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Motivation : Cyber-Physical Systems (CPSs)

Challenge: How can we formally ensure correctness for cyber-physical
systems that feature interacting discrete and continuous dynamics?
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v'Deductive ODE stability proofs

This work: Deductive proofs of stability for continuous dynamics
described by ordinary differential equations (ODEs). J




Why Stability?

< Inverted pendulum

Theoretically: In Practice:

< Resting pendulum

Stability shows robustness with respect to real world perturbations around
a system's desired operating states.
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Which Stability?

e Lyapunov stability: classical stability for equilibria, Lyapunov (1892).

o Asymptotic stability: Lyapunov stability & asymptotic convergence
to an equilibrium point from nearby states, Lyapunov (1892).

o Exponential stability: exponential convergence to an equilibrium
point from nearby states, various authors.

@ Global stability: convergence to an equilibrium from all states of the
system, Barbashin and Krasovskii (1952).

o Set stability: stability with respect to a subset of the state space,
Zubov (1957), Yoshizawa (1966), Bhatia and Szegd (1967).

o Input-to-state stability: stability with respect to disturbances of
continuous dynamics, Sontag (1989).

@ Region stability: stability-like notion for hybrid systems, Podelski
and Wagner (2007).

o e-stability: relaxed notion of Lyapunov stability, suitable for applying

numerically-driven decision procedures, Gao et al. (2019).
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Contributions

This work: Formal specification of various stability properties in
differential dynamic logic (dL), enabling:

@ Rigorous proofs of ODE stability from sound dL foundations.
@ Formalization of logical relationships between stability notions.

@ Practical deployment of stability proofs in KeYmaera X, a hybrid
systems prover based on dL.
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Background: Differential Dynamic Logic

Specifications: ¢,) :=e~E|PpANY | VU | ¢ | -+ | Vx| Ixo
| [edo | ()¢
N———

« is a hybrid system modeled using dL's language of hybrid programs

Semantics: [x' = f(x)]¢ iff X' = f(x) solution always stays in ¢.

(x" = f(x))¢ iff X' = f(x) solution eventually reaches ¢.

Safe/set ¢




Background: Differential Dynamic Logic

Specifications: ¢,) :=e~E|PpANY | VU | ¢ | -+ | Vx| Ixo
| [edo | ()¢
N———

« is a hybrid system modeled using dL's language of hybrid programs
Semantics: [x' = f(x)]¢ iff X' = f(x) solution always stays in ¢.
(x" = f(x))¢ iff X' = f(x) solution eventually reaches ¢.
Axiomatics:

[JACM'20] provides sound and complete dL ODE invariance reasoning for
proving ODE safety properties [x" = f(x)]¢.

[FAC'21] provides a general, dL refinement-based approach for proving
ODE liveness properties (x' = f(x))¢.




Asymptotic Stability for ODEs

Stability: Stable systems stay close to their desired operating state(s)
when slightly perturbed from those state(s).

Attractivity: Attractive systems dissipate small initial perturbations from
their desired operating state(s).

Example: Cruise controllers stabilize car’s velocity v at targeted value v..
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Asymptotic Stability
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Key Idea: Specify ODE stability in dL, then derive stability proof rules by
combining dL's ODE safety and liveness reasoning. J
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Formal Specification & Deduction (Stability)

Definition (Stability)

The origin 0 € R” of the n-dimensional ODE x" = f(x) is:
stable if for all £>0, there exists >0 s.t. for all x=x(0) with ||x||<d, the
ODE solution x(t) : [0, T) — R" always satisfies ||x(t)|<e.

Stab(x' = f(x)) = Ve>035>0x ([|x|12 < 6% = [x' = F(x)] ||x]> < £2)

11/19



Formal Specification & Deduction (Stability)

Lemma (Lyapunov Function Proof Rule)

The following Lyapunov function proof rule is derivable in dL.
Ff(0)=0AE(0)=0 0<|x|?FE>0ANE <0
F Ve>036>0Vx (||x||* < 6% = [x' = f(x)] [|x[|* < &)

Stab(x/=f(x))

Lyap>

v Lyapunov Function E

Lyapunov functions are an energy-like auxiliary measure used to certify
(asymptotic) stability for a given system.
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Formal Specification & Deduction (Attractivity)

Definition (Attractivity)

The origin 0 € R” of the n-dimensional ODE x" = f(x) is:
attractive if there exists §>0 s.t. for all x=x(0) with ||x||<d, the ODE
solution x(t) : [0, T) — R”" satisfies lim;_, 1+ x(t) = 0.

Attr(x = f(x)) = 36>0Vx (||x]|? < 6% = Asym(x’ = f(x),x = 0))

Ve>0 (x' = f(x))[x' = F(x)]|Ix]|? < 62)
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Formal Specification & Deduction (Asymptotic Stability)

Definition (Asymptotic stability)

The origin 0 € R” of the n-dimensional ODE x" = f(x) is:
asymptotically stable if it is stable and attractive.

AStab(x’ = f(x)) = Stab(x’ = f(x)) A Attr(x’ = f(x))
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Which Stability?

ANIEN

Lyapunov stability: classical stability for equilibria, Lyapunov (1892).
Asymptotic stability: Lyapunov stability & asymptotic convergence
to an equilibrium point from nearby states, Lyapunov (1892).
Exponential stability: exponential convergence to an equilibrium
point from nearby states, various authors.

Global stability: convergence to an equilibrium from all states of the
system, Barbashin and Krasovskii (1952).

Set stability: stability with respect to a subset of the state space,
Zubov (1957), Yoshizawa (1966), Bhatia and Szegd (1967).

Input-to-state stability: stability with respect to disturbances of
continuous dynamics, Sontag (1989).

Region stability: stability-like notion for hybrid systems, Podelski
and Wagner (2007).

e-stability: relaxed notion of Lyapunov stability, suitable for applying

numerically-driven decision procedures, Gao et al. (2019).
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Which Stability?

In paper: Proofs of logical relationships between stability notions in dL
and various verified stability examples in KeYmaera X:

@ Asymptotic stability of a PD inverted pendulum controller.
@ Set stability for the axes of a 3D rigid body.

@ e-stability and other stability examples from verification literature
(nonlinear ODEs, up to 6 dimensions) [CAV'19, TACAS'20].
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Conclusion and Future Work

Model as hybrid system & specify correctness

v'Deductive hyb. sys. safety proofs

= rormsins v'Deductive hyb. sys. liveness proofs

bt v R0 fappeapap

F o leexet v =T xe0

v'Deductive ODE stability proofs

Future work: stability with respect to continuous ODE disturbances,
hybrid systems stability, and KeYmaera X automation for stability proofs. J
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