ` 〈α〉φ, there exists a realizer that wins 〈〈α〉〉 with goal φ assuming Γ initially.

Theorem (Strategy Property for Demon’s Turn)

If Γ ` [α]φ, there exists a realizer that wins [[α]] with goal φ assuming Γ initially.

Theorem (Soundness of proof calculus)

Every provable sequent (Γ ` φ) is valid.

10 / 14

Realizability Reduces Constructivity to Soundness

Lemma (Weak Existence Property)

If Γ ` (∃x :Q φ), there exists f : State→ Q which witnesses φ.

Lemma (Weak Disjunction Property)

If Γ ` φ ∨ ψ there exists f : State→ Bool which chooses a branch of φ ∨ ψ. In each
case, φ or ψ has a realizer.

Theorem (Strategy Property for Angel’s Turn)

If Γ ` 〈α〉φ, there exists a realizer that wins 〈〈α〉〉 with goal φ assuming Γ initially.

Theorem (Strategy Property for Demon’s Turn)

If Γ ` [α]φ, there exists a realizer that wins [[α]] with goal φ assuming Γ initially.

Theorem (Soundness of proof calculus)

Every provable sequent (Γ ` φ) is valid.
10 / 14

Proofs Terms Show Functional Interpretation

• Interpret explicit proof syntax as pure functional program

• Modal separation: proof about program ≈ monadic program

• Application: normalize proofs to simplify further processing

Definition (Proof term grammar)

M,N,O ::= (λp : φ. M) | 〈M,N〉 | 〈` ·M〉 | 〈r ·M〉
| (M rep p : ψ. N in O)

| 〈ι M〉 | 〈yield M〉 | 〈x := f y
x in p. M〉

Propositional

(Co)induction

Games

11 / 14

Proofs Terms Show Functional Interpretation

• Interpret explicit proof syntax as pure functional program

• Modal separation: proof about program ≈ monadic program

• Application: normalize proofs to simplify further processing

Definition (Proof term grammar)

M,N,O ::= (λp : φ. M) | 〈M,N〉 | 〈` ·M〉 | 〈r ·M〉
| (M rep p : ψ. N in O)

| 〈ι M〉 | 〈yield M〉 | 〈x := f y
x in p. M〉

Propositional

(Co)induction

Games

11 / 14

Proofs Terms Show Functional Interpretation

• Interpret explicit proof syntax as pure functional program

• Modal separation: proof about program ≈ monadic program

• Application: normalize proofs to simplify further processing

Definition (Proof term grammar)

M,N,O ::= (λp : φ. M) | 〈M,N〉 | 〈` ·M〉 | 〈r ·M〉
| (M rep p : ψ. N in O)

| 〈ι M〉 | 〈yield M〉 | 〈x := f y
x in p. M〉

Propositional

(Co)induction

Games

11 / 14

Proofs Terms Show Functional Interpretation

• Interpret explicit proof syntax as pure functional program

• Modal separation: proof about program ≈ monadic program

• Application: normalize proofs to simplify further processing

Definition (Proof term grammar)

M,N,O ::= (λp : φ. M) | 〈M,N〉 | 〈` ·M〉 | 〈r ·M〉
| (M rep p : ψ. N in O)

| 〈ι M〉 | 〈yield M〉 | 〈x := f y
x in p. M〉

Propositional

(Co)induction

Games

11 / 14

Proof Terms Execute By Simplifying

Definition (Operational semantics)

M 7→ M ′ if M reduces to M ′ in one step.

Definition (Normal forms)

Normal proof terms M consist of canonical forms and case analyses.

Lemma (Progress)

If · ` M : φ, then either M is normal or M 7→ M ′ for some M ′.

Lemma (Preservation)

If · ` M : φ and M 7→∗ M ′, then · ` M ′ : φ.

12 / 14

Proof Terms Execute By Simplifying

Definition (Operational semantics)

M 7→ M ′ if M reduces to M ′ in one step.

Definition (Normal forms)

Normal proof terms M consist of canonical forms and case analyses.

Lemma (Progress)

If · ` M : φ, then either M is normal or M 7→ M ′ for some M ′.

Lemma (Preservation)

If · ` M : φ and M 7→∗ M ′, then · ` M ′ : φ.

12 / 14

Propositional Connectives are an Example
λφβ (λp : φ. M) N 7→ [N/p]M

λβ (λx : Q. M) f 7→ M f
x

π1S
M 7→ M ′

[π1M] 7→ [π1M ′]

πLβ [π1[M,N]] 7→ M

πRβ [π2[M,N]] 7→ N

π2S
M 7→ M ′

[π2M] 7→ [π2M ′]

[π1]C [π1〈case M of `⇒ N | r ⇒ O〉] 7→ 〈case M of `⇒ [π1N] | r ⇒ [π1O]〉

[π2]C [π2〈case M of `⇒ N | r ⇒ O〉] 7→ 〈case M of `⇒ [π2N] | r ⇒ [π2O]〉

13 / 14

These Foundations Have Been Built On

14 / 14

