
Statistical Model Checking for Distributed
Probabilistic-Control Hybrid Automata with

Smart Grid Applications

João Martins1,2, André Platzer1, and João Leite2

1 Computer Science Department, Carnegie Mellon University, Pittsburgh PA
{jmartins|aplatzer}@cs.cmu.edu

2 CENTRIA and Departamento de Informática, FCT, Universidade Nova de Lisboa
jleite@di.fct.unl.pt

Abstract. The power industry is currently moving towards a more dy-
namical, intelligent power grid. This Smart Grid is still in its infancy
and a formal evaluation of the expensive technologies and ideas on the
table is necessary before committing to a full investment. In this pa-
per, we argue that a good model for the Smart Grid must match its
basic properties: it must be hybrid (both evolve over time, and per-
form control/computation), distributed (multiple concurrently execut-
ing entities), and allow for asynchronous communication and stochas-
tic behaviour (to accurately model real-world power consumption). We
propose Distributed Probabilistic-Control Hybrid Automata (DPCHA)
as a model for this purpose, and extend Bounded LTL to Quantified
Bounded LTL in order to adapt and apply existing statistical model-
checking techniques. We provide an implementation of a framework for
developing and verifying DPCHAs. Finally, we conduct a case study for
Smart Grid communications analysis.

1 Introduction

The ultimate promise of the Smart Grid is that of a more stable, energy-efficient,
adaptable, secure, resilient power grid, while delivering cheaper electricity. Cur-
rently, energy consumption follows fairly predictable patterns that need to be
very closely matched by power generation (otherwise blackouts or damage to
the infrastructure may occur). There are peak hours (e.g., people arrive home
on a hot summer day and turn on the AC), and low hours (e.g., during the
night). Certain power generators run permanently at 100% capacity, providing
support to what is known as the base load. More adaptable but more expensive
generators change their output to match demand, varying the price of energy
throughout the day. During peak hours, it might be necessary to turn on highly
adaptable and expensive peak load generators, making energy extremely expen-
sive for those few hours.

One of the core ideas of the Smart Grid is that generators will no longer pas-
sively adapt to consumption. Instead, power consumers both at the lower level

S. Qin and Z. Qiu (Eds.): ICFEM 2011, LNCS 6991, pp. 131–146, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

2 João Martins, André Platzer, and João Leite

(e.g., appliances such as washing machines) and higher level (utilities serving
some geographical area) will feed their desired consumption back into the Grid.
Indeed, utilities and home-owners have already begun deploying smart meters
and appliances that make available more detailed, up-to-date energy consump-
tion information. This gives the smarter Grid better foresight, increasing its
robustness and its ability to reschedule non-critical appliances (e.g., the dish-
washer) to off-peak hours, reducing energy costs.

Given the size and criticality of the power infrastructure, it is clear that
Smart Grid technologies have to be analysed very carefully. Furthermore, the
cost of providing real test-beds for all technologies is prohibitive, especially if the
infrastructure can sustain damage when things go wrong. Formal verification, on
the other hand, allows us to study a model of the system in question, sidestepping
the above issues. Given an appropriate model, we may then check the system
for properties: how much can be saved with appliance rescheduling? Do Smart
Meters help in predicting and optimizing load? Does that prediction help balance
load across generators? Not only are the answers to these questions useful in
furthering our understanding of the technologies, they also give us hints about
how they may be improved upon before real-world deployment.

For the above reasons, we believe that formal verification of new technologies
is fundamental for the Smart Grid. The first step in this endeavour is to find
adequate models for the Grid. The models need to be flexible and generic so
they can be reused for multiple projects and ideas, yet match the nature and
properties of the Grid. Forcing models that do not fit the properties of the Grid
leads to modelling idiosyncrasies, effectively making modelling and verification
much harder than they need to or should be (humanly and computationally).

What, then, are the properties of the Smart Grid? Most importantly, it is
a cyber-physical system. Its infrastructure exists in the real-world and follows
the laws of physics (e.g., a generator increasing its output), but it also contains
control components that make decisions and change the state instantaneously.
Thus, it is a hybrid system, i.e., has both continuous and discrete dynamics.
Some mathematical models and verification techniques for hybrid systems ex-
tend automata theory by allowing continuous evolution to occur in each state
(e.g., [10, 6, 1]), but verification is known to be undecidable for most cases [6].
Differential Dynamic Logic (dL) allows the specification of both the properties
and the behaviour of a hybrid system [13] and provides a proof calculus for
verification.

Another property of the Smart Grid is that it is distributed. The Grid is not
one monolithic system, but composed of a large number of distributed and com-
municating entities, from the power generators down to electrical substations to
the utilities, households, appliances and meters. All of these elements coexist,
communicate and cooperate with one another in real-time. Most automata mod-
els support the notion of composition, allowing a fixed number of automata to
execute concurrently. The Grid, however, is dynamically distributed: appliances
are turned on and off, power lines can be cut, and meters may fail. The model
must allow entities/elements to enter, leave and communicate as part of the sys-

Statistical Model Checking for DPCHA and the Smart Grid 3

tem dynamics. Dynamic I/O Automata [9] allow a dynamic number of elements,
but are not hybrid. Quantified Differential Dynamic Logic (QdL) [14] also allows
a dynamic number of elements and is hybrid, but like Dynamic I/O automata,
has a shared-memory communication model. Proposals for Smart Grid commu-
nication are currently based on IP and message-passing protocols, so that forcing
a fundamentally different shared-memory paradigm appears unwise.

Finally, the Grid exhibits stochastic behaviour. As we have seen, power con-
sumption follows known but not completely fixed patterns so that using non-
determinism to model these patterns encodes little information about the actual
behaviour of the Grid. Hybrid system models are generally non-deterministic,
attempting to verify safety properties that hold even in the worst-case. In the
Grid, worst-case scenarios (e.g., all lines cut at the same time, all appliances
always on) are sure to bring about a complete collapse, and most safety proper-
ties will not hold! Alternatively, a probabilistic model enables 1) a more detailed
and accurate representation of the Grid’s consumption patterns and 2) a more
comprehensive quantitative study. Since we know most interesting properties are
not always true, we may estimate the probability that they hold. This precludes
QdL [14], which is not stochastic, whereas Stochastic dL [15] is not distributed.
I/O Automata have a stochastic extension, but it is not distributed [9].

Petri Nets are inherently dynamically distributed and there have been stochas-
tic and differential extensions [16, 5]. However, the notion of markings flowing
place to place is not one that we find when designing the participants of the
Smart Grid. They would be composed of multiple markings scattered over differ-
ent places of the Petri graph. Several entities of the same class (e.g., microwaves),
sharing the same “control” graph, would create a multitude of markings super-
imposed in the same places. Markings would have to be associated with one
another to keep track of the entities as a whole, instead of considering an entity
as an indivisible structure. There is also no immediately available communica-
tion mechanism for transmitting messages (with a payload). In conclusion, while
many Petri Net variants feature mechanisms very similar to those of the Smart
Grid, it is our belief their actual implementation is generally differs enough to
warrant the Grid a model of its own.

In [12] the state of the system is given by a composition of objects and mes-
sages. All objects evolve continuously as long as no invariant is violated, and fire
probabilistic discrete transitions when they are. Asynchronous communication
is achieved by assigning a delivery time to all messages upon creation. The de-
cision to do a discrete or continuous transition depends exclusively on whether
an invariant is violated, making the dynamics of this model very restricted.

In summation, we need a model that is composed of many different entities.
These entities should be able to enter and leave the system at will, representing
failures and appliances being turned on or off. Furthermore, the entities must
be able to communicate asynchronously: given the scale of the Grid and the im-
pact of message delivery delays, it is unrealistic to assume synchronous (instant)
communication. Finally, the system must be able to behave probabilistically, in

4 João Martins, André Platzer, and João Leite

order to encode uncertain environments, e.g., power consumption. To the best of
our knowledge, no existing model naturally incorporates all of these properties.

In this paper, we propose Distributed Probabilistic-Control Hybrid Automata
(DPCHA) as such a model. We take care that the system can be easily sampled
from (to obtain execution traces), with the objective of applying existing efficient
statistical verification techniques.

Previous work has shown that statistical model checking (SMC) is a promis-
ing approach for the verification of probabilistic systems [4, 2, 3, 19, 7, 17, 8, 21,
20]. Given a property and a model, SMC techniques will repeatedly sample
traces from the model and check if they satisfy the property. Every new result
provides more information on whether the property holds for arbitrary traces.
While known to be unsound, SMC can arbitrarily approximate the probabil-
ity that the property holds very efficiently, making many otherwise intractable
problems accessible.

Logics traditionally used in the specification of properties for these hybrid
systems generally consider a fixed state-space. This makes them insufficient for
the representation of properties of distributed systems. We propose Quantified
Bounded Linear Temporal Logic, an extension to Bounded Linear Temporal
Logic [21, 7, 4, 17] that handles the dynamic state space of DPCHA using quan-
tification over the elements of the system. A similar phenomenon has been stud-
ied in the context of Java threads [18], for example, but not for cyber-physical
systems.

The main contribution of this paper is the proposal of a model that naturally
adapts to Smart Grid scenarios and for which these techniques are applicable,
enabling meaningful studies of the system.

We present some technical background in Section 2, and our DPCHA model
in Section 3. To specify properties we define QBLTL in Section 4. We briefly
explain Bayesian statistical model checking in Section 5, and develop an initial
case study in the Smart Grid domain in Section 6. We conclude in Section 7.

2 Preliminaries

Before developing the distributed model, we will begin by introducing how a sin-
gle entity behaves (e.g., microwave, generator). Thus, we briefly recall discrete-
time hybrid automata (DTHA) as described in [21]. Each entity must have a
state, e.g., current and desired power output of a generator. The entity is in a
location that specifies how the state should flow as time passes, e.g., spooling up
generator to match desired output. Finally, the entity may decide to jump from
one location to another, e.g., the microwave switches to “defrost”. We refer to an
entity’s situation as the pair of its location and state. Thus, DTHA are hybrid
because they allow continuous evolution (time passing) and discrete transitions
between locations.

Definition 1 (DTHA). A discrete-time hybrid automaton consists of

– 〈Q,E〉, a “control graph” with Q as locations and E ⊆ Q×Q as the edges

Statistical Model Checking for DPCHA and the Smart Grid 5

– Rn is the state space of the automaton’s state
– jumpe : Rn ⇀ Rn, a partial function defining how the state changes when

jumping along edge e
– ϕq : R≥0 × Rn → Rn, flows. ϕq(t;x) is the result of a continuous evolution

at location q ∈ Q after time t when starting in state x ∈ Rn
– (q0;x0) ∈ Q× Rn, an initial situation

Suppose an entity is in a situation (q;x). It may jump along an edge e orig-
inating from q, updating its state according to jumpe. Or it may remain in q
for some time t, updating its state according to the flow ϕq (which can be, for
instance, the solution of a differential equation system). Since there might be
multiple options for the next step, the automaton is non-deterministic.

Definition 2 (Transition relation for DTHA). The transition relation for
a DTHA is defined as:

(q;x)
α−→ (q;x), where

– When α = t ∈ R≥0 is a time, then (q;x)
t−→ (q;x) iff x = ϕq(t;x)

– When α = e ∈ E is an edge from q to q, then (q;x)
e−→ (q;x) iff x = jumpe(x)

It is only possible to jump along an edge e if the entity’s state is in the
domain of jumpe. In this case, we say that e is enabled and that jumpe works as
a guard for e. A scheduler δ : Q× Rn → R≥0 ∪ E that, given a situation (q;x),
decides the next action α (a flow or an edge to jump), can be applied repeatedly
to an entity’s situation to obtain a trace for that entity.

We now have defined the dynamics of a single entity. To make it behave
probabilistically, all we need to do is to make δ : Q× Rn → D(E ∪ R≥0 ∪ R≥0)
return a probability distribution over all possible actions instead of a single action
α. Sampling from this distribution gives the entity its next step.

3 Distributed Probabilistic Control Hybrid Automata

A single entity’s behaviour is given by its control graph, flows and jumps. We
have mentioned that traditional notions of automata composition are not dy-
namic enough for the Grid. Configuration automata [9] keep track of multiple
executing entities (also automata) that can enter and leave the system, resulting
in two layers of automata that have no particular intuition in the Grid. Further-
more, the automata force communication to be immediate and synchronous.

Instead, like in Petri Nets, we assume all the control graphs are given, so
we understand how microwaves (for example) behave, but are not required to
know how many. With these control graphs, jumps and flows for each type of
entity (e.g., microwave, meter), it is trivial to encode the behaviour of all types
of entities in one global control graph.

The global control graph accommodates several entities, not unlike Petri Net
markings. These entities are characterised by their situation and execute like

6 João Martins, André Platzer, and João Leite

a single entity from the previous section. This is the basic intuition for the no-
tions of Distributed Discrete-Time Hybrid Automata (DDTHA) and Distributed
Probabilistic Control Hybrid Automata (DPCHA) that we define below.

To maintain a sensible global notion of time, the DDTHA will do a continuous
transition only if all executing entities decide to do so. If any entity decides to do
a jump, then the other entities must either jump as well or flounder (i.e. doing a
discrete transition with no effect), keeping time unchanged. In this sense, discrete
transitions take precedence over continuous transitions, but consume no time.

We must still address the ability to communicate and to allow entities to
enter or exit the system. We reduce these two concerns (communication and
dynamic number of entities) to five elementary actions: new[N], die, snd[l][T],
recv[l][R], jmp. Each edge in the control graph features an action. When an
entity jumps along that edge, its action is executed. jmp is a null action so that
the entity simply follows jumpe. new[N] additionally creates a new entity with a
situation specified by a function N , and die makes the jumping entity exit the
system. snd[l][T] and recv[l][R] send and receive messages through a channel
determined by function l. The content of the sent message is given by function
T , whereas the receiving entity’s state is updated according to R, taking into
account both its current state and message content. To achieve asynchronous
communication, sent messages are stored at the global automaton level in a
“buffer”, and are removed later when received. The content of messages is a real
vector computed by function T , and affects the receiver’s state according to R.
Thus, each action is characterised by functions determining exactly how it is
executed. We let Ae denote the action of edge e, which happens in addition to
the effects of jumpe.

In summary, the control graph retains its general structure, but annotates
each edge with actions for communication and dynamism. Instead of a single
initial situation, we have an initial set of active entities and an initial situation
for each entity. Active entities all evolve time-synchronously, each following the
rules of DTHA. As entities jump along edges, they execute the associated actions,
enabling communication and complex interactions.

Definition 3 (DDTHA). A Distributed Discrete-Time Hybrid Automaton is
composed of

– Rn, the state space for each entity, with n ∈ N
– Rnm , the state space of each message’s content, with nm ∈ N
– A = {new[N], die, snd[l][T], recv[l][R], jmp}, the set of all actions, with

channel specification functions l : Rn → C, new entity creation functions
N : Rn → Q× Rn, message transmission functions T : Rn → Rnm and
message reception functions R : Rnm × Rn → Rn

– 〈Q,E〉, control graph with locations Q and edges E ⊆ Q×A×Q
– jumpe : Rn × Rn, a relation when Ae = recv or function jumpe : Rn → Rn

otherwise, defining acceptable state updates when jumping along edge e
– ϕq, as in Def. 1
– L: a (countable) set of entity identifiers
– A0 ⊂ L: a finite set of initial active entities

Statistical Model Checking for DPCHA and the Smart Grid 7

– S0 : A0 → Q× Rn, a function with a situation for each initial active entity
– C, a (countable) set of communication channels

The state of a DDTHA consists of the situations of all its entities, active and
past. Information about past entities is kept so that checking properties of them
is well-defined. The state also maintains a set of “in transit” messages (sent but
not received), enabling asynchrony of communication.

Definition 4 (State of a DDTHA). The state of a DDTHA is given by AS =
(A,S,M) with

– A ⊂ L a finite set of the labels of active entities
– S : L ⇀ Q× Rn, a partial function with the situation of active/past entities
– M ⊆ C × Rnm , a set of unreceived messages and respective channels

One interesting issue arises when an entity a decides (through a scheduler) to
flow for t time units but sometime at t′ < t some other entity b finishes its own
flow and schedules a jump. In this situation, the DDTHA also schedules a discrete
transition, but a cannot be allowed to reevaluate its previous decision to flow for
t time (e.g., the washing machine should not stop because someone turned on
the TV). Therefore, we assume without loss of generality that each entity stores
in its state (e.g., in its first coordinate) how long it must still flow, denoted by
δ-time. In state (A,S,M), an entity a’s δ-time is denoted δ-timeS(a). When the
DDTHA schedules a discrete transition, any entity with non-zero δ-time will
flounder, thus only truly rescheduling once its flow decision finishes executing.

Another important element of discrete transitions is message reception. There
must be an injective mapping from “in transit” messages to receiving entities
so that they get exactly one message. Injection ensures each receiving entity
gets at most one message. Of course, the entities must react accordingly, and
received/sent messages are removed/added to M .

The following example justifies our choice of probabilities and asynchronous
communication and illustrates a simplified modelling of the Smart Grid.

· PC

Normal(5, εpc)

recv[lc][R]
p = 0.8

snd[lt][Tt]
p = 0.1

· · ·

Normal(7, εc)

snd[lc][Tc]
p = 0.5

Fig. 1: Simplified Smart Grid

Example 1. Newest generation smart me-
ters feed up-to-date information into the
Grid, including power consumption from
the appliance level up to substation and
utility levels and so on; the Grid also
needs to match generator output with
power consumption. There is a Grid con-
trol infrastructure that maintains this
fragile balance.

An ideal model for this scenario would
have entities representing appliances, consuming energy, shutting off and power-
ing on, and sending messages into the Grid through channel lc. Another (unique)
entity, called the Power Controller (PC), would react to messages from lc and
control generator output by sending it messages through lt. Unfortunately, it
is computationally infeasible to model every appliance in a country-wide Grid

8 João Martins, André Platzer, and João Leite

(except maybe Monaco or Nauru!). A sensible simplification instead represents
classes of appliances that get turned on at around the same time for a very
similar duration, like ACs/computers in offices, the TVs at home, etc. Ideally,
the exact times and durations are given by probability distributions, simulating
real-world behaviour. We obtain a much more manageable number of entities by
using classes of appliances instead of individual appliances.

Real networks become congested so that messages are not delivered instantly.
Probabilities can be used to simulate this delay: the PC’s choice for flow time,
for instance, could be given as a normal random variable Normal(5, εpc). The PC
then waits around 5s before getting the message. We may assign its individual
scheduler a 0.8 probability of jumping along a recv edge, so that there is a 0.2
chance it will be further delayed (simulating message loss and retransmission or
congestion). These remaining 0.2 can be split between sending control messages
to generators or deciding to do another flow.

To justify our choice of asynchronous communication, suppose that whenever
an appliance class entity sends a message, the PC is forced to ignore its δ-time
and synchronise to receive that message. The PC is deviating from its original
specification of continuous evolution according to a Normal RV, which would
make the semantics, meaning and usefulness of the model unclear.

Definition 5 (Transition for DDTHA). The transition relation of a DDTHA
is defined inductively as

(A,S,M)
α−→ (A,S,M)

where A is non-empty, α ∈ R≥0 ∪ (A→ (E ∪ R≥0 ∪ {F})), iff

– If α = t ∈ R≥0, then ∀a∈A a ∈ A, S(a)
t−→ S(a), δ-timeS(a) = δ-timeS(a)− t

and δ-timeS(a) ≥ 0
– If α = τ : A → E ∪ R≥0 ∪ {F}, then there are partial injective mappings
µc : {(c,Rnm) ∈ M} → {a ∈ A : τ(a) = (q, recv[l][R], q)} from messages
of each channel to entities scheduled to receive on that channel, M = (M \⋃{range(µc) : c ∈ C}) ∪ {(l(S(a)), T (S(a))) : a ∈ A, τ(a) = (q, snd[l][T], q)}
and ∀a∈A if δ-timeS(a) > 0, then τ(a) = F , a ∈ A and S(a) = S(a);
otherwise if δ-timeS(a) = 0

• If τ(a) = t ∈ R≥0, then S(a) = S(a) except δ-timeS(a) = t

• If τ(a) = (q, jmp, q) ∈ E, then a ∈ A and S(a)
(q,q)−−−→ S(a)

• If τ(a) = (q, new[N], q) ∈ E, then a ∈ A, S(a)
(q,q)−−−→ S(a), and there

exists a completely new a /∈ A, a ∈ A such that S(a) = N(S(a))

• If τ(a) = (q, die, q) ∈ E, then a /∈ A and S(a)
(q,q)−−−→ S(a)

• If τ(a) = (q, snd[l][T], q) ∈ E, then both a ∈ A, S(a)
(q,q)−−−→ S(a) and

(l(S(a)), T (S(a))) ∈M
• If τ(a) = (q, recv[l][R], q) ∈ E, then µc(a) = (c, y) /∈ M with c =
l(S(a)), a ∈ A and (S(a), R(y, S(a)) ∈ jumpτ(a) and S(a) = R(y, S(a))

Statistical Model Checking for DPCHA and the Smart Grid 9

There may be multiple messages to deliver to an entity, and vice-versa. To
remove this source of non-determinism, we simply use a combination of lexico-
graphical and temporal ordering to choose a single assignment.

Given a single-entity scheduler δ : Q× Rn → R≥0 ∪ E like those of DTHA,
we define a DDTHA scheduler ∆ for an automaton state (A,S,M) as follows

1. If ∀a∈A δ(S(a)) ∈ R, then ∆(AS) = min{δ(S(a)) : a ∈ A}
2. If ∃a∈A δ(S(a)) ∈ E, then ∆(AS) = τ , where for each a ∈ A:

τ(a) =

{
δ(S(a)) , δ-timeS(a) = 0

F , δ-timeS(a) > 0

Each scheduler ∆ yields a single execution of the system. These valid execu-
tions are called traces, and are formalised as follows.

Definition 6 (Trace of a DPCHA). A trace of a DPCHA is a sequence
σ = (AS0, t0), (AS1, t1), ..., with ASi as in Def. 4, ti ∈ R≥0 such that 1) AS0 =
(A0, S0, ∅) and 2) for each i ∈ N>0 (up to the size of the trace if it is finite):

1. ASi−1
∆(ASi−1)−−−−−−→ ASi

2. ti−1 =

{
∆(ASi−1) , if ∆(ASi−1) ∈ R≥0
0 , if ∆(ASi−1) ∈ (L→ E ∪ {F})

Given the priority of discrete transitions, we make the assumption of diver-
gence of time, i.e., we do not consider schedulers whose traces have infinitely
many transitions in finite time. This ensures there is no infinite sequence of
jumps, i.e. that time actually passes and the system evolves.

To obtain DPCHA, we probabilise the single entity scheduler δ, from which
the global scheduler ∆ is obtained. In effect, we sample from each entity’s distri-
bution sequentially until all entities have decided on their course of action. From
this set of actions we construct the global action, and the distribution of the
global DPCHA action is derived from the distribution of the entities’ actions.
This results in Distributed Probabilistic-Control Hybrid Automata, allowing us
to formally specify the model in Example 1.

4 Quantified Bounded Linear Temporal Logic

The next step towards applying (Bayesian) SMC techniques [21, 7] is to define a
way to specify properties and to check whether they are satisfied by the execution
traces of the system. These properties must deal with the distributed nature of
the Grid. For example, we want to be able to aggregate power demand, or how
much power is being generated in total.

We start from Bounded Linear Temporal Logic (BLTL) [21, 7, 4, 17], featuring
a strong bounded until Ut operator to deal with time. φ1 Utφ2 states that φ1
must hold until φ2 holds and φ2 holds before the time bound t. It does not
require φ1 to hold when φ2 first holds, but it does require φ2 to hold at some
point before t.

10 João Martins, André Platzer, and João Leite

It has been proven that BLTL formulae can be checked with only finite
traces as long as the system guarantees divergence of time [21]. Unfortunately,
BLTL lacks the capability to express properties about a system with a dynamic
number of entities, and existing alternatives are domain-specific or bounded
[18]. Each entity contains its variables (e.g., refrigerator temperature), but to
refer to those variables we must first get a handle on the entity itself. We do
this by allowing for quantification over active entities in the system (i.e. actualist
quantification). Similarly, we allow any computable aggregation function to range
over the entities and return some aggregate value (e.g., max,

∑
). This results in

Quantified Bounded Linear Temporal Logic, whose syntax is defined as follows:

Definition 7 (Syntax of QBLTL). Formulae of QBLTL are given by the
following grammar, with ∗ ∈ {+,−,÷,×,̂ } and ∼ ∈ {≤,≥,=}:

θ ::= c | θ1 ∗ θ2 | πi(e) |

∃

(e) | ag[e](θ), with i ∈ N, c ∈ Q
φ ::=

∃

(e) | θ1 ∼ θ2 | φ1 ∨ φ2 | ¬φ1 | φ1 Utφ2 | ∃e.φ1
In the above, e is a variable denoting an entity. πi(e) is the ith variable

of entity e. ag[e](θ) stands as a template for any computable, associative and
commutative aggregation function (e.g.,

∑
[e](πtemp(e))). We abuse notation to

define

∃

(e) as 1) an indicator function for whether e is active, 2) formula evalu-
ating to true iff e is active. This is useful for filtering out entities in aggregations
and specifying properties quantifying over entities that exit the system. For ex-
ample,

∑
[e](

∃

(e)) evaluates to the number of active entities in the automaton.
As usual, we define the other logical operators from Def. 7, e.g., φ1 ∧ φ2 ≡

¬(¬φ1 ∨ ¬φ2), and temporal operators such as Ftφ ≡ true Utφ (eventually φ
holds before t) and Gtφ ≡ ¬Ft¬φ (φ always holds until t).

The semantics of QBLTL are given with respect to traces and a variable
assignment η : V ars(φ) → L to entity labels (cf. Def. 3), where V ars(φ) is the
set of variables occurring in φ. η is used to keep track of which entity variables
refer to, as in first order logic.

Let σ = (AS0, t0), (AS1, t1), ... be a trace of a DPCHA. We define that
trace σ and assignment η satisfy a formula φ by a relation σ, η |= φ. Let
σi be the trace suffix of σ starting at position i, e.g., σ0 = σ and σk =
(ASk, tk), (ASk+1, tk+1), Let JθKη

σk represent the value of interpreting θ under
ASk and assignment η, and ASi = (Ai, Si,Mi) for all i ≥ 0.

Definition 8 (Semantics of QBLTL). The semantics of QBLTL for a trace
σk = (ASk, tk), (ASk+1, tk+1), ... are defined by the interpretation of terms:

– JcKη
σk = c,

– Jθ1 ∗ θ2Kησk = Jθ1K
η
σk ∗ Jθ2K

η
σk , interpreting the syntactic operator * by the

corresponding semantic operator *,
– Jπi(e)K

η
σk = xi, where Sk(η(e)) = (q;x) ∈ Q × Rn, and xi is the projection

to the ith coordinate of x,
– J

∃

(e)Kη
σk = 1 if η(e) ∈ Ak and 0 otherwise.

– Jag[e](θ)Kη
σk = ag

(
JθKη{e 7→l1}

σk ,ag
(
..., JθKη{e 7→ln}

σk

))
, where (l1, l2, ..., ln) is

some ordering of Ak (well-defined since ag is associative and commutative),

Statistical Model Checking for DPCHA and the Smart Grid 11

and the following relation:

– σk, η |= ∃

(e) iff η(e) ∈ Ak
– σk, η |= θ1 ∼ θ2 iff Jθ1K

η
σk ∼ Jθ2K

η
σk , extending the syntactic comparison

operator ∼ to the corresponding semantic ∼,
– σk, η |= φ1 ∨ φ2 iff σk, η |= φ1 or σk, η |= φ2,
– σk, η |= ¬φ1 iff σk, η 6|= φ1 or it is false that σk, η |= φ1,

– σk, η |= φ1 U
tφ2 iff there exists i ∈ N such that 1)

∑i
l=0 tk+l ≤ t, 2) for all

j such that 0 ≤ j < i, σk+j , η |= φ1 and 3) σk+i, η |= φ2,
– σk, η |= ∃e.φ1 iff there exists l ∈ Ak such that σk, η{e 7→ l} |= φ1

As usual in logic, σk, η |= φ is only well-defined if η contains an assignment
for every free variable of φ. In ∃e, e is a variable ranging over currently existing
entities. However, these entities may leave the system in the future, leaving us
with a “dangling” variable. We illustrate this next.

Example 2. Consider a model where a consumer entity is created whenever
an appliance is turned on, and that disappears when it is turned off. While
verifying this model we may want to check that some appliances are always
running at high power, e.g., a refrigerator with a consumption minimum of
300 watts. This property can be expressed in the following QBLTL formula
∃e.G24·3600πconsumption(e) ≥ 300.

Given a trace for a sample day, we attempt to evaluate the formula. For
instance, suppose e represents a washing machine that is running at first, but
finishes its program and leaves the active Grid sometime later. What is the
meaning of πconsumption(e) ≥ 300 after the washing machine leaves the system?

The actualist semantics that we chose achieve what we believe is a good
compromise that avoids semantic pitfalls, in the same vein as [14]. The key is to
keep track of past entities’ state in S so that the semantics are well-defined even
with exiting entities. The main point, however, is that the special predicate/term∃

(·) can be used to handle entities that have left the system. The property above
should have been ∃e.G24·3600 ∃(e) ∧ πconsumption(e) ≥ 300, i.e. is there an entity
that is permanent and that is always consuming above 300.

We have made sure that our extensions are compatible with earlier SMC
approaches [21, 7] so that we can lift the theory of SMC directly to our scenario.
First, we guarantee that finite simulations are sufficient for checking whether a
QBLTL formula is satisfied, because we cannot run infinite simulations. Due to
our setting, this is a straightforward adaptation of results from [21], as follows.
We define a bound #(φ) of a QBLTL formula by having #(θ) = 0 for any term θ.
For any other logical connective excluding the until operator (e.g., ¬φ1, φ1∨φ2),
we define the bound as the maximum of the bound of its direct subformulae, e.g.,
#(φ1 ∨ φ2) = max(#(φ1),#(φ2)), and #(∃e.φ) = #(φ). Finally, #(φ1 Utφ2) =
t + max(#(φ1),#(φ2)). It can now be shown that φ is satisfied by two infinite
traces as long as the prefixes bounded by #(φ) of those traces are the same.

Lemma 1 (QBLTL has bounded simulation traces). Let φ be a QBLTL
formula and k ∈ N. Then for any two infinite traces σ = (AS0, t0), (AS1, t1), ...

12 João Martins, André Platzer, and João Leite

and σ = (AS0, t0), (AS1, t1), ... with ASk+I = ASk+I and tk+I = tk+I , for all
I ∈ N with

∑
0≤l<I tk+l ≤ #(φ) we have that σk |= φ iff σk |= φ.

The proof is done by induction on QBLTL formulae. The original proof for
BLTL [21] extends directly to our additions. It then follows that sampling can
be bounded with #(φ).

Lemma 2 (Bounded sampling). The problem σ |= φ is well defined and can
be checked for QBLTL formulae φ and traces σ based only on a finite prefix of
σ of bounded duration.

Again, thanks to our compatible setting, the proof for this lemma lifts directly
from [21]. Without this result, SMC would not be applicable in our scenario.

5 Bayesian Statistical Model Checking

Statistical Model Checking [4, 2, 3, 19, 7, 17, 21, 20] is a conceptually simple tech-
nique that has received attention due to its application to many practical situa-
tions. We follow the presentation of a Bayesian approach to the method closely,
as presented in [21].

SMC tries to determine the probability p that an arbitrary trace of an au-
tomaton satisfies a QBLTL formula φ. Two core Bayesian approaches have been
proposed: interval estimation and hypothesis testing. These methods diverge
from the traditional model checking problem in that a trace that does not sat-
isfy a formula φ is not a counter-example, but instead evidence that p < 1. For
simplicity, we describe the hypothesis testing algorithm in [21] and refer there
for an interval estimation algorithm.

The hypothesis testing algorithm attempts to solve the problem “is the prob-
ability that property φ holds greater or equal to θ”, also represented as P≥θφ.
That is, we compare the null hypothesis H0 : p ≥ θ with the alternate hypoth-
esis H1 : p < θ. We can represent the result of each sampled trace satisfying φ
by Bernoulli random variables with the real probability p. After n samples, we
have d = {x1, ..., xn} draws from those Bernoulli RV’s, and each result gives us
further evidence either for H0 or for H1. Since these hypothesis are mutually ex-
clusive, we can assume that the prior probabilities add to 1, P (H0)+P (H1) = 1.

Bayes’ theorem gives us the posterior probabilities as P (Hi|d) = P (d|Hi)P (Hi)
P (d)

with i ∈ {0, 1}, for every d with P (d) = P (d|H0)P (H0) + P (d|H1)P (H1) > 0,
which is always the case in this instance.

Definition 9 (Bayes factor). The Bayes factor B of sample d and hypotheses

H0, H1 is P (d|H0)
P (d|H1)

.

The value of the Bayes factor as defined above, obtained from data d by
sampling and testing the property, can be seen as evidence in favour of the
acceptance of hypothesis H0. The inverse 1

B , on the other hand, is evidence
in favour of H1. We can then choose a threshold T for how much evidence is
required before we accept one of the hypotheses.

Statistical Model Checking for DPCHA and the Smart Grid 13

Input: DPCHA automaton A, QBLTL property φ, probability θ, threshold T ≥ 1
and Beta prior density g for unknown parameter p
n := 0 {// Total number of traces drawn}
x := 0 {// Total number of traces satisfying φ}
loop
σ := sample trace from DPCHA A {// according to probabilistic ∆, cf. Sect. 3}
n := n+ 1
if σ |= φ then {// according to Def. 8}
x := x+ 1

end if
B := BayesFactor(n, x)
if B > T then

return H0 accepted
else if B < 1

T
then

return H1 accepted
end if

end loop

Fig. 2: Bayesian Statistical Model Checking for estimation

From [21], we know an efficient way to calculate the Bayes factor for H0, H1:

Bn =
1−

∫ 1

θ
g(u)du∫ 1

θ
g(u)du

(
1

F(x+α,n−x+β)(θ)
− 1

)
,

in the case of beta priors, where x is the number of successes in the draws
d = (x1, ..., xn) and F(s,t)(·) is the Beta distribution function with parameters
s, t. The actual algorithm can be found in Figure 2.

The algorithm samples traces from the DPCHA, then checks them against
the given formula φ. Since the result of these checks can be seen as drawing
from a Bernoulli RV with the desired probability, the algorithm then uses the
Bayes factor to calculate how much evidence is in favour of either H0 or H1.
The amount of evidence changes with each new draw, resulting in an algorithm
that adapts termination to the amount of information it can extract at each
iteration. Eventually, enough evidence is amassed for one of the hypotheses,
and it is accepted. More details about this and a more sophisticated estimation
algorithm (that we use in the following) can be found in [21].

6 Case Study: Smart Grid

We now develop a case study using a simplified Smart Grid model. We show the
versatility of our model, how smoothly it fits to the verification methods defined
previously, and how easily SMC can be used to check important properties.
Recall that the Smart Grid is a fusion of the Power Grid and the Cyber Grid. The
hope is that communication capabilities and direct feedback from the consumer
level will allow the Smart Grid to provide energy more efficiently and cost-
effectively. We use the techniques implemented in our framework to study what

14 João Martins, André Platzer, and João Leite

Smart Grid

Power consumption # Elems * 100 Estimated Consumption Actual energy output

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4 2 5

Time (hours)

0

250

500

750

1,000

1,250

1,500

1,750

2,000

E
le

ct
ri

ci
ty

Fig. 3: Smart Grid scenario with one generator

properties of the communications layer of the Grid are important for achieving
this goal. We focus on the trade-offs between cost-relevant parameters of the
network and overall system performance and safety.

As in the examples above, consumer entities represent classes of appliances.
Their demand follows a bell-shaped curve over time, representing a number of
individual appliances being gradually turned on, then off and exiting the system.
Consumers are managed by a Consumer Controller, which is the environment’s
probabilistic core. It spawns and maintains consumer entities, ensuring Grid
consumption follows the patterns we observe in real life. The probability of
creating a consumer (and its characteristics) depends on the hour of the day.
Consumers appearing during the night or late evening request less energy but
last for longer (2-3h vs 7-8h). The Power Controller (PC) receives feedback
about consumption and matches generator output to demand. The generator
only changes its output acceleration, so timing is essential. Refer to [11] for
details.

Figure 3 shows aggregate power consumption, generator output, the PC’s
estimated consumption and the number of active consumer entities during one
day. The shape of sample curves matches the patterns observed in reality, with
peak times and a break for lunch. This indicates that our model, even simplified,
simulates reasonable Grid behaviour. The intervals between control decisions for
the consumers, generator and PC are given by Normal random variables with
mean of 5 and variance between 1 and 3. During these control decisions, the
entity decides whether not to jump along a recv edge, emulating message loss.

We wish to investigate what the impact of network reliability on the system
level properties is by checking how resilient the Grid is to message loss. We use a
benchmark of two core properties. Property (1) G1440|∑[e](Gen(e)·πoutput(e))−∑

[e](Cons(e) · πconsumption(e))| < 400 states that the output of the generator is
always within 400 units of energy of the actual demand within the horizon of

Statistical Model Checking for DPCHA and the Smart Grid 15

Table 1: Experimental results for Bayesian hypothesis testing for Smart Grid
(1) 1.00 (2) 1.00 (1) 0.99 (2) 0.99 (1) 0.98 (2) 0.98

Prob. [0.89, 0.93] [0.95, 0.99] [0.87, 0.91] [0.91, 0.95] [0.86, 0.90] [0.86, 0.90]

correct/total 508/557 180/183 582/651 399/426 634/720 608/685

(1) 0.97 (2) 0.97 (1) 0.95 (2) 0.95 (1) 0.9 (2) 0.9

Prob. [0.83, 0.86] [0.82, 0.86] [0.75, 0.79] [0.66, 0.70] [0.28, 0.32] [0.16, 0.20]

correct/total 745/879 754/893 914/1180 998/1461 431/1423 169/971

observation (1440 time units). Property (2) G1440|∑[e](Gen(e) · πoutput(e)) −∑
[e](PC(e) · (π0(e)+ ...+π19(e)))| < 250 states that the PC’s estimate of power

consumption is not too far from the truth. The PC’s variables 0 through 19
store how much the consumers tell the PC they are consuming. Here, PC, Gen
and Cons are simply indicator functions for whether the element is the power
controller, a generator or a consumer. We would expect that property (2) is a
prerequisite to property (1), because regulating generator output depends on
having good estimates of the demand.

In our experiments to test message loss resilience, we vary the delivery proba-
bility of messages for the PC. In other words, whenever there is a control decision
the probability that the PC will receive a message (indicating there was no mes-
sage loss) can be 0.9, 9.95, 0.97, 0.98, 0.99 and 1.00. To test these properties
we use Bayesian interval estimation [21], which is a variation of the algorithm
in Section 5. This algorithm returns a confidence interval where the probability
that the properties are satisfied lie. We can specify the size of the interval, as
well as the confidence coefficient, allowing it to be used for cursory and in-depth
analyses. Table 1 summarises the results for intervals of 0.04 and a confidence
coefficient of 0.95.

As one would expect, a higher probability of message delivery errors will
exponentially decrease the probability that the Grid is “safe” by making the
generator output deviate too far from what the actual consumption is. In this
scenario, we could now focus on the message delivery probability interval between
0.97 and 1.00. This helps companies and utilities decide whether to invest in more
reliable communication infrastructures or not, depending on what they perceive
the risk to be. It is unclear whether higher levels justify investment in 0.99 or
0.995 reliable infrastructures, because they are more expensive at Grid scale.

We also see that the stronger property (1) holds less often than the weaker
(2), as we foresaw. Furthermore, the discrepancy is proportional to the error
rate. This tells us that communication is central in the Smart Grid. Property
(1), by requiring communication from consumers to the PC to the generator, is
clearly affected by compounded delays of two hops, while (2) only requires one.

Network bandwidth is another very configurable network parameter that
greatly affects deployment costs. The Grid industry still deploys networks that
send a few thousand bits per day. Using the above model with 0.98 message
delivery probability but doubling the consumer feedback interval from 5 to 10
minutes, we obtain the following intervals: for property (1), [0.80, 0.84] and for

16 João Martins, André Platzer, and João Leite

(2), [0.78, 0.82], a much lower performance decrease than we expected. We omit
a similar analysis to the one above due to space constraints, and refer to [11].

7 Conclusions

In order to check for desirable properties of Smart Grid technologies, we defined
Distributed Probabilistic-Control Hybrid Automata as a model for hybrid sys-
tems with a dynamic number of probabilistic elements, and Quantified Bounded
Linear Temporal Logic to specify properties in the distributed scenario. We also
showed that Bayesian statistical model checking techniques are applicable in this
context for verifying QBLTL properties. Finally, we developed a Smart Grid case
study where even a preliminary study revealed important cost-benefit relations
relevant to full-scale deployment.

References

1. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.H.: Hybrid automata: An algo-
rithmic approach to the specification and verification of hybrid systems. In: Gross-
man, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) Hybrid Systems. LNCS, vol.
736. Springer (1992)

2. Clarke, E.M., Donzé, A., Legay, A.: Statistical model checking of mixed-analog
circuits with an application to a third order delta-sigma modulator. In: Haifa Ver-
ification Conference. pp. 149–163 (2008)

3. Clarke, E.M., Donzé, A., Legay, A.: On simulation-based probabilistic model check-
ing of mixed-analog circuits. Formal Methods in System Design 36(2), 97–113
(2010)

4. Clarke, E.M., Faeder, J.R., Langmead, C.J., Harris, L.A., Jha, S.K., Legay, A.:
Statistical model checking in BioLab: Applications to the automated analysis of
T-cell receptor signaling pathway. In: CMSB. pp. 231–250 (2008)

5. Demongodin, I., Koussoulas, N.: Differential Petri nets: representing continuous
systems in a discrete-event world. IEEE Transactions on Automatic Control 43(4),
573–579 (1998)

6. Henzinger, T.A.: The theory of hybrid automata. In: LICS (1996)
7. Jha, S.K., Clarke, E.M., Langmead, C.J., Legay, A., Platzer, A., Zuliani, P.: A

bayesian approach to model checking biological systems. In: Degano, P., Gorrieri,
R. (eds.) CMSB. LNCS, vol. 5688. Springer (2009)

8. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: An overview. In:
Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G.J., Rosu,
G., Sokolsky, O., Tillmann, N. (eds.) RV. LNCS, vol. 6418. Springer (2010)

9. Lynch, N.A.: Input/Output automata: Basic, timed, hybrid, probabilistic, dy-
namic, ... In: Amadio, R.M., Lugiez, D. (eds.) CONCUR. LNCS, vol. 2761, pp.
187–188. Springer (2003)

10. Lynch, N.A., Segala, R., Vaandrager, F.W., Weinberg, H.B.: Hybrid I/O automata.
In: Alur, R., Henzinger, T.A., Sontag, E.D. (eds.) Hybrid Systems. LNCS, vol. 1066.
Springer (1995)

11. Martins, J., Platzer, A., Leite, J.: Statistical model checking for distributed
probabilistic-control hybrid automata in the smart grid. Tech. Rep. CMU-CS-11-
119, Computer Science Department, Carnegie Mellon University (2011)

Statistical Model Checking for DPCHA and the Smart Grid 17

12. Meseguer, J., Sharykin, R.: Specification and analysis of distributed object-based
stochastic hybrid systems. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC. LNCS, vol.
3927. Springer (2006)

13. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reas. 41(2),
143–189 (2008)

14. Platzer, A.: Quantified differential dynamic logic for distributed hybrid systems.
In: Dawar, A., Veith, H. (eds.) CSL. LNCS, vol. 6247. Springer (2010)

15. Platzer, A.: Stochastic differential dynamic logic for stochastic hybrid programs.
In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE. LNCS, vol. 6803, pp. 431–
445. Springer (2011)

16. Trivedi, K.S., Kulkarni, V.G.: FSPNs: Fluid stochastic Petri nets. In: Marsan, M.A.
(ed.) Application and Theory of Petri Nets. LNCS, vol. 691. Springer (1993)

17. Wang, Y.C., Komuravelli, A., Zuliani, P., Clarke, E.M.: Analog circuit verification
by statistical model checking. In: ASP-DAC. pp. 1–6. IEEE (2011)

18. Yahav, E., Reps, T., Sagiv, M.: LTL model checking for systems with unbounded
number of dynamically created threads and objects. Tech. Rep. TR-1424, Com-
puter Sciences Department, University of Wisconsin (2001)

19. Younes, H.L.S., Clarke, E.M., Zuliani, P.: Statistical verification of probabilistic
properties with unbounded until. In: Davies, J., Silva, L., da Silva Simão, A. (eds.)
SBMF. LNCS, vol. 6527. Springer (2010)

20. Younes, H.L.S., Simmons, R.G.: Statistical probabilistic model checking with a
focus on time-bounded properties. Inf. Comput. 204(9), 1368–1409 (2006)

21. Zuliani, P., Platzer, A., Clarke, E.M.: Bayesian statistical model checking with
application to Simulink/Stateflow verification. In: Johansson, K.H., Yi, W. (eds.)
HSCC. pp. 243–252. ACM (2010)

