Constructive Game Logic

Brandon Bohrer and André Platzer

Logical Systems Lab
Computer Science Department
Carnegie Mellon University

ESOP “2020"

14

Modal and Constructive Logics Prove Programs

Applications

<>
<o>¢

{¢Fa{y}

Program Logics

Foundations

MM’
/,?

MN-M:¢
Constructive
Logics

14

Modal + Constructive is Underexplored

<>
<o>¢

{¢Fa{y}

Program Logics

542554'

MN=M:<m>¢
Constructive
Games

Key Idea:
Proofs are Strategies

MM’
/,?

MN-M:¢
Constructive
Logics

Applications

Foundations

14

Constructivity Helps Synthesis

N
N
PrOOf Executable ™.

/ Tree) Code \\\
//' Sy.{lthesmer
'.,- ast ;
D4;;h4
<m>0 M-M: <pm>¢ M- M’
Constructive s
<a> ¢ Games 3
MN-M:¢
{q)}a{lp} Key Idea: . Constructive
Program Logics Proofs are Strategies Logics

Applications

Foundations

14

4 ===xU

: Degen + Werner

Foundations and Applications are Broad

High-Level Proof Languaﬁé’

: Kamide
: Mamouras I . .
" /Robot + Simulation

: Wijesekera + Nerode | Case Studies N
: Today N
: Followup work - i i 3 . .

P Vs Cyber-Physical Systems Synthesis Tool Appllcatlons

Refinement Big-Step Semantics Foundations
Game Logic
Constructive Semantics
Proof terms
First-Order
Finitary Proofs Existence + Disjunction Properties

14

4 ===xU

: Degen + Werner

Full Constructive Story is Untold

High-Level Proof Language

: Kamide \
: Mamouras f imulati \
: Wijesekera + Nerode / Egzgtstuﬁ:g‘su ation '-\\
: Today AN
: Followup work - i i 3 . .
P Vs Cyber-Physical Systems Synthesis Tool Appllcatlons
Refinement Big-Step Semantics Foundations
M*
Game Logic
Constructive Semantics
D w Proof terms
First-Order
M* W
Finitary Proofs Existence + Disjunction Properties

DKM D

14

4 ===xU

Today's Story is Extensive

: Degen + Werner High-LeveI Proof Languaéé’ N\

: Kamide
: Mamouras I . .
/ t \
: Wijesekera + Nerode / Egggtstuﬁ:g‘sma fon \
: Today .
: Followup work - i i 3 . .
P s Cyber-Physical Systems Synthesis Tool Appllcatlons
Refinement Big-Step Semantics Foundations
M*
Ga@a Logic
Constructive%mantics
D W Proof terms
First-Or
M* W
Finitary Proofs Existence + Disjunction Properties

DKMD D

4 ===xU

: Degen + Werner

Follow-Up Story is Even Broader

High-Level Proof Language

: Kamide \
: Mamouras f ; ; \
: Wijesekera + Nerode / (Fégggtstuﬁ:z;ulatlon '-\\
: Today AN
: Followup work - i i 3 . .
P Vs Cyber-Physical Systems Synthesis Tool Appllcatlons
Refinement Big-Step Semantics Foundations
M*
Ga@a Logic
Constructive%mantics
D w Proof terms
First-Or
M* W
Finitary Proofs Existence + Disjunction Properties

DKMD D

14

T: Today
: Followup work

Discrete Foundations Built Today

y

AN

Applications

T <Discrete>p(Q)

Foundations

Realizability + Proof Terms
+ Small Step

14

Were Followed by Continuous Systems

T: Today /""I‘ AN

: Followup work . .
P / Applications

Foundations
Game =< Program Refinements

<Discrete+ODE>p(R) Type theory + Big Step

T <Discrete>p(Q) Realizability + Proof Terms
+ Small Step

14

Whose Proofchecker and Synthesizer were Implemented

.‘I‘I‘ - ~
T Today o e Tt e G
: Followup work Scripts roo . \ o
P / Checker Synthesizer Applications
Foundations
Game =< Program Refinements

<Discrete+ODE>p(R) Type theory + Big Step

T <Discrete>p(Q) Realizability + Proof Terms
+ Small Step

And Applled on Hardware and in Simulation

o —" “‘* Robot + Simulation Case Studles / .

T: Today /g;g:fLevel - _Prlr'enenf > Ezedzutable\
: Followup work scripts ~ Proof Synthesizer Y o
Checker Applications
Foundations
Game =< Program Refinements

<Discrete+ODE>p(R) Type theory + Big Step

T <Discrete>p(Q) Realizability + Proof Terms
+ Small Step

(Subtraction) Nim is an Introductory Example

NIM:{{ =c—1Uc:=c—2Uc:=c—3};7c>0%,

{{c::c—1Uc::c—2Uc::c—3};?c>0}d}*

14

(Subtraction) Nim is an Introductory Example

NIM:{{ =c—1Uc:=c—2Uc:=c—3};7c>0%,

{{c::c—1Uc::c—2Uc::c—3};?c>0}d}*

/14

(Subtraction) Nim is an Introductory Example

NIM:{{ =c—1Uc:=c—2Uc:=c—3};7c>0%,

{{c:=c—1Uc:=c—2Uc:=c—3};?7c> 0}

}

.

5/

14

(Subtraction) Nim is an Introductory Example

NIM:{{ =c—1Uc:=c—2Uc:=c—3};7c>0%,

{{c:=c—1Uc:=c—2Uc:=c—3};?7c> 0}

}

=

e If c € {0,2,3} (mod 4), the first player can achieve c € {2,3,4}

c>0—cmod4e{0,23} - (Nmm)(c € {2,3,4})

First player wins
e If c =1 (mod 4), the second player can maifitam ¢ = I (mod 4):

c>0—cmod4=1— [NM](c mod 4 =1)
[Second player wins|

5

14

Stateful Realizers Define + Play Games

If X : Region then X{()) : Region and X[[«]] : Region P"/-
Regions X defined by X C (Realizer x State) U{T}J{L}

Realizers a, b, ¢ are higher-order, continuation-passing programs.

14

Stateful Realizers Define + Play Games

If X : Region then X{(«)) : Region and X[[a]] : Region ﬂ/-
Regions X defined by X C (Realizer x State) U{T}J{L}
Realizers a, b, ¢ are higher-order, continuation-passing programs.
Example Angelic sem

antics cases;
X{(aU B)) = Xgrttay) U Xy kB

14

Stateful Realizers Define + Play Games

If X : Region then X{(«)) : Region and X[[a]] : Region ﬂ/-
Regions X defined by X C (Realizer x State) U{T}J{L}
Realizers a, b, ¢ are higher-order, continuation-passing programs.
Example Angelic sem

antics cases;
X{(a U B) = Xgrdal) U Xl

X{(?¢)) > (b,w) + ((a,b),w) € X and (

X{(?¢) > L + ((a, b),w) € X and (a,

€ [4]
) ¢ [4]

14

Stateful Realizers Define + Play Games

If X : Region then X{()) : Region and X[[«]] : Region P"/-
Regions X defined by X C (Realizer x State) U{T}J{L}

Realizers a, b, ¢ are higher-order, continuation-passing programs.

Example Angelic semantics caseS'Ch
a)) U Xyl

X{aUp) =
<<¢>>9() < ((a,b),w) € X and (a
X(?¢) > L « ((a, b),)EXand(,
X{x:=f) > (a, w[x»—>f() — (a,w) €

€ [4]
) ¢ [4]

14

Stateful Realizers Define + Play Games

If X : Region then X{(«)) : Region and X[[a]] : Region ﬂ/-
Regions X defined by X C (Realizer x State) U{T}J{L}
Realizers a, b, ¢ are higher-order, continuation-passing programs.
Example Angelic semantics cases;

X{(aU B)) = Xgrttay) U Xy kB

)
X{(?¢)) > (b,w) ((a, b),w) € X and (
X{(?¢) > L + ((a, b),w) € X and (a,
X((x:zf)) > (a,w[x — f(w)]) +— (a,w)
d

€ [4]
) ¢ [4]

14

Natural Deduction Makes Proofs Functional Programs
r-{auple T {a)pt ¢ T, (ot ¢

<U>E M=
- a
O e UM o
o I e
MF (260 Mo o
e S N
[?]E [+ [7¢)]¢ M= ¢

M=

14

HL

I+ [o][Ble

M- [o; Blo

Natural Deduction Can Prove Games
) (x=f)kF ¢
(=] Ne [x:=f]o

[]]

M (a)o

M- fade

14

Natural Deduction Can Prove Games

SRR (o =9 @ TH@e

CTE [ple ' M- x=f]¢ FF (a6
S TEY wElal vk

14 e [a*]o

()l - o Mog=M>0F (a)(oAMog>=M) o M=0F ¢
M {(a*)o

Proof Calculus is Sound

Theorem (Soundness of proof calculus)
Every provable sequent (I = ¢) is valid.

/14

Proof Calculus is Sound

Theorem (Soundness of proof calculus)
Every provable sequent (I' = ¢) is valid.

Lemma (Arithmetic-term substitution)
IfT = ¢ then o(T) F o(¢) for admissible substitutions o.

Lemma (Coincidence)

The semantics of formula ¢ depends only on free variables of ¢.

Lemma (Bound effect)

Only bound variables of game « are modified by execution.

14

Proofs Are Imperative Programs
Lemma (Weak Existence Property)
IfT = (3x:Q ¢), there exists f : State — Q which witnesses ¢.

Lemma (Weak Disjunction Property)

If T+ ¢ V1 there exists f : State — Bool which chooses a branch of ¢ \/ 1. In each
case, ¢ or) has a realizer.

10/14

Proofs Are Imperative Programs

Lemma (Weak Existence Property)
IfT = (3x:Q ¢), there exists f : State — Q which witnesses ¢.

Lemma (Weak Disjunction Property)

If T+ ¢ V1 there exists f : State — Bool which chooses a branch of ¢ \/ 1. In each
case, ¢ or) has a realizer.

Theorem (Strategy Property for Angel’s Turn)

IfT + (a)@, there exists a realizer that wins ((«)) with goal ¢ assuming T initially.

Theorem (Strategy Property for Demon'’s Turn)
IfT = [a]¢, there exists a realizer that wins [[]] with goal ¢ assuming T initially.

10/14

Realizability Reduces Constructivity to Soundness

Lemma (Weak Existence Property)
IfT = (3x:Q ¢), there exists f : State — Q which witnesses ¢.

Lemma (Weak Disjunction Property)

If T+ ¢ V1 there exists f : State — Bool which chooses a branch of ¢ \/ 1. In each
case, ¢ or) has a realizer.

Theorem (Strategy Property for Angel’s Turn)
IfT + (a)@, there exists a realizer that wins ((«)) with goal ¢ assuming T initially.

Theorem (Strategy Property for Demon'’s Turn)
IfT = [a]¢, there exists a realizer that wins [[]] with goal ¢ assuming T initially.

Theorem (Soundness of proof calculus)
Every provable sequent (I' = ¢) is valid.

10/14

Proofs Terms Show Functional Interpretation

e Interpret explicit proof syntax as pure functional program
e Modal separation: proof about program = monadic program

e Application: normalize proofs to simplify further processing

11/14

Proofs Terms Show Functional Interpretation

o Interpret explicit proof syntax as pure functional program
e Modal separation: proof about program = monadic program

e Application: normalize proofs to simplify further processing

Definition (Proof term grammar)

Propositional
M,N,O = (Ap:¢. M) [(M, N)'| (£- M) [(r-M)
| (M rep p:1. Nin O)
| (¢ M) | (yield M) | (x:=f% in p. M)

11 /14

Proofs Terms Show Functional Interpretation

o Interpret explicit proof syntax as pure functional program
e Modal separation: proof about program = monadic program

e Application: normalize proofs to simplify further processing
Definition (Proof term grammar)
Propositional
M,N,O ::=(Ap:¢. M) | (M,N)'| (£-M) | (r- M)

(Co)induction Mrep p:4. Nin O)
| (¢ M) | (yield M) | (x:=f% in p. M)

11 /14

Proofs Terms Show Functional Interpretation

o Interpret explicit proof syntax as pure functional program
e Modal separation: proof about program = monadic program

e Application: normalize proofs to simplify further processing

Definition (Proof term grammar)

Propositional
M.N,O = (Ap: 6. M) | (M,N)'| (£ M) | (r- M)
W_L(Mrepp:dj. N in O)
| (¢ M) | (yield M) | (x:=f% in p. M)

Games

11 /14

Proof Terms Execute By Simplifying

Definition (Operational semantics)
M +— M’ if M reduces to M’ in one step.

Definition (Normal forms)
Normal proof terms M consist of canonical forms and case analyses.

12 /14

Proof Terms Execute By Simplifying

Definition (Operational semantics)
M +— M’ if M reduces to M’ in one step.

Definition (Normal forms)

Normal proof terms M consist of canonical forms and case analyses.

Lemma (Progress)
If - = M: ¢, then either M is normal or M +— M’ for some M’.

Lemma (Preservation)
If-=M:¢and M—*M' then -+ M': ¢.

12 /14

Propositional Connectives are an Example

Ao (Ap:¢. M) N [N/p|M B3 [m[M,N]]— M
A (Ax Q. M) f e ME B [m2 M, N]] — N
M— M’ M= M’
1S S

[7T1M]'—>[7T1M/] [7['2M]'—>[7T2M/]

[m1]C [mi{case M of £ = N |r= 0)]+ (case M of { = [m1N]|r= [m0])

[m2]C [m2(case M of £ = N |r= 0)]+— (case M of { = [mN] | r= [m0])

13 /14

These Foundatlons Have Been Built On

M
@ | “‘* Robot + Simulation Case Studles /

T: Today H\gh Level —_— Proof o Executable\

Proof \
: Followup work scripts Proof Tree T e N o
p v Checker Synthesizer Applications
Foundations
Game =< Program Refinements

<Discrete+ODE>p(R) Type theory + Big Step

T <Discrete>p(Q) Realizability + Proof Terms
+ Small Step

http://www.cs.cmu.edu/~bbohrer/

14/14

