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Abstract. Recently, there has been considerable interest in the use of
Model Checking for Systems Biology. Unfortunately, the state space of
stochastic biological models is often too large for classical Model Check-
ing techniques. For these models, a statistical approach to Model Check-
ing has been shown to be an effective alternative. Extending our earlier
work, we present the first algorithm for performing statistical Model
Checking using Bayesian Sequential Hypothesis Testing. We show that
our Bayesian approach outperforms current statistical Model Checking
techniques, which rely on tests from Classical (aka Frequentist) statis-
tics, by requiring fewer system simulations. Another advantage of our
approach is the ability to incorporate prior Biological knowledge about
the model being verified. We demonstrate our algorithm on a variety
of models from the Systems Biology literature and show that it enables
faster verification than state-of-the-art techniques, even when no prior
knowledge is available.

1 Introduction
Computational models are increasingly used in the field of Systems Biology to
examine the dynamics of biological processes (e.g., [8, 10,20, 30, 34, 37]). By ‘com-
putational’, we mean discrete-variable and continuous or discrete-time models
[4], where the components of the system interact and evolve by obeying a set
of instructions or rules. In contrast to differential equation-based models, which
are also widely used in Systems Biology, computational models can provide in-
sights into the role of stochastic effects over discrete-populations of molecules or
cells. Recently, there has been considerable interest in the application of Model
Checking [15] as a powerful tool for formally reasoning about the dynamic prop-
erties of such models (e.g., [1,6,9,11,14,18,24,38]). This paper presents a new
Model Checking algorithm that is well-suited for verifying properties of very
large stochastic models, such as those created and used in Systems Biology.
The stochastic nature of most computational models from Systems Biology
gives rise to an instance of the Probabilistic Model Checking (PMC) problem [13,
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15,31]. Suppose M is a stochastic model over a set of states S, sg is a starting
state, ¢ is a dynamic property expressed as a formula in temporal logic, and
6 € [0,1] is a probability threshold. The PMC problem is: given the 4-tuple
(M, s0, ¢, 0), to decide algorithmically whether M, sg = P>g(¢). In this paper,
property ¢ is expressed in BLTL - Bounded Linear Temporal Logic [36, 35, 19].
Given these, PMC algorithms decide whether the model satisfies the property
with at least probability 6.

Existing algorithms for solving the PMC problem fall into one of two cat-
egories. The first category comprises numerical methods (e.g. [2,3,12,16,31])
which can compute the probability with which the property holds with high pre-
cision. Numerical methods are generally only suitable for small systems (=~ 10°
to 107 states). In a Biological System, the number of states can easily exceed
this limit, which motivates the need for algorithms for solving the PMC problem
in an approximate fashion. Approximate methods (e.g., [23, 26, 39,46]) work by
sampling a set of traces from the model. Each trace is then evaluated to deter-
mine whether it satisfies the property. The number of satisfying traces is used
to (approximately) decide whether M, so = P>g(¢).

Approximate PMC methods can be further divided into two sub-categories:
(i) those that seek to estimate the probability that the property holds and then
compare that estimate to 6 (e.g., [26,39]), and (ii) those that reduce the PMC
problem to a hypothesis testing problem (e.g., [46,47]). That is, deciding between
two hypotheses — Hy : P>g(¢) versus Hy : P<p(¢). Hypothesis-testing based
methods are more efficient than those based on estimation when 6 (which is
specified by the user) is significantly different than the true probability that the
property holds (which is determined by M and sg) [45].

Existing PMC methods based on hypothesis testing rely on Classical (aka
Frequentist) statistical procedures, like Wald’s Sequential Probability Ratio Test
(SPRT) [42], to answer the decision problem. Our algorithm performs hypothesis
testing, but uses Bayesian statistical procedures. This distinction is not trivial,
as Bayesian and Classical statistics are two very different fields. We will show that
in practice, our Bayesian approach requires fewer samples than Wald’s SPRT.
Finally, we note that because we adopt a Bayesian approach, our algorithm can
incorporate prior knowledge, in the form of a probability distribution, P(#),
when available. This is relevant because in a Biological setting, it is often the
case that prior knowledge is available.

The contributions of this paper are as follows:

e The first application of Bayesian Sequential Hypothesis Testing to statistical
Model Checking,

e The first hypothesis-testing based statistical Model Checking algorithm de-
signed for composite hypotheses, which can in particular include prior knowl-
edge via a mixture of prior distributions,

e A theorem proving that our algorithm terminates with probability 1,

e Error bounds for our algorithm, and

e A series of case studies using Systems Biology models demonstrating that our

method is empirically more efficient than existing algorithms for statistical
Model Checking.
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2 Background and Related Work

Our algorithm can be applied to any stochastic model M with a well-defined
probability space over traces. Several well-studied stochastic models like (discrete
and continuous) Markov Chains satisfy this property [47]. We assume that each
execution of the system can be represented by a sequence of states and the time
spent in these states. The sequence o = (sg, to), (s1,%1), ... denotes an execution
of the system along states sg, s1,... with durations tg,¢1,... € R. The system
stays in state s; for duration ¢; and makes a transition to s;41. We require that
the sum Y :° ¢; must diverge, that is, the system can not make infinitely many
state switches in finite time.

2.1 Specifying Properties in Temporal Logic

Our algorithm verifies properties of M expressed as formulas in Probabilistic
Bounded Linear Temporal Logic (PBLTL). We first define the syntax and se-
mantics of Bounded Linear Temporal Logic (BLTL) [36,35,19] and then extend
that logic to PBLTL.

For a stochastic model M, let the set of state variables SV be a finite set of
real-valued variables. A Boolean predicate over SV is a constraint of the form
x~v, where x € SV, ~ € {>,<,=}, and v € R. A BLTL property is built on a
finite set of Boolean predicates over SV using Boolean connectives and temporal
operators. The syntax of the logic is given by the following grammar:

¢ = x~v| (1 V d2)| (91 A d2) | =1 | (01U P2),

where ~ € {>,<,=}, 2 € SV, v € Q, and t € Q>¢. We can define additional
temporal operators such as Ft1) = True Ut v, or G*) = =F*—) in terms of the
bounded until U?.

We define the semantics of BLTL with respect to executions of M. The
fact that an execution o satisfies property ¢ is denoted by ¢ | ¢. Let 0 =
(s0,t0), (s1,t1),... be an execution of the model along states sg, s1,... with
durations tg,t1,... € R. We denote the execution trace starting at state ¢ by
o' (in particular, 0 denotes the original execution o). The value of the state
variable  in o at the state ¢ is denoted by V(o,i,x). The semantics of BLTL
for a trace o® starting at the k" state (k € N) is defined as follows:
oF = x ~ v if and only if V (o, k, ) ~ v;
oF = ¢1 V @9 if and only if oF = ¢ or oF = ¢o;
oF = ¢1 A @9 if and only if 0¥ = ¢; and o = ¢o;
o = —¢; if and only if 0¥ |= ¢1 does not hold (written o [~ ¢1);
o% = 1 U'¢, if and only if there exists i € N such that (a) Yo tets < €,
(b) o** |= ¢ and (c) for each 0 < j < i, ¥+ = ¢y,
Statistical Model Checking is based on evaluating whether o = ¢ holds on
sample simulations o of the system. In practice, sample simulations only have
a finite duration. The question is how long these simulations have to be for the
formula ¢ to have a well-defined semantics such that o = ¢ can be checked.
If o is too short, say of duration 2, the semantics of ¢; U@, may be unclear.
But at what duration of the simulation can we stop because we know that the
truth-value for o |= ¢ will never change by continuing the simulation? In [29],
we prove that finite simulations of bounded duration are always sufficient for
Model Checking BLTL on traces.

We can now define Probabilistic Bounded Linear Temporal Logic.
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Definition 1. A Probabilistic Bounded LTL (PBLTL) formula is a formula of
the form Psg(¢), where ¢ is a BLTL formula and 6 € (0,1).

We say that M satisfies PBLTL property P>g(¢), denoted by M = Psg(¢), if
and only if the probability that an execution of M satisfies BLTL property ¢ is
greater than or equal to 6. The problem is well-defined [47] since one can always
assign a unique probability measure to the set of executions of M that satisfy
a formula in BLTL. Note that counterexamples to the BLTL property ¢ are not
counterexamples to the PBLTL property P>g(¢), because the truth of Psg (o)
depends on the likelihood of all counterexamples to ¢. This makes PMC more
difficult than standard Model Checking, because one counterexample to ¢ is not
enough to answer P>g(¢).

2.2 Existing Statistical Probabilistic Model Checking Algorithms
As outlined in the introduction, Probabilistic Model Checking algorithms can ei-
ther be exact (e.g. [2,3, 12,16, 31]), or statistical in nature. In practice, statistical
methods (e.g., [23, 26,32, 39, 46]), which iteratively draw sample traces from the
model, are generally better suited to Model Checking Biological systems because
they scale better. Our method is statistical, and so we will compare and contrast
our method to existing statistical methods in this section.

Existing PMC methods based on hypothesis testing rely on Classical (aka
Frequentist) statistical procedures, like Wald’s Sequential Probability Ratio Test
(SPRT) [42], to answer the decision problem. Younes and Simmons introduced
the first algorithm for statistical Model Checking [45-47] for verifying proba-
bilistic temporal properties of stochastic systems. Their work uses the SPRT,
which is designed for simple hypothesis testing*. Specifically, the SPRT decides
between the simple null hypothesis H : M, sy = P=g,(¢) against the simple
alternate hypothesis Hy : M, sy |= P=p, (¢), where 6y < 6. It can be shown
that the SPRT is optimal for simple hypothesis testing, in the sense that it min-
imizes the expected number of samples among all the tests satisfying the same
Type I and IT errors [43], when either Hj) or H{ is true. The PMC problem is
instead a choice between two composite hypotheses Hy : M, sg = P>g[¢] versus
Hy : M, s9 = P<g[¢]. The SPRT is not defined unless 6, # 61, so Younes and
Simmons overcome this problem by separating the two hypotheses by an indif-
ference region (0 — 6,0 + §), where 0 < § < 1 is a user-specified parameter. It
can be shown that the SPRT with indifference region can be used for testing
composite hypotheses, while respecting the same Type I and II errors of a stan-
dard SPRT [21, Section 3.4]. However, in this case the test is no longer optimal,
and the maximum expected sample size may be much bigger than the optimal
fixed sample size sampling test - see [7] and [21, Section 3.6]. We note that our
algorithm solves the composite hypothesis testing problem, but does so using
Bayesian statistics, and thus requires no indifference region.

The method of [26] uses a fixed number of samples and estimates the proba-
bility the property holds as the number of satisfying traces divided by the num-
ber of sampled traces. Their algorithm guarantees the accuracy of the results

4 A simple hypothesis completely specifies a distribution. For example, a Bernoulli
distribution of parameter p is fully specified by the hypothesis p = 0.5 (or some
other fixed value). A composite hypothesis has instead free parameters, e.g. the
hypothesis p < 0.3, for a Bernoulli distribution.
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using Chernoff-Hoeffding bounds. In particular, their algorithm can guarantee
that the difference in the estimated and the true probability is less than €, with
probability p, where p < 1 and € > 0 are user-specified parameters. Grosu and
Smolka use a similar technique for verifying formulas in LTL [23]. Their algo-
rithm randomly samples lassos from a Biichi automaton in an on-the-fly fashion.
The method of [32] is also Bayesian, like the algorithm in this paper, but esti-
mates the probability the property holds and does not invoke hypothesis testing.
Unlike the algorithm in this paper, [32] is fully Bayesian in the sense that it ex-
plicitly considers the prior distributions over the initial state and parameters of
the model, in addition to the prior over the property.

Finally, Sen et al. [39,40] used the p-value for the null hypothesis as a statistic
for hypothesis testing. The p-value is defined as the probability of obtaining
observations at least as extreme as the one that was actually seen, given that
the null hypothesis is true. It is important to realize that a p-value is not the
probability that the null hypothesis is true. Sen et al.’s method does not have a
way to control the Type I and II errors.

3 Bayesian Statistical Model Checking

In this section, we first review some important concepts from statistical Model
Checking, and then introduce theory and terminology from Bayesian statistics.
We then present our algorithm in Sec. 3.2.

Recall that the PMC problem is to decide whether M = Psg(¢), where
0 € (0,1) and ¢ is a BLTL formula. Let p be the (unknown but fixed) probability
of the model satisfying ¢: thus, the PMC problem can now be stated as deciding
between two hypotheses:

H0:p>9 H13p<9.

For any trace o; of the system, we can deterministically decide whether o; sat-
isfies ¢. Therefore, we can define a Bernoulli random variable X; denoting the
outcome of o; = ¢. The probability mass function associated with X; is thus:

flailu) = p“ (1 —p)'="

where z; = 1 iff 0; = ¢, otherwise x; = 0. Note that the X; are independent
and identically distributed, as each trace is given by an independent execution
of the model. Since p is unknown, we assume that it is given by a random
variable, whose density g(-) is called the prior density. The prior is usually based
on our previous experiences and beliefs about the system. A complete lack of
information about the probability of the system satisfying the formula is usually
summarized by a non-informative or objective prior probability.

3.1 Bayesian Statistics

Suppose we have a sequence of random variables X1, ..., X, defined as above,
and let d = (21,...,x,) denote a sample of those variables. Then Bayes’ theorem
states that the posterior odds are

P(d|Ho)P(Ho)
P(d)

P(d|Hy)P(H,)

P(Hy|d) =
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where P(d) = P(d|Hy)P(Hy)+ P(d|Hy)P(H;), which in our case is always non-
zero. The ratio of the posterior odds for hypotheses Hy and H; given data d
is

P(Ho|d) _ P(d|Ho) P(Ho) (1)
P(H,|d) — P(d[Hy) P(Hy)

Definition 2. The Bayes factor B of sample d and hypotheses Hy and Hy is

_ P(d)H)
5= P,

For fixed priors in a given example, the Bayes factor is directly proportional to
the posterior odds ratio by Equation (1). Thus, it may be used as a measure
of relative confidence in Hy vs. Hy, as proposed by Jeffreys [28]. In particular,
he suggested that a value of the Bayes factor greater than 100 provides decisive
evidence in favor of Hy. To test Hy vs. H; we compute the Bayes factor B of
the available data and then compare it against a fixed threshold T > 1: we
shall accept Hy iff B > T'. Jeffreys interprets the value of the Bayes factor as a
measure of the evidence in favor of Hy (dually, 4 is the evidence in favor of Hy).

We now show how to compute the Bayes factor. According to Definition 2,
we have to calculate the probability of the observed sample d = (x1,...,x,)
given Hy and H;. They are given by integrating the joint density h(d|-) with
respect to the prior g(-), and since we assume that the sample is drawn from iid
variables, we have that h(d|-) = f(xz1]") - f(@s|-). Therefore, the Bayes factor
is the ratio:

P(x1,...,x,|Hp) _ /9 flzi|u) - f(zn|u) - g(u) du
P(xy,...,x,|H 0 .
( 1 | 1) / f(x1|u)f(17n|u)g(u) du

0

We observe that the Bayes factor depends on the data d and on the prior g, so
it may be considered a measure of confidence in Hy vs. H; provided by the data
T1,...,Ty, and “weighted” by the prior g. Hence, the choice of the threshold
Bayes Factor (T') in Sec. 3.2 also indicates an objective degree of confidence in
the accepted hypothesis when the Bayesian Statistical Model Checking algorithm
stops.

(2)

3.2 Algorithm

Our algorithm is essentially a sequential version of Jeffreys’ test. Remember we
want to establish whether M = Ps¢(¢), where § € (0,1) and ¢ is a BLTL
formula. Like all statistical Model Checking algorithms, we assume that it is
possible to generate unbiased samples from the model. The algorithm itera-
tively draws independent and identically distributed sample traces o1, os, ..., and
checks whether they satisfy ¢. As explained above, we can model this procedure
as independent sampling from a Bernoulli distribution X of unknown parameter
p - the actual probability of the model satisfying ¢. At stage n the algorithm
has drawn samples z1, ..., z, iid like X. It then computes the Bayes factor B,
according to (2), and it stops iff (B, > T V B, < +). When this occurs, it will
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Algorithm 1 Bayesian Statistical Model Checking

Require: PBLTL Property Psg(¢), Threshold 7' > 1, Prior density g for un-
known parameter p

n:=0 {number of traces drawn so far}
z:=0 {number of traces satisfying ¢ so far}
repeat

o := draw a sample trace of the system (iid)

n:=n+1

if o ¢ then

ri=x+1

end if

B,, := BayesFactor(n, z) {compute according to Equation (2)}
until (B, >T V B, < =)
if (B, >T) then

return H, accepted
else

return H; accepted
end if

accept Hy iff B,, > T, and will accept H; iff B,, < % The algorithm is shown
below.

From (2) we see that the algorithm can incorporate prior knowledge through
g, when computing the Bayes factor. Our examples focus on Beta priors which
are defined over the (0,1) interval by the following probability density (for real
parameters «, 3 > 0):

1
vu € (0,1 u, o, ) = w1 — )Pt 3
0.1) g.0.0) 2 gr—su (1 - 3)
where the Beta function B(a, 3) is defined as:
1
B(a, ) = / 71— )P e . (4)
0

By varying the parameters « and 3, one can approximate other smooth unimodal
densities on (0,1) by a Beta density (e.g., the uniform density over (0,1) is a
Beta with o = 8 = 1). We also define the Beta distribution function F, g)(u):

u 1 u
Yu € (0,1)  Flg g (u) = / g(t,a, B) dt = 7/ T 1 =) ar (5)
(a,3) 0 B(a, ) J
which is just the usual distribution function for a Beta random variable of pa-
rameters «, 3 (i.e., the probability that it takes values less than or equal to
The choice of the Beta density is not arbitrary. It is well-known that the
Beta distribution is the conjugate prior to the Bernoulli distribution®. This re-
lationship gives rise to closed-form solutions to the posterior density over 6 (i.e.,

® A distribution P() is said to be a conjugate prior for a likelihood function, P(d|f),
if the posterior, P(0|d) is in the same family of distributions.
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P(0]d)), thus avoiding numerical integration when calculating the Bayes factor.

Our data (z1,...,x,) are assumed to be iid samples drawn from a Bernoulli
distribution of unknown parameter p. We write x = Y I | x; for the number of
successes in (21,...,x,). The prior density ¢(-) is assumed to be a Beta density

with fixed parameters o, 8 > 0. In [29], we show that the Bayes factor B, at
stage n can be computed in terms of the Beta distribution function:

1
Bp,=————-—1.
" F(era.,nforﬁ)(e)
The Beta distribution function can be computed with high accuracy by standard
mathematical libraries (e.g. the GNU Scientific Library) or software (e.g. Mat-
lab). Hence, the Beta distribution is the appropriate choice for summarizing the
prior probability distribution in Statistical Model Checking.

We present the following two Theorems:

Theorem 1 (Termination). The Bayesian Statistical Model Checking algo-
rithm terminates with probability one, for Beta priors and Bernoulli samples.

(See [29] for a proof.)

Theorem 2. If the Bayesian Model Checking algorithm terminates after ob-
serving n sample traces, an upper bound on the probability of the Type I error
18

ZI{B(TL, x) < l/T}(x) (Z) tmae(l — tmaz)" ™"
=0

where tyqa. is the value of t that mazimizes the expression t'(1 —t)"~% defined
on [0,1], T is the Bayes Factor threshold used in the Bayesian Model Checking
algorithm, and I is the indicator function. (See [29] for a proof.)

3.3 Verification Over General Priors

The use of conjugate priors does not pose restrictions, in practice. It is known
that any prior distribution (with or without a density) can be well approxi-
mated by a finite mixture of conjugate priors [17]. Thus, we can approximate an
arbitrary prior over (0, 1) by constructing a density G(-) of the form:

N
G(u) = Zﬁ' - gi(u, ag, Bi)

i=1

where N is a positive integer which depends on the level of accuracy required,
the g;’s are Beta densities (of possibly different parameters «;, §;), and the r;’s
are positive reals summing up to 1 - this ensures that G is a proper density.

For such priors, the computation of the Bayes factor is slightly more compli-
cated. In [29], we show that the Bayes factor at stage n is given by:

SN v B@+ai,n—z+53)

B’n, — ~ p i=1"1 _ 1
Zi:l L B(x+ aj,n—x+ ;) - F(erai,nforﬁi)(e)
where 7} = ﬁ Again, we see that the Bayes factor can be computed

by means of standard, well-known numerical methods, thereby simplifying the
implementation of the algorithm. Theorem 1 can be extended to handle this
case, too [29].



226 S.K. Jha et al.

4 Benchmarks

In this section, we analyze the performance of our algorithm on five benchmark
models from the Systems Biology literature. Three of the models are written
in the PrisM Model Checking tool’s specification language [27,31], and the re-
maining two are written in SBML and were obtained from the Matlab Systems
Biology Toolbox. The PrisM Model Checker tool is capable of both symbolic (i.e.,
exact) Probabilistic Model Checking, and statistical Probabilistic Model Check-
ing. PRISM’s statistical Probabilistic Model Checking Algorithm implements the
algorithm of [26] which uses a fixed sized sampling approach and estimates the
true probability as the number of satisfying traces over the number of sampled
traces. We note that for each of the benchmark sets, we consider models that
are too large for symbolic model checking.

Our experiments demonstrate two important properties of our algorithm:
(i) we show that our algorithm requires fewer traces than either the algorithm
of [26] implemented in PRISM or Wald’s SPRT algorithm - while retaining the
same bounds on the frequentist Type-I and Type-1I error probabilities. (ii) The
performance of both the Wald’s algorithm [42] and our Bayesian Model Checking
algorithm degrades as the threshold probability (i.e., 8) in the PBLTL temporal
logic formula gets close to the actual probability of the model satisfying the BLTL
formula. However, the Bayesian algorithm shows a more graceful degradation
compared to Wald’s SPRT approach.

4.1 PRISM Benchmarks

We studied three large PRISM benchmarks which are not well suited for nu-
merical approaches to Probabilistic Model Checking. In our experiments, the
Bayesian Model Checking algorithm used uniform priors, and accepted a hy-
pothesis when it was 10000 times more likely than the other hypothesis (Bayes
Factor threshold T' = 10000). Our experiments with Wald’s SPRT used Type
I and II error bounds of 0.01. We chose an indifference region ¢ so as to make
the Type I and Type II errors for both the Wald’s Test and the Bayes Factor
test equal. The statistical estimation engine of the PRISM model checker always
needed 92042 samples to estimate the probability of the BLTL formulae being
true.

The results of experiments with the Fibroblast Growth Factor Signaling
Model (see [24], [25] for details) are presented. We checked the property whether
the probability that Grb2 binds to FRS2 within 20 time units exceeds 6 (for
several values of 0):

Hy : M |= Psg| F?° (FRS2.GRB >0 )]

The power curves and the number of samples for this benchmark are plotted
in Fig. 2(a) and Fig. 2(b) respectively. A power curve indicates the probability of
accepting the null hypothesis for various values of the threshold probability € in
the PBLTL formula. We chose the Wald’s Test so that its power curve matched
that of the Bayesian Test at the 0.01 and 0.99 acceptance probability. The goal
is to make sure that the two tests have equal statistical power. From Figure 2(b),
it is clear that both the power curves are almost on top of each other and hence,
both the tests have indeed been calibrated to be equally powerful. The Bayesian
algorithm needs fewer samples than Wald’s SPRT test for this benchmark. This
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Fig. 1. Fibroblast Growth Factor Signaling Model: The system satisfies the
formula with probability 0.58. (Bayes Factor=10000)

shows that the Bayesian Statistical Model Checking performs better than an
approach based on Wald’s SPRT.

We also studied the continuous time Markov Chain model [5, 41] for circadian
rhythm. We checked the property that the probability of the number of activated
messenger RNAs exceeding 5 units within 0.25 time units is more than 6 (for
various values of 6):

Hy : M |= P>g[ F2% (ma > 5) |

~
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(a) Number of Samples for various probability (b) Power Curve of the Bayesian and Wald’s
thresholds in the formula. approach.

Fig. 2. Circadian Rhythm: The system satisfies the formula with probability 0.93.
(Bayes Factor=10000)

The power curves and the number of samples for this benchmark are plotted
in Fig. 2(b) and Fig. 2(a) respectively. We calibrated Wald’s test so that its
power curve closely matched that of the Bayesian Test so as to make a fair
comparison. From the figure, we observe that the Bayesian algorithm always
needs fewer samples than the Wald’s SPRT test for this benchmark.
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We also analyzed the model on Cell cycle control [33] and studied the prob-
ability that Cyclin gets bound within the first 0.5 time units. We check the
property that the probability of the number of bound Cyclin molecules exceeds
3 units within 0.5 time units exceeds 6 (for various values of 0):

Hy : M |= Psg| FO® (cyclin_bound > 3) ]

®
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s+ Wald's Test ||

~

o

S
i

Bayesian Test
<+ e Wald's Test

=3
S
S
o
©

o
=]
=]

B o

N ©®

o

Number of Samples
w B
S S
o o

Probability of Acceptance
o o o o o
s o

w

o
N

o

J

0 0.2 04 06 0.8 1 02 04 06 08 1
Probability Threshold in the Formula Threshold Probability in the Formula

)

o

(a) Number of Samples for various probability (b) Power Curve of the Bayesian and Wald’s
thresholds in the formula. approach.

Fig. 3. Cell Cycle Control: The system satisfies the formula with probability 0.34.
(Bayes Factor=10000)

The results of our experiment are presented in Fig. 3(a). The Bayesian Sta-
tistical Model Checking algorithm usually required fewer samples than the ap-
proach based on Wald’s SPRT.

4.2 SBML Experiments
We also studied SBML models using the implementation of Gillespie’s Stochastic
Simulation Algorithm in Matlab’s Systems Biology Toolbox. We analyzed two
large models with over 108 and 10'7 species. We used monitors written in Matlab
to verify the BLTL properties on traces. Our analysis of the experiments in
this section is purely Bayesian, i.e., we have studied the performance of the
algorithm over only one run (using uniform priors). In the previous sections, we
had compared the performance of our algorithm with Wald’s SPRT by running
the algorithm several times on the same model - a frequentist approach.

We analyzed the Yeast Heterotrimeric G Protein Cycle benchmark [44]. We
analyzed the property that the G protein stays above the threshold of 6000 units
for 2 time units and falls below 6000 before 20 time units.

Hy : M |= Psg| G*(GProtein > 6000) and F2°(G Protein < 6000)] .

We also ran experiments using the Lotka model [22] and verified the property
that the number of copies of the x species rises to a threshold level within 0.01
time units.

Hy : M |E Psg[ FO%' (2 > 1.4 % 107)]
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The results of our experiments are shown in Table 1: both hypotheses are al-
ways accepted, although the number of samples increases with the probability
threshold of the temporal formula.

Probability|# Samples Needed Probability|# Samples Needed
0.2 3 0.1 2
0.6 8 0.5 6
0.8 14 0.7 10
0.9 23 0.9 23
0.9999 99 0.99 69

Table 1. Performance on the G Protein (left) and Lotka Benchmark (right).

4.3 Experiment with Different Classes of Priors
We investigated the effect of priors on the performance of the Bayesian Model
Checking algorithm. We used three different priors - non-informative prior, an
informative prior and a misleading prior. The priors, the number of samples
needed by the Bayesian algorithm for these priors, and the power curve for each
of these priors is also plotted in Fig. 4(a), Fig. 4(b) and Fig. 4(c) respectively.
The priors used are Beta distributions with different shape parameters: (i) o =
1/2, 8 = 1/2: non-informative prior, (ii) o = 1.4, 5 = 2 : informative prior with
a peak around 0.34 (iii) o = 2, 8 = 2: a misleading prior with peak around 0.5.
Fig. 4(b) shows that the number of samples needed by the Bayesian algo-
rithm becomes smaller when the prior probability distribution is informative
and supports the true hypothesis. Also, the power curve (see Fig. 4(c¢)) becomes
sharper when the Bayesian algorithm is given a correct and informative prior
probability distribution. A completely non-informative prior also performs well
both in the number of samples and the power of the test. Strongly misleading
priors make the power curve less steep. However, the algorithm still performs
quite well when the actual probability of the system is away from the threshold
probability in the formula.

5 Conclusions and Future Work
We have introduced the first algorithm for Probabilistic Model Checking based
on Bayesian Sequential Hypothesis Testing. Our algorithm terminates with prob-
ability 1, and provides bounds on the probability of returning an incorrect an-
swer. Empirically, we have shown that our algorithm requires fewer traces to
terminate than techniques based on Classical Statistics. This is not surprising as
the Bayesian method comparing composite hypotheses whereas techniques like
Wald’s SPRT are comparing simple hypotheses. This advantage in efficiency is
important in the context of Systems Biology as the cost of generating traces is
not necessarily negligible. Bayesian methods also afford a convenient means for
incorporating domain knowledge through the prior distributions.

Our algorithm is presently limited to incorporating prior information on the
probability that the property is true. A more fully Bayesian approach would
incorporate prior information on not just the property, but also the starting
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state and parameters of the model. We are presently extending our method to

address this limitation.
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