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Motivation : Cyber-Physical Systems (CPSs)

Challenge: How can we formally ensure correctness for cyber-physical
systems that feature interacting discrete and continuous dynamics?
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Model as hybrid system & specify correctness

Hybrid system model:

if(v > limit) x ′ = v , v ′ = brake

else x ′ = v , v ′ = accel

Discrete + Continuous
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Motivation : Cyber-Physical Systems (CPSs)

This work: Deductive proofs of stability for continuous dynamics
described by ordinary differential equations (ODEs).

Model as hybrid system & specify correctness

XDeductive hyb. sys. safety proofs

XDeductive hyb. sys. liveness proofs

XDeductive ODE stability proofs
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Why Stability?

Theoretically:
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Stability shows robustness with respect to real world perturbations around
a system’s desired operating states.

← Inverted pendulum

← Resting pendulum
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Theoretically:
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Stability shows robustness with respect to real world perturbations around
a system’s desired operating states.

Stability is often the correctness criterion for control system designs.

← Inverted pendulum

← Resting pendulum

X Cruise control × ×
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Which Stability?

Lyapunov stability: classical stability for equilibria, Lyapunov (1892).

Asymptotic stability: Lyapunov stability & asymptotic convergence
to an equilibrium point from nearby states, Lyapunov (1892).

Exponential stability: exponential convergence to an equilibrium
point from nearby states, various authors.

Global stability: convergence to an equilibrium from all states of the
system, Barbashin and Krasovskii (1952).

Set stability: stability with respect to a subset of the state space,
Zubov (1957), Yoshizawa (1966), Bhatia and Szegö (1967).

Input-to-state stability: stability with respect to disturbances of
continuous dynamics, Sontag (1989).

Region stability: stability-like notion for hybrid systems, Podelski
and Wagner (2007).

ε-stability: relaxed notion of Lyapunov stability, suitable for applying
numerically-driven decision procedures, Gao et al. (2019).
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Input-to-state stability: stability with respect to disturbances of
continuous dynamics, Sontag (1989).

Region stability: stability-like notion for hybrid systems, Podelski
and Wagner (2007).

ε-stability: relaxed notion of Lyapunov stability, suitable for applying
numerically-driven decision procedures, Gao et al. (2019).

6 / 19



Which Stability?

Lyapunov stability: classical stability for equilibria, Lyapunov (1892).

Asymptotic stability: Lyapunov stability & asymptotic convergence
to an equilibrium point from nearby states, Lyapunov (1892).

Exponential stability: exponential convergence to an equilibrium
point from nearby states, various authors.

Global stability: convergence to an equilibrium from all states of the
system, Barbashin and Krasovskii (1952).

Set stability: stability with respect to a subset of the state space,
Zubov (1957), Yoshizawa (1966), Bhatia and Szegö (1967).
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Contributions

Lyapunov stability: classical stability for equilibria, Lyapunov (1892).

Asymptotic stability: Lyapunov stability & asymptotic convergence
to an equilibrium point from nearby states, Lyapunov (1892).

Exponential stability: exponential convergence to an equilibrium
point from nearby states, various authors.

Global stability: convergence to an equilibrium from all states of the
system, Barbashin and Krasovskii (1952).

Set stability: stability with respect to a subset of the state space,
Zubov (1957), Yoshizawa (1966), Bhatia and Szegö (1967).

Input-to-state stability: stability with respect to disturbances of
continuous dynamics, Sontag (1989).

Region stability: stability-like notion for hybrid systems, Podelski
and Wagner (2007).

ε-stability: relaxed notion of Lyapunov stability, suitable for applying
numerically-driven decision procedures, Gao et al. (2019).

This work: Formal specification of various stability properties in
differential dynamic logic (dL), enabling:

Rigorous proofs of ODE stability from sound dL foundations.

Formalization of logical relationships between stability notions.

Practical deployment of stability proofs in KeYmaera X, a hybrid
systems prover based on dL.
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Background: Differential Dynamic Logic

Specifications: φ, ψ ::= e ∼ ẽ | φ ∧ ψ | φ ∨ ψ | ¬φ | · · · | ∀x φ | ∃x φ
| [α]φ | 〈α〉φ︸ ︷︷ ︸

α is a hybrid system modeled using dL’s language of hybrid programs

Semantics: [x ′ = f (x)]φ iff x ′ = f (x) solution always stays in φ.

〈x ′ = f (x)〉φ iff x ′ = f (x) solution eventually reaches φ.

Safe set φ Target set φ
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Specifications: φ, ψ ::= e ∼ ẽ | φ ∧ ψ | φ ∨ ψ | ¬φ | · · · | ∀x φ | ∃x φ
| [α]φ | 〈α〉φ︸ ︷︷ ︸

α is a hybrid system modeled using dL’s language of hybrid programs

Semantics: [x ′ = f (x)]φ iff x ′ = f (x) solution always stays in φ.

〈x ′ = f (x)〉φ iff x ′ = f (x) solution eventually reaches φ.

Axiomatics:

[JACM’20] provides sound and complete dL ODE invariance reasoning for
proving ODE safety properties [x ′ = f (x)]φ.

[FAC’21] provides a general, dL refinement-based approach for proving
ODE liveness properties 〈x ′ = f (x)〉φ.
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Asymptotic Stability for ODEs

Stability: Stable systems stay close to their desired operating state(s)
when slightly perturbed from those state(s).
Attractivity: Attractive systems dissipate small initial perturbations from
their desired operating state(s).

Example: Cruise controllers stabilize car’s velocity v at targeted value vc .

XStable + Attractive︸ ︷︷ ︸
Asymptotic Stability

XStable

×Not attractive

XAttractive

×Not stable

X Cruise control × ×
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Stability: Stable systems stay close to their desired operating state(s)
when slightly perturbed from those state(s).
Attractivity: Attractive systems dissipate small initial perturbations from
their desired operating state(s).

Example: Cruise controllers stabilize car’s velocity v at targeted value vc .

Key Idea: Specify ODE stability in dL, then derive stability proof rules by
combining dL’s ODE safety and liveness reasoning.

X Cruise control × ×
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Formal Specification & Deduction (Stability)

Definition (Stability)

The origin 0 ∈ Rn of the n-dimensional ODE x ′ = f (x) is:
stable if for all ε>0, there exists δ>0 s.t. for all x=x(0) with ‖x‖<δ, the
ODE solution x(t) : [0,T )→ Rn always satisfies ‖x(t)‖<ε.

Stab(x ′ = f (x)) ≡ ∀ε>0 ∃δ>0∀x
(
‖x‖2 < δ2 → [x ′ = f (x)] ‖x‖2 < ε2

)
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Formal Specification & Deduction (Stability)

Lemma (Lyapunov Function Proof Rule)

The following Lyapunov function proof rule is derivable in dL.

Lyap≥
` f (0) = 0 ∧ E (0) = 0 0 < ‖x‖2 ` E > 0 ∧ E ′ ≤ 0

` ∀ε>0∃δ>0 ∀x
(
‖x‖2 < δ2 → [x ′ = f (x)] ‖x‖2 < ε2

)︸ ︷︷ ︸
Stab(x ′=f (x))

Lyapunov functions are an energy-like auxiliary measure used to certify
(asymptotic) stability for a given system.
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... }

` Stab(x ′ = f (x))

Deductive reasoning over ∀, ∃
& ODE safety reasoning [JACM’20]
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Formal Specification & Deduction (Attractivity)

Definition (Attractivity)

The origin 0 ∈ Rn of the n-dimensional ODE x ′ = f (x) is:
attractive if there exists δ>0 s.t. for all x=x(0) with ‖x‖<δ, the ODE
solution x(t) : [0,T )→ Rn satisfies limt→T x(t) = 0.

Attr(x ′ = f (x)) ≡ ∃δ>0 ∀x
(
‖x‖2 < δ2 → Asym(x ′ = f (x), x = 0)︸ ︷︷ ︸
∀ε>0 〈x ′ = f (x)〉[x ′ = f (x)] ‖x‖2 < ε2

)

12 / 19



Formal Specification & Deduction (Asymptotic Stability)

Definition (Asymptotic stability)

The origin 0 ∈ Rn of the n-dimensional ODE x ′ = f (x) is:
asymptotically stable if it is stable and attractive.

AStab(x ′ = f (x)) ≡ Stab(x ′ = f (x)) ∧ Attr(x ′ = f (x))
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X Exponential stability: exponential convergence to an equilibrium
point from nearby states, various authors.
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X Set stability: stability with respect to a subset of the state space,
Zubov (1957), Yoshizawa (1966), Bhatia and Szegö (1967).

Input-to-state stability: stability with respect to disturbances of
continuous dynamics, Sontag (1989).

Region stability: stability-like notion for hybrid systems, Podelski
and Wagner (2007).

X ε-stability: relaxed notion of Lyapunov stability, suitable for applying
numerically-driven decision procedures, Gao et al. (2019).

In paper: Proofs of logical relationships between stability notions in dL
and various verified stability examples in KeYmaera X:

Asymptotic stability of a PD inverted pendulum controller.

Set stability for the axes of a 3D rigid body.

ε-stability and other stability examples from verification literature
(nonlinear ODEs, up to 6 dimensions) [CAV’19, TACAS’20].
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Conclusion and Future Work

Future work: stability with respect to continuous ODE disturbances,
hybrid systems stability, and KeYmaera X automation for stability proofs.

Model as hybrid system & specify correctness

XDeductive hyb. sys. safety proofs

XDeductive hyb. sys. liveness proofs

XDeductive ODE stability proofs
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