
Int J Softw Tools Technol Transfer (2017) 19:717–741
DOI 10.1007/s10009-016-0434-1

A Formally Verified Hybrid System for Safe Advisories
in the Next-Generation Airborne Collision Avoidance System

Jean-Baptiste Jeannin · Khalil Ghorbal · Yanni Kouskoulas · Aurora Schmidt ·
Ryan Gardner · Stefan Mitsch · André Platzer

Published online: 4 October 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract The Next-Generation Airborne Collision Avoid-
ance System (ACAS X) is intended to be installed on all
large aircraft to give advice to pilots and prevent mid-air col-
lisions with other aircraft. It is currently being developed by
the Federal Aviation Administration (FAA). In this paper we
determine the geometric configurations under which the ad-
vice given by ACAS X is safe under a precise set of assump-
tions and formally verify these configurations using hybrid
systems theorem proving techniques. We consider subse-
quent advisories and show how to adapt our formal verifi-
cation to take them into account. We examine the current
version of the real ACAS X system and discuss some cases
where our safety theorem conflicts with the actual advisory
given by that version, demonstrating how formal hybrid sys-
tems proving approaches are helping to ensure the safety of
ACAS X. Our approach is general and could also be used
to identify unsafe advice issued by other collision avoidance
systems or confirm their safety.

Jean-Baptiste Jeannin∗

Samsung Research America, Mountain View, CA, USA

Khalil Ghorbal∗

INRIA, Rennes, France

Yanni Kouskoulas
The Johns Hopkins University Applied Physics Laboratory, USA

Aurora Schmidt
The Johns Hopkins University Applied Physics Laboratory, USA

Ryan Gardner
The Johns Hopkins University Applied Physics Laboratory, USA

Stefan Mitsch
Carnegie Mellon University, Pittsburgh, PA, USA

André Platzer
Carnegie Mellon University, Pittsburgh, PA, USA
∗ This work was performed at Carnegie Mellon University

1 Introduction

With growing air traffic, the airspace becomes more crow-
ded, and the risk of airborne collisions between aircraft in-
creases. In the 1970s, after a series of mid-air collisions,
the Federal Aviation Administration (FAA) decided to de-
velop an onboard collision avoidance system: the Traffic
Alert and Collision Avoidance System (TCAS). This pro-
gram had great success, and prevented many mid-air col-
lisions over the years. Some accidents still happened; for
example, a collision over Überlingen in 2002 occurred due
to conflicting advice between TCAS and air traffic control.
Airspace management will evolve significantly over the next
decade with the introduction of the next-generation air traf-
fic management system; this will create new requirements
for collision avoidance. To meet these new requirements,
the FAA has decided to develop a new system: the Next-
Generation Airborne Collision Avoidance System, known as
ACAS X [5,12,16].

Like TCAS, ACAS X avoids collisions by giving ver-
tical guidance to an aircraft’s pilot. A typical scenario in-
volves two aircraft: the ownship where ACAS X is installed,
and another aircraft called the intruder that is at risk of col-
liding with the ownship. ACAS X is designed to avoid Near
Mid-Air Collisions (NMACs), situations where two aircraft
come within rp = 500 ft horizontally and hp = 100 ft ver-
tically of each other [16]. The NMAC definition describes a
volume centered around the ownship, shaped like a hockey
puck of radius rp and half-height hp.

In order to be accepted by pilots, and thus operationally
suitable, ACAS X needs to strike a balance between giving
advice to help pilots avoid collisions but also minimizing
interruptions. These goals drive the design in opposite di-
rections, and cannot both be perfectly met in the presence
of unknown pilot behavior. As part of the ACAS X develop-

http://dx.doi.org/10.1007/s10009-016-0434-1

2 J.-B. Jeannin, K. Ghorbal, Y. Kouskoulas, A. Schmidt, R. Gardner, S. Mitsch and A. Platzer

Table 1 ACAS X advisories and their modeling variables

ACAS X Specification [14] Our model
Vertical Rate Range Strength Delay Sign Advisory

Advisory Description Min (ft/min) Max (ft/min) alo δ (s) w vlo (ft/min)
DNC2000 Do Not Climb at more than 2,000 ft/min −∞ +2000 g/4 5 −1 +2000
DND2000 Do Not Descend at more than 2,000 ft/min −2000 +∞ g/4 5 +1 −2000
DNC1000 Do Not Climb at more than 1,000 ft/min −∞ +1000 g/4 5 −1 +1000
DND1000 Do Not Descend at more than 1,000 ft/min −1000 +∞ g/4 5 +1 −1000
DNC500 Do Not Climb at more than 500 ft/min −∞ +500 g/4 5 −1 +500
DND500 Do Not Descend at more than 500 ft/min −500 +∞ g/4 5 +1 −500
DNC Do Not Climb −∞ 0 g/4 5 −1 0
DND Do Not Descend 0 +∞ g/4 5 +1 0
MDES Maintain at least current Descent rate −∞ current g/4 5 −1 current
MCL Maintain at least current Climb rate current +∞ g/4 5 +1 current
DES1500 Descend at at least 1,500 ft/min −∞ −1500 g/4 5 −1 −1500
CL1500 Climb at at least 1,500 ft/min +1500 +∞ g/4 5 +1 +1500

SDES1500 Strengthen Descent to at least 1,500 ft/min −∞ −1500 g/3 3 −1 −1500
SCL1500 Strengthen Climb to at least 1,500 ft/min +1500 +∞ g/3 3 +1 +1500
SDES2500 Strengthen Descent to at least 2,500 ft/min −∞ −2500 g/3 3 −1 −2500
SCL2500 Strengthen Climb to at least 2,500 ft/min +2500 +∞ g/3 3 +1 +2500

COC Clear of Conflict −∞ +∞ Not applicable
MTLO Multi-Threat Level-Off Not applicable

ment process, this work focuses on precisely characterizing
the circumstances in which ACAS X gives safe advice, and
where safety is traded off for operational suitability, helping
to identify modifications that improve its safety and perfor-
mance.

1.1 Airborne Collision Avoidance System ACAS X

In order to prevent an NMAC with other aircraft, ACAS X
uses various sensors to determine the position of the own-
ship, as well as the positions of any intruders [6]. It com-
putes its estimate of the best pilot action by linearly inter-
polating a precomputed table of scores for actions, and, if
appropriate, issuing an advisory to avoid potential collisions
[7] through a visual display and a voice message.

An advisory is a request to the pilot of the ownship to al-
ter or maintain her vertical speed. ACAS X advisories are
strictly vertical, and never request any horizontal maneu-
vering. Table 1 shows the advisories ACAS X can issue.
For example, Do-Not-Climb (DNC) requests the pilot to not
climb, and Climb-1500 (CL1500) requests the pilot to climb
at more than 1500 ft/min. The current version of ACAS X
can issue a total of 16 different advisories plus Clear-of-
Conflict (COC), which indicates that no action is necessary,
and Multi-Threat-Level-Off (MTLO), which is used in the
case of multiple intruders. To comply with an advisory, the
pilot must adjust her vertical rate to fall within the advised
vertical rate range. Based on previous research [14], the pilot
is assumed to do so using a vertical acceleration of strength
at least alo starting after a delay of at most δ after the advi-
sory has been announced by ACAS X.

At the heart of ACAS X is a table whose domain de-
scribes the current state of an encounter, and whose range is
a set of scores for each possible action [14,17]. The table is
obtained from a Markov Decision Process (MDP) approxi-
mating the dynamics of the system in a discretization of the
state-space, and optimized using dynamic programming to
maximize the expected value of events over all future paths
for each action [14]. Near Mid-Air Collision events, for ex-
ample, are associated with large negative values and issuing
an advisory is associated with a small negative value. The
policy is to choose the action with the highest expected value
from a multilinear interpolation of grid points in this table.
ACAS X uses this table, along with some heuristics, to de-
termine the best action to take for the geometry and dynamic
conditions in which it finds itself.

1.2 Identifying Formally Verified Safe Regions

Since ACAS X involves both discrete advisories to the pilot
and continuous dynamics of aircraft, it is natural to formally
verify it using hybrid systems. However the complexity of
ACAS X, which uses at its core a large lookup table—de-
fining 29,212,664 interpolation regions within a 5-dimen-
sional state-space—makes the direct use of hybrid systems
verification techniques intractable. Our approach is differ-
ent. It identifies safe regions in the state space of the system
where we prove formally that a particular advisory, if fol-
lowed, prevents all possible NMACs from any aircraft posi-
tion and velocity in that safe region. Then it compares these
regions to the configurations where the ACAS X table re-
turns this same advisory. Moreover our safe regions are sym-

A Formally Verified Hybrid System for Safe Advisories in the Next-Generation Airborne Collision Avoidance System 3

Fig. 1 Nominal trajectory of the ownship (red) and safe region for the intruder (green), immediate response

bolic in their parameters, and can thus be easily adapted to
new parameters or new versions of ACAS X.

Going beyond the results of our previous work [13], this
paper devises and formally proves safety regions for advi-
sories that can be corrected later on. In that context, an ad-
visory need not be safe on its own to be considered accept-
able, but the system needs to be able to correct it with a
subsequent advisory. This is particularly useful to assess the
safety of preventive advisories, and leads to the discovery of
very relevant unexpected behaviors of the system.

Our results provide independent characterizations of the
ACAS X behavior to provide a clear and complete picture
of its performance. Our method can be used by the ACAS X
development team in two ways. It provides a mathematical
proof—with respect to a precise hybrid systems model—
that ACAS X is absolutely safe for some configurations of
the aircraft. Additionally, when ACAS X is not safe, it is
able to identify unsafe or unexpected behaviors and suggests
ways of correcting them.

Our approach of first formally deriving safe regions and
then comparing them to the behavior of an industrial system
is, as far as we are aware, the first of its kind in the formal
verification of hybrid systems. The approach may be valu-
able for verifying or assessing properties of other systems
with similar complexities, or also using large lookup tables,
which is a common challenge in practice. Finally, the con-
straints we identified for safety are fairly general and could
be used to analyze other collision avoidance systems.

The paper is organized as follows. After an overview of
the method in Sect. 2, we start with a simple two-dimen-
sional model assuming immediate reaction of the pilot in
Sect. 3. We extend the model to account for the reaction time
of the pilot in Sect. 4, consider more liberal safe regions to
tolerate advisories that are only safe if followed up by suit-
able subsequent advisories in Sect. 5, and extend the results
to a three-dimensional model in Sect. 6. Relationships and
extensions are discussed in Sect. 7. In Sect. 8, we compare
the advisory recommended by a core component of ACAS X

with our safe regions, identifying the circumstances where
safety of those ACAS X advisories is guaranteed within our
model. This progressive development of the models is help-
ful to support the intuition behind their geometric construc-
tions and makes it possible to focus on one aspect at a time.

2 Overview of the ACAS X Modelling Approach

For the sake of intuition of how a safe region of an advisory
for an aircraft could be constructed, imagine following all
allowable trajectories of the ownship relative to the intruder,
accounting for every possible position of the ownship and
its surrounding puck at every future moment in time. The
union of all such positions of the puck describes a poten-
tially unsafe region; for each point there exists a trajectory
that results in an NMAC. If the intruder is outside this set,
i.e., in the safe region, an NMAC cannot occur in the model.

Fig. 1 depicts an example of a head-on encounter and its
associated safe region for the advisory CL1500, projected in
a vertical plane with both aircraft. It is plotted in a coordi-
nate system fixed to the intruder and centered at the initial
position of the ownship. The ownship, surrounded by the
puck, starts at position 1 and traces out a trajectory follow-
ing the red curve. It first accelerates vertically with g/4 until
reaching the desired vertical velocity of +1,500 ft/min at
position 3. It then continues to climb at +1,500 ft/min, re-
specting the specification of Table 1. The green safe-region
indicates starting points in the state space for which the air-
craft will remain safe for the duration of the encounter when
following the CL1500 advisory in any way. Note that no
safe region exists above the trajectory since the ownship is
allowed to accelerate vertically at greater than g/4 or climb
more than +1,500 ft/min, in accordance with Table 1.

2.1 Model of Dynamics

Let us consider an encounter between two aircraft — own-
ship O and intruder I , as portrayed in Fig. 2. Following the

4 J.-B. Jeannin, K. Ghorbal, Y. Kouskoulas, A. Schmidt, R. Gardner, S. Mitsch and A. Platzer

O

I

rv
rp

r

O

I
v vI

rp

hp

θv

M

(a) Top view of the encounter

O

I

rv
rp

r

O

I
v vI

rp

hp

θv

M

(b) Side view of the encounter

Fig. 2 An encounter between ownship O and intruder I , with NMAC
puck in gray of horizontal radius rp and vertical radius hp

notation of the ACAS X community [14], let r = ‖r‖ be the
horizontal distance between the aircraft (called range) and h
the height of the intruder relative to the ownship. We assume
that the relative horizontal velocity rv of the intruder with
respect to the ownship is constant throughout the encounter.
I.e., from a top view, the planes follow straight-line trajec-
tories. Let θv be the non-directed angle between rv and the
line segment r. In the vertical dimension, we assume that
the ownship’s vertical velocity v can vary at any moment,
while the intruder’s vertical velocity vI is fixed throughout
the encounter. Moreover, we assume that the magnitude of
the vertical acceleration of the ownship cannot exceed ad in
absolute value. These assumptions restrict the potential tra-
jectories of the aircraft and, while making our modeling and
verification possible, they weaken the overall safety guaran-
tees.

Our analysis considers all these as symbolic parameters
and is, thus, valid for any value they might have. For a typ-
ical encounter, r varies between 0 nmi and 7 nmi,1 h be-
tween −4,000 ft and 4,000 ft, rv = ‖rv‖ between 0 kts

and 1,000 kts, and v and vI between −5,000 ft/min and
+5,000 ft/min. The acceleration ad is usually g/2, where
g is Earth’s gravitational acceleration. The NMAC puck of
ACAS X has radius rp = 500 ft and half-height hp = 100 ft.

2.2 Model of Advisories

ACAS X prevents NMACs by giving advisories to the own-
ship’s pilot. Every advisory, except Clear-of-Conflict (COC),
has a vertical rate range of the form (−∞, vlo] or [vlo,+∞)

for some vertical rate vlo (Table 1), which we call the tar-
get vertical velocity. We model any advisory by its corre-

1 We use units most common in the aerospace community, even
though they are not part of the international system, including nauti-
cal miles nmi (1,852metres), knots kts (nautical miles per hour), feet
ft (0.3048meter) and minutes min (60 seconds).

sponding target vertical velocity vlo, and a binary variable
w for its orientation, whose value is −1 if the vertical rate
range of the advisory is (−∞, vlo] and +1 if it is [vlo,+∞).
This symbolic encoding can represent many advisories and
is robust to changes in the ACAS X advisory set. The only
advisory that this symbolic encoding cannot handle is the
recently-added Multi-Threat Level-Off (MTLO) advisory,
only relevant in the presence of multiple intruders.

Following the ACAS X design [14], we assume that the
ownship pilot complies with each advisory within δ seconds,
and that she accelerates with acceleration of magnitude at
least the lower bound alo to reach the target vertical velocity.

3 Safe Region for an Immediate Pilot Response

We present in this section a simplified version of the dynam-
ics from Sect. 2.1. We give a hybrid model for this simplified
system and prove its safety. The new assumptions will be re-
laxed in later sections to achieve the safety verification of the
full model of Sect. 2.1.

3.1 Model

In this section, we assume that the ownship and intruder are
flying head-on (θv = 180◦). We assume that the pilot reacts
immediately to any advisory (δ = 0 s), and that the advisory
COC is not allowed. These assumptions will be relaxed in
Sect. 4 and Sect. 6. The model in this section permits updates
to the resolution advisory but, unlike in Sect. 5, each advi-
sory issued has to be safe, i.e., it has to prevent any NMAC
at any future time, even if followed forever. We assume that
r is a scalar: if r ≥ 0 then the ownship is flying towards the
intruder, otherwise it is flying away from it. Both cases could
require an advisory. Since the ownship and intruder are fly-
ing head-on with straight line trajectories, there exists a ver-
tical plane containing both their trajectories. In this plane,
the puck becomes a rectangle centered around the ownship,
of width 2rp and height 2hp, and there is an NMAC if and
only if the intruder is in this rectangle (gray in Fig. 1).

3.2 Differential Dynamic Logic and KeYmaera X

To model our system, we use Differential Dynamic Logic
dL [20,21,22,23], a logic for reasoning about hybrid sys-
tems. The logic dL supports discrete assignments, control
structures, and execution of differential equations. It is im-
plemented in the theorem prover KeYmaera X [9], that we
use to verify our safe regions with respect to our models.
All the KeYmaera X models and proofs of this paper can be
found online.2

2 http://www.ls.cs.cmu.edu/pub/AcasX-long.zip

http://www.ls.cs.cmu.edu/pub/AcasX-long.zip

A Formally Verified Hybrid System for Safe Advisories in the Next-Generation Airborne Collision Avoidance System 5

The dL formula for the ACAS X model that we use in
this section is given in Eq. (1) below. We use the notation
L−1impl for the safe region: the letter L stands for lower bound
(for w = 1; it is an upper bound for w = −1); the subscript
impl stands for implicit safe region, as described in Sect. 3.3;
and the superscript −1 indicates that the region is safe for
unbounded time; the systematic rationale behind the −1 in
the superscript notation will become clear in Sect. 5.2.

1 rp ≥ 0 ∧ hp > 0 ∧ rv ≥ 0 ∧ alo > 0∧
2 (w = −1 ∨ w = 1) ∧ L−1impl(r, h, v, w, vlo)→
3 [((?true ∪
4 (w := −1 ∪ w := 1); vlo := ∗;
5 ?L−1impl(r, h, v, w, vlo); advisory := (w, vlo));

6 a := ∗;
7 {r′ = −rv, h′ = −v, v′ = a & wv ≥ wvlo ∨ wa ≥ alo}
8)∗] (|r| > rp ∨ |h| > hp)

(1)

This formula of the form p → [α]q says all executions of
hybrid program α starting in a state satisfying logical for-
mula p end up in a state satisfying q. It is akin to the Hoare
triple {p}α{q}with precondition p and postcondition q. The
precondition in Eq. (1) imposes constraints on several con-
stants, as well as the formula L−1impl(r, h, v, w, vlo) (which we
identify below) that forces the intruder to be in a safe region
for an initial advisory (w, vlo). We cannot guarantee safety
if the intruder starts initially in an unsafe region. The post-
condition encodes absence of NMAC using absolute values.
Lines 3–5 express the action of the ACAS X system. The
nondeterministic choice operator ∪ in Line 3 expresses that
the system can either continue with the same advisory by
doing nothing—just testing the trivial condition ?true—this
ensures it always has a valid choice and cannot get stuck.
Otherwise it can choose a new advisory (w, vlo) in Line 4
that passes the safety condition L−1impl(r, h, v, w, vlo) in Line
5. The next message to the pilot is advisory. Line 6 expresses
the action of the ownship pilot, who can nondeterministi-
cally choose an arbitrary acceleration (a := ∗). The ownship
and intruder aircraft then follow the continuous dynamics in
Line 7. The evolution of the variables r, h and v is expressed
by a differential equation, and requires (using the operator
&) that the ownship always evolves towards its target ver-
tical velocity vlo at acceleration alo (condition wa ≥ alo),
unless it has already reached vertical velocity vlo (condition
wv ≥ wvlo). Finally, the operator ∗ on Line 8 indicates that
the program can be repeated any number of times, allowing
the system to go through several advisories.

3.3 Implicit Formulation of the Safe Region

In this section, we identify what formula can be used as safe
region L−1impl(r, h, v, w, vlo) to prove Eq. (1). As in Sect. 2,

we use a coordinate system fixed to the intruder and with its
origin at the initial position of the ownship (see Fig. 1).

First case: if w = +1 and vlo ≥ v. Fig. 1 shows, in red, a
possible trajectory of an ownship following exactly the re-
quirements of ACAS X. This nominal trajectory of the own-
ship is denoted by N and merely represents one of the in-
finitely many possible scenarios to consider. The pilot re-
acts immediately, and the ownship starts accelerating verti-
cally with acceleration alo until it reaches the target vertical
velocity vlo—describing a parabola—then climbs at verti-
cal velocity vlo along a straight line. Horizontally, the rela-
tive velocity rv remains constant. Integrating the differential
equations in Eq. (1) Line 7, the ownship position (rn, hn) at
time t along N is given by:

(rn, hn) =


(
rvt ,

alo
2
t2 + vt

)
if 0 ≤ t < vlo − v

alo
(a)(

rvt , vlot−
(vlo − v)2

2ar

)
if
vlo − v
alo

≤ t (b)

(2)

Recall that in the ACAS X specification, the ownship
moves vertically with acceleration of at least alo, then con-
tinues with vertical velocity of at least vlo. Therefore all
possible future positions of the ownship will turn out to be
above the red nominal trajectory. Hence, an intruder is safe
if its position is always either to the side of or under any
puck centered on a point in N , that is:

∀t.∀rn.∀hn.(
(rn, hn) ∈ N → |r − rn| > rp ∨ h− hn < −hp

)
(3)

We call this formulation the implicit formulation of the safe
region. It does not give explicit equations for the safe region
border, but instead expresses them implicitly by quantifiers
with respect to the nominal trajectory from Eq. (2).

Generalization. The reasoning above is generalized to the
case where the target vertical velocity is initially exceeded
(vlo < v)—which happens after the parabola part of the
nominal trajectory—as well as symmetrically to the case of
descend-type advisories (w = −1).

Eq. (1) gives the pilot ample flexibility in how to respond
to a resolution advisory and gives ACAS X full flexibility
to choose any advisories respecting L−1impl(r, h, v, w, vlo). In
particular, the pilot may not follow the nominal trajectoryN
that we used to construct this region. Nevertheless, we prove
that the safe regions identified this way respect safety prop-
erty Eq. (1). The implicit formulationL−1impl(r, h, v, w, vlo) of
the safe region is specified in Fig. 3 and used in Theorem 1,
which is verified to be safe in KeYmaera X:

Theorem 1 (Correctness of implicit safe regions) The dL
formula given in Eq. (1) is valid. That is as long as the advi-
sories followed obey formula L−1impl there will be no NMAC.

6 J.-B. Jeannin, K. Ghorbal, Y. Kouskoulas, A. Schmidt, R. Gardner, S. Mitsch and A. Platzer

Implicit formulation

A(t, hn, v, w, vlo) ≡

(
0 ≤ t <

max(0, w(vlo − v))
alo

∧ hn =
walo

2
t2 + vt

)

∨

(
t ≥

max(0, w(vlo − v))
alo

∧ hn = vlot−
wmax(0, w(vlo − v))2

2alo

)
L−1

impl(r, h, v, w, vlo) ≡ ∀t.∀rn.∀hn.

(
rn = rvt ∧A(t, hn, v, w, vlo)→ (|r − rn| > rp ∨ w(h− hn) < −hp)

)
Explicit formulation

case−1
1 (r, v, w, vlo) ≡ −rp ≤ r < −rp −

rv min(0, wv)

alo

bound1(r, h, v, w, vlo) ≡ wrv2h <
alo

2
(r + rp)

2 + wrvv(r + rp)− rv2hp

case−1
2 (r, v, w, vlo) ≡ −rp −

rv min(0, wv)

alo
≤ r ≤ rp −

rv min(0, wv)

alo

bound2(r, h, v, w, vlo) ≡ wh < −
min(0, wv)2

2alo
− hp

case−1
3 (r, v, w, vlo) ≡ rp −

rv min(0, wv)

alo
< r ≤ rp +

rv max(0, w(vlo − v))
alo

bound3(r, h, v, w, vlo) ≡ wrv2h <
alo

2
(r − rp)2 + wrvv(r − rp)− rv2hp

case−1
4 (r, v, w, vlo) ≡ rp +

rv max(0, w(vlo − v))
alo

< r

bound4(r, h, v, w, vlo) ≡ (rv = 0) ∨
(
wrvh < wvlo(r − rp)−

rv max(0, w(vlo − v))2

2alo
− rvhp

)
case−1

5 (r, v, w, vlo) ≡ −rp ≤ r < −rp +
rv max(0, w(vlo − v))

alo

bound5(r, h, v, w, vlo) ≡ wrv2h <
alo

2
(r + rp)

2 + wrvv(r + rp)− rv2hp

case−1
6 (r, v, w, vlo) ≡ −rp +

rv max(0, w(vlo − v))
alo

≤ r

bound6(r, h, v, w, vlo) ≡ (rv = 0 ∧ r > rp) ∨
(
wrvh < wvlo(r + rp)−

rv max(0, w(vlo − v))2

2alo
− rvhp

)
L−1

expl(r, h, v, w, vlo) ≡
(
wvlo ≥ 0→

4∧
i=1

(case−1
i (r, v, w, vlo)→ boundi(r, h, v, w, vlo))

)

∧
(
wvlo < 0→

6∧
i=5

(case−1
i (r, v, w, vlo)→ boundi(r, h, v, w, vlo))

)

Fig. 3 Implicit and explicit formulations of the safe region for an immediate response (lower bounds for w = 1, upper bound for w = −1)

3.4 Explicit Formulation of the Safe Region

The implicit formulation of the safe region gives an intuitive
understanding of where it is safe for the intruder to be. How-
ever, because it still contains quantifiers, its use comes at the
extra cost of eliminating the quantifiers, which is inefficient
and impractical to repeatedly compute during the compar-
ison part of our analysis. An efficient comparison with the
ACAS X table, as described in Sect. 8, can only be achieved
with a quantifier-free, explicit formulation, that we present
in this section. We show that both formulations are equiva-
lent. As for the implicit formulation, we derive the equations
for one representative case before generalizing them.

First case: ifw = +1, rv > 0, v < 0 and vlo ≥ 0. We are in
the case shown in Fig. 1 and described in detail in Sect. 3.3.
The nominal trajectoryN is given by Eq. (2). The boundary
of the (green) safe region in Fig. 1 is drawn by either the
bottom left hand corner, the bottom side or the bottom right
hand corner of the puck. For this case, this boundary can
be characterized by a set of equations (where cases 1 to 4
follow cases 1 to 4 of Fig. 1 and Fig. 3):

0. positions left of the puck’s initial position (r < −rp) are
in the safe region;

1. then the boundary follows the bottom left hand corner of
the puck as it is going down the parabola of Eq. (2)(a);

A Formally Verified Hybrid System for Safe Advisories in the Next-Generation Airborne Collision Avoidance System 7

therefore for −rp ≤ r < −rp − rvv
alo

, the position (r, h)

is safe if and only if h < alo

2rv2 (r+rp)
2+ v

rv
(r+rp)−hp;

2. following this, the boundary is along the bottom side
of the puck as it is at the bottom of the parabola of
Eq. (2)(a); therefore for −rp − rvv

a ≤ r ≤ rp − rvv
alo

,
the position (r, h) is in the safe region if and only if
h < − v2

2alo
− hp;

3. then the boundary follows the bottom right hand corner
of the puck as it is going up the parabola of Eq. (2)(a);
therefore for rp− rvv

alo
< r ≤ rp+ rv(vlo−v)

alo
, the position

(r, h) is safe if and only if h < alo

2rv2 (r − rp)2 + v
rv
(r −

rp)− hp;
4. finally the boundary follows the bottom right-hand cor-

ner of the puck as it is going up the straight line of
Eq. (2)(b); therefore for rp + rv(vlo−v)

alo
< r, the po-

sition (r, h) is in the safe region if and only if h <
vlo
rv
(r − rp)− (vlo−v)2

2ar
− hp.

Generalization. The general case is given in the formula
L−1expl(r, h, v, w, vlo) of Fig. 3. The cases 1-4 and their asso-
ciated bounds are for the case wvlo ≥ 0, whereas cases 5
and 6 and associated bounds are for wvlo < 0; both cases 5
and 6 follow the bottom left-hand corner of the puck as it is
going along the nominal trajectory. We use KeYmaera X to
formally prove that this explicit safe region formulation is
equivalent to its implicit counterpart:

Lemma 1 (Equivalence of explicit safe regions) If w =

±1, rp ≥ 0, hp > 0, rv ≥ 0 and alo > 0, then the conditions
L−1impl(r, h, v, w, vlo) and L−1expl(r, h, v, w, vlo) are equivalent.

Since the assumptions of Lemma 1 are invariants of the
model in Eq. (1), the explicit safe regions give a model that
inherits safety from Theorem 1. The proof in KeYmaera X
is a combination of contextual equivalence reasoning and
monotonicity reasoning [23] to embed the conditional equiv-
alence from Lemma 1 into the context of Theorem 1.

Corollary 1 (Correctness of explicit safe regions) The dL
formula given in Eq. (1) remains valid when replacing all
occurrences of L−1impl with L−1expl. That is as long as the advi-
sories followed obey formula L−1expl there will be no NMAC.

4 Safe Region for a Delayed Pilot Response

Since the pilot will need some time to react to an advisory
issued by ACAS X, we generalize the model of Sect. 3 to
account for a non-deterministic, non-zero pilot delay, and
for periods of time where the system does not issue an advi-
sory (i.e., COC). In Fig. 4, for example, the pilot reacts to a
CL1500 advisory only after a certain reaction delay δ during
which she was still in the process of initiating a descent.

4.1 Model

In this section, we still assume that the ownship and in-
truder are flying head-on (θv = 180◦). We use the same
conventions as in Sect. 3 for r and rv . Yet, the model now
includes an initial period where there is no compliance with
any advisory—the ownship accelerates non-deterministically
(within limits) in the vertical direction. As before, we derive
the safe regions by considering all possible positions of the
ownship’s puck in all possible trajectories that might evolve
in the encounter. To represent pilot delay for an advisory,
the model assumes an immediate advisory, and a period of
non-compliance δ, representing the time it takes the pilot to
respond. To represent COC, the model looks for a safe advi-
sory it can issue after time ε in the future if necessary, where
ε is the system delay—i.e., the time before the system can
issue a new advisory—and shortest COC. Hence the period
of non-compliance is ε+ δ.

1 rp ≥ 0 ∧ hp > 0 ∧ rv ≥ 0 ∧ alo > 0 ∧ ad ≥ 0

2 ∧ δ ≥ 0 ∧ ε ≥ 0 ∧ (w = −1 ∨ w = 1)

3 ∧Dd
impl(r, h, v, w, vlo)→

4 [(
(
?true ∪

5 (w := −1 ∪ w := 1); vlo := ∗;
6 (d := δ; ?Dd

impl(r, h, v, w, vlo);

7 advisory := (w, vlo) ∪
8 d := δ + ε; ?Dd

impl(r, h, v, w, vlo);

9 advisory := COC)
)
;

10 a := ∗; ?(wa ≥ −ad); t := 0;

11 {r′ = −rv, h′ = −v, v′ = a,d′ = −1, t′ = 1 &

12 (t ≤ ε) ∧ (d ≤ 0→ wv ≥ wvlo ∨ wa ≥ alo)}
13)∗] (|r| > rp ∨ |h| > hp)

(4)

We modify the model of Eq. (1) to capture these new
ideas, and obtain the model of Eq. (4), highlighting the dif-
ferences in bold. The structure, precondition (lines 1 to 3)
and postcondition (line 13) are similar. The clock d, if pos-
itive, represents the amount of time until the ownship pilot
must respond to the current advisory to remain safe. Lines 4
to 9 represent the actions of the ACAS X system. As before,
the system can continue with the same advisory (?true). Oth-
erwise it can select a safe advisory (w, vlo) to be applied
after at most delay δ; or it can safely remain silent, display-
ing COC, if it knows an advisory (w, vlo) that is safe if it is
followed after a combined pilot and system delay of δ + ε.
In line 10, the pilot non-deterministically chooses an accel-
eration (a := ∗), within some limit (wa ≥ −ad). The set
of differential equations in line 11 describes the system’s
dynamics, and the conditions in line 12 use the clock t to
ensure that continuous time does not evolve longer than sys-
tem delay ε without a system response (t ≤ ε). Those con-
ditions also ensure that when d ≤ 0 the pilot starts comply-
ing with the advisory (wv ≥ wvlo ∨ wa ≥ alo as before).

8 J.-B. Jeannin, K. Ghorbal, Y. Kouskoulas, A. Schmidt, R. Gardner, S. Mitsch and A. Platzer

Fig. 4 Nominal trajectory of the ownship (red) and safe region for the intruder (green), delayed response

The model is structured so that the pilot can safely delay
responding to an advisory for up to δ, and the system can
additionally delay issuing an advisory associated with COC
for up to ε. Because of the loop in our model (line 13), the
safety guarantees of this theorem apply to encounters whose
advisories change as the encounter evolves, encounters with
periods of no advisory, and encounters where the ownship
pilot exhibits some non-deterministic behavior in the verti-
cal dimension.

The rest of the section follows the approach from Sect. 3:
we first derive an implicit formulation, then an equivalent
explicit formulation of the safe region, and prove that this
region guarantees that the intruder cannot cause an NMAC.

4.2 Implicit Formulation of the Safe Region

As in Sect. 3.3, let us place ourselves in the coordinate sys-
tem centered on the current position of the ownship and
where the intruder is fixed, and let us first assume that the
ownship receives an advisory (w, vlo) such that w = +1,
and that δ ≥ 0. Let us focus on the period of time before the
pilot reacts, which we henceforth call delay. During the de-
lay, the ownship can take any vertical acceleration less than
ad in absolute value, therefore its most restrictive nominal
trajectory N d is to accelerate the opposite way of the advi-
sory, at acceleration −ad. Horizontally, its speed is constant
at rv . It thus describes a delay parabola, in red on Fig. 4,
and its position (rn, hn) along the nominal trajectory for
0 ≤ t < δ is given by (rn, hn) =

(
rvt,−ad

2 t
2 + vt

)
.

After the delay, i.e., after time δ, the nominal trajectory
N d is the same as a nominal trajectory N from Sect. 3,
translated by time δ and by its position at time δ given by
rd = rn(δ) and hd = hn(δ), and starting with vertical ve-
locity vd = v−adδ. As in Sect. 3.3, we can now express the
implicit formulation of the safe region:

∀t.∀rn.∀hn.(rn, hn) ∈ N d → |r−rn| > rp∨h−hn < −hp

Symmetrically, the reasoning of this section extends to the
case where w = −1. Moreover, we can handle cases where
d < 0, i.e., after the pilot has reacted, by replacing d by
max(0, d). The generalized implicit formulation of the safe
region is given as Dd

impl in Fig. 5. Note that it involves the
expressionA(t−max(0, d), hn−hd, vd, w, vlo) from Fig. 3,
capturing the implicit safe region of Sect. 3.3 translated by
time max(0, d), vertical height hd, and starting at vertical
speed vd. It is proved correct in KeYmaera.

Theorem 2 (Correctness of delayed safe regions) The dL
formula given in Eq. (4) is valid. That is as long as the advi-
sories obey formula Dd

impl there will be no NMAC.

4.3 Explicit Formulation of the Safe Region

Similarly as in Sect. 4, we determine a (quantifier-free) ex-
plicit formulation of the safe region, called Dd

expl in Fig. 5
and based on Fig. 3, and we prove it correct in KeYmaera.

Lemma 2 (Equivalence of delayed explicit safe regions)
If w = ±1, rp ≥ 0, hp > 0, rv ≥ 0, alo > 0, ad ≥ 0, δ ≥ 0

and ε ≥ 0 then the two conditions Dd
impl(r, h, v, w, vlo) and

Dd
expl(r, h, v, w, vlo) are equivalent.

5 Safe Region for Subsequent Advisories

The safety analysis from Sect. 3 requires the system to only
issue advisories that will never lead to a collision. After pre-
senting our initial results to ACAS X designers and engi-
neers, we received feedback that the safety advice for single
advisories was too restrictive for their operational purposes.
Early in an encounter, there is often enough separation be-
tween aircraft and time in the encounter so that an initial
advisory, which would not be safe on its own, can still be
changed or corrected to keep the aircraft safe. The rationale
is that while ACAS X is designed to avoid collisions, it is
also designed to avoid bothering pilots as much as possible.

A Formally Verified Hybrid System for Safe Advisories in the Next-Generation Airborne Collision Avoidance System 9

Implicit formulation

Bd(t, hn, v) ≡ 0 ≤ t < max(0, d) ∧ hn = −
wad

2
t2 + vt

const ≡ hd = −
wad

2
max(0, d)2 + vmax(0, d) ∧ vd − v = −wad max(0, d)

Dd
impl(r, h, v, w, vlo) ≡ ∀t.∀rn.∀hn.∀hd.∀vd.

(
rn = rvt ∧ (Bd(t, hn, v) ∨ const ∧A(t−max(0, d), hn − hd, v, w, vlo))

→ (|r − rn| > rp ∨ w(h− hn) < −hp)
)

Explicit formulation

rd = rv max(0, d) vd = v − wad max(0, d) hd = −
wad

2
max(0, d)2 + vmax(0, d)

case7(r) ≡ −rp ≤ r ≤ rp bound7(r, h) ≡ wh < −hp

case8(r) ≡ rp < r ≤ rd + rp bound8(r, h) ≡ wrv2h < −
ad

2
(r − rp)2 + wrvv(r − rp)− rv2hp

case9(r) ≡ −rp ≤ r < rd − rp bound9(r, h) ≡ wrv2h < −
ad

2
(r + rp)

2 + wrvv(r + rp)− rv2hp

Dd
expl(r, h, v, w, vlo) ≡

(
9∧

i=7

(casei(r)→ boundi(r, h))

)
∧ L−1

expl(r − r
d, h− hd, vd, w, vlo)

Fig. 5 Implicit and explicit formulations of the safe region for a delayed response

To balance these concerns, if an encounter is not immedi-
ately threatening, ACAS X will typically first issue COC, or
a preventive advisory like DNC or DND, before issuing a
more disruptive advisory to the pilot. In those cases, the first
advisory is often not safe in the sense of Sect. 3 : it will tend
to keep the planes from flying directly towards each other
immediately and will only ensure safety for a few seconds,
but not for the rest of the encounter.

As a consequence, running the safety analysis on the
immediate advisory leads to counterexamples considered as
false alarms by the ACAS X designers. Anything is safe if
you are far enough away; many of the examples of unsafe
behavior we found were uninteresting because if the pilots
chose a course that brought them closer, the system would
issue a more disruptive, but safer follow-on advisory. This
section develops a more sophisticated safety analysis taking
into account follow-on advisories. We define the concept of
safeable advisories, and develop sufficient, easily checkable
conditions for an advisory to be safeable.

Definition 1 (safeable) We say that an advisory is safeable
if and only if it is safe or can still be made safe in the future,
if necessary, via subsequent advisories.

The safeable region of a given advisory is always a superset
of its safe region.

This section builds up the safeable region in three steps.
We first present two-sided safe regions, providing both an
upper and a lower bound to the trajectory. We then present
bounded safe regions, which only ensure absence of colli-
sion for a limited amount of time ε. Bounded safe regions

provide no guarantee after time ε, and the corresponding
model has no liveness. Based on these important building
blocks, we finally present safeable regions, which model
subsequent advisories, and have a corresponding model pro-
viding liveness. This section is new, and was not presented
in the conference version of this paper [13].

Throughout the section, we still assume that the own-
ship and intruder are flying head-on (θv = 180◦), and we
use the same conventions as in Sect. 3 for r and rv . We say
that a subsequent advisory is a reversal if and only if it is a
downsense advisory (w = −1) while the first advisory was
upsense (w = 1)—or vice-versa. If w does not change, we
call the subsequent advisory a strengthening or a weakening.

5.1 Two-Sided Safe Region with Immediate Pilot Response

A first step towards the treatment of subsequent advisories is
to provide an envelop of the trajectory of the ownship while
it follows an initial advisory. Indeed, if the initial advisory
is upsense with a reversal as a subsequent advisory, then it
is crucial to have an estimate of the position and vertical
velocity of the aircraft when the pilot starts following the
second advisory. Safe regions described in Sect. 3 are not
sufficient as they only provide a lower bound when w = 1,
and an upper bound when w = −1.

5.1.1 Model For simplicity, let us first consider the case
of an initial upsense advisory (w = 1) such as CL1500 or
DND; the case of the initial downsense advisory is symmet-

10 J.-B. Jeannin, K. Ghorbal, Y. Kouskoulas, A. Schmidt, R. Gardner, S. Mitsch and A. Platzer

Fig. 6 Nominal trajectory of the ownship (red) and upper safe region for the intruder (green), immediate response

Fig. 7 Nominal trajectories of the ownship (red) and two-sided safe region for the intruder (green), immediate response

ric. In Sect. 3 we argued that following the advisory (w, vlo)

meant that either the vertical speed of the ownship should
be greater than vlo, or its acceleration should be greater than
alo, leading to the constraint wv ≥ wvlo ∨ wa ≥ alo. Fol-
lowing the same reasoning, we fix upper bounds vup and
aup on the vertical velocity and acceleration of the own-
ship while following the advisory (w, vlo). Those are again
symbolic parameters, with typical values aup = g/2 and
vup = 10,000 ft/min. We update the model of Eq. (1) to cap-
ture these new ideas, and obtain the model of Eq. (5), high-
lighting the differences in bold.

1 rp ≥ 0 ∧ hp > 0 ∧ rv ≥ 0 ∧ alo > 0 ∧ aup ≥ alo,

2 ∧ (w = −1 ∨ w = 1) ∧C−1
impl(r, h, v, w, vlo, vup)→

3 [((?true ∪
4 (w := −1 ∪ w := 1); vlo := ∗;vup := ∗;
5 ?C−1

impl(r, h, v, w, vlo, vup); advisory := (w, vlo,vup));

6 a := ∗;
7 {r′ = −rv, h′ = −v, v′ = a

8 & (wv ≥ wvlo ∨ wa ≥ alo)
9 ∧((wv ≤ wvup ∧ wa ≤ aup) ∨ wa ≤ 0)}
10)∗] (|r| > rp ∨ |h| > hp)

(5)

Beyond replacing the lower safe region L−1impl by a two-
sided safe region C−1impl, we impose aup ≥ alo to ensure that

the pilot can always find a suitable acceleration between alo
and aup (line 1), and we add an upper bound, vup, when a
new advisory is selected (lines 4 and 5).

More interestingly, we update the evolution domain of
the differential equation (lines 8 and 9). To understand what
it means for the ownship to respect the new upper bounds
vup and aup, consider an advisory for which w = 1, and
let us distinguish two cases. If initially v ≤ vup, then both
upper bounds on vertical velocity and acceleration need to
be respected simultaneously, leading to condition v ≤ vup ∧
a ≤ aup. Otherwise, v > vup and the initial vertical speed
of the aircraft v is strictly greater than vup. Given that the
pilot receives an upsense advisory, it would be unrealistic to
assume that the aircraft would follow a negative acceleration
to get its vertical speed to go back to vup. Instead, we assume
that the pilot does not accelerate up further, leading to the
condition a ≤ 0. Incorporating the symmetric case w = −1
leads to the general evolution domain for the upper bound
(wvlo ≤ wvup ∧ wa ≤ aup) ∨ wa ≤ 0.

This analysis leads to an important realization for the
upper safe region: in the case where the initial vertical ve-
locity overcomplies (i.e., when wv ≥ wvup), the upper tar-
get vertical velocity is not vup anymore, but rather it is the
initial value of v; in full generality the upper target vertical
velocity becomes the modified upper target vertical veloc-
ity wmax(wvup, wv). Throughout the implicit and explicit

A Formally Verified Hybrid System for Safe Advisories in the Next-Generation Airborne Collision Avoidance System 11

formulations of the safe region, this modified target vertical
velocity will play the role simply played by vlo in Sect. 3;
we usually highlight it in bold.

5.1.2 Implicit formulation of the safe region The safe re-
gion C−1impl for two-sided safety consists of L−1impl from Fig. 3
and an additional upper bound U−1impl. The implicit formula-
tion of the upper bound U−1impl is similar to the implicit for-
mulation of the lower bound described in Sect. 3.3. As in
Sect. 3.3, we use a coordinate system fixed to the intruder
and with its origin at the initial position of the ownship.

First case: if w = +1 and vup ≥ v. We again consider a
(different) upper nominal trajectory Nup, represented in red
on Fig. 6. This nominal trajectory accelerates vertically with
acceleration aup until reaching the modified target vertical
velocity (which, here, is vup = max(wvup, wv)), describing
a parabola; it then continues at the vertical velocity vup along
a straight line. As before, the horizontal velocity remains
constant at rv . The ownship position (rn, hn) at time t along
this nominal trajectory is, thus, given by:

(rn, hn) =



(
rvt ,

aup
2
t2 + vt

)
if 0 ≤ t < vup − v

aup
(a)(

rvt , vupt−
(vup − v)2

2aup

)
if
vup − v
aup

≤ t (b)

(6)

Recall that the specification is that the ownship moves ver-
tically with acceleration of at most aup, then continues with
vertical velocity of at most max(vup, v). Therefore all possi-
ble future positions of the ownship will turn out to be below
the red upper nominal trajectory. Therefore, an intruder is
now safe if its position (r, h) is always either to the side of
or above any puck centered on a point in Nup, that is:

∀t.∀rn.∀hn.
(
(rn, hn) ∈ Nup

→ |r − rn| > rp ∨ h− hn > hp

) (7)

We call this formulation the implicit formulation of the up-
per safe region.

Generalization. The reasoning above is generalized to the
case w = −1, leading to fully general equations for the
implicit formulation of the upper safe region presented in
Fig. 8.

Finally, the condition for the two-sided advisory C−1impl is
built as a disjunction of the lower safety advisory L−1impl and
upper safety advisory U−1impl. Although we cannot assume
that the ownship will follow either nominal trajectory, we
show that an ownship following the model of Eq. (5), thus
respecting the two-sided conditionC−1impl, stays between both

nominal trajectories, keeping it safe. The proof of safety is
verified in KeYmaera X:

Theorem 3 (Correctness of two-sided safe regions) The
dL formula given in Eq. (5) is valid. That is as long as the
advisories obey formula C−1impl there will be no NMAC.

5.1.3 Explicit formulation of the safe region Construct-
ing the explicit safety condition for the upper bound U−1expl

follows similar motivation and methods as in Sect. 3.4. But
instead of distinguishing cases upon the target vertical ve-
locity vlo, it distinguishes them upon the modified upper tar-
get vertical velocity wmax(wvup, wv).

First case: if w = +1, rv > 0, v ≤ 0 and vup > 0. In
particular vup > v, therefore the modified upper target verti-
cal velocity is max(vup, v) = vup. This is the case described
in Fig. 6, and the nominal trajectoryNup is given by Eq. (7).
The boundary of the (green) safe region in Fig. 6 is drawn by
either the top side, the top left hand corner or the top right
hand corner of the puck. This explicit formulation is a little
bit less intuitive than the formulation for the lower safe re-
gion of Sect. 3.4 because the different cases overlap. It can
nonetheless be described by a set of equations (where cases
10 to 13 are similar to cases 10 to 13 of Fig. 8):

0. positions left of the puck’s initial position (r < −rp) are
in the safe region;

10. up to r = rp, the boundary is horizontal along the top
side of the puck at its initial position; therefore for
−rp ≤ r ≤ rp, the position (r, h) is in the safe region if
and only if h > hp;

11. then the boundary can follow the top right-hand corner
of the puck as it is going down the parabola of Eq. (6)(a);
therefore for rp < r ≤ rp+ rv(vup−v)

aup
, the position (r, h)

is safe if and only if h > aup

2rv2 (r−rp)2+ v
rv
(r−rp)+hp;

12. the boundary can also follow the top left-hand corner
of the puck as it is going up the parabola of Eq. (6)(a);
therefore for −rp ≤ r < −rp + rv(vup−v)

aup
, the position

(r, h) is safe if and only if h > aup

2rv2 (r + rp)
2 + v

rv
(r +

rp) + hp; note that this case can overlap with case 10;
13. finally the boundary follows the top left-hand corner of

the puck as it is going up the straight line of Eq. (6)(a);
therefore for −rp +

rv(vup−v)
aup

≤ r, the position (r, h)

is in the safe region if and only if h >
vup
rv

(r − rp) −
(vup−v)2

2aup
+ hp.

Generalization The general case is given in formulaU−1expl of
Fig. 8. The cases 10-13, described above for a specific situ-
ation, are for the case max(wvup, wv) > 0, whereas cases
10, 11 and 14 are used for the case max(wvup, wv) ≤ 0.
Case 14 follows the top left-hand corner of the puck.

12 J.-B. Jeannin, K. Ghorbal, Y. Kouskoulas, A. Schmidt, R. Gardner, S. Mitsch and A. Platzer

Implicit formulation

Aup(t, hn, v, w, vup) ≡

(
0 ≤ tn <

max(0, w(vup − v))
aup

∧ hn =
waup

2
tn

2 + vtn

)

∨

(
tn ≥

max(0, w(vup − v))
aup

∧ hn = wmax(wvup, wv)tn −
wmax(0, w(vup − v))2

2aup

)
U−1

impl(r, h, v, w, vup) ≡ ∀tn.∀rn.∀hn.

(
rn = rvtn ∧Aup(t, hn, v, w, vup)→ (|r − rn| > rp ∨ w(h− hn) > hp)

)
C−1

impl(r, h, v, w, vlo, vup) ≡ L−1
impl(r, h, v, w, vlo) ∨ U

−1
impl(r, h, v, w, vup)

Explicit formulation

case−1
10 (r, v, w, vup) ≡ −rp ≤ r ≤ rp

bound10(r, h, v, w, vup) ≡ wh > hp

case−1
11 (r, v, w, vup) ≡ rp < r ≤ rp +

rvmax(0, w(vup − v))
aup

bound11(r, h, v, w, vup) ≡ wrv2h >
aup

2
(r − rp)2 + wrvv(r − rp) + rv

2hp

case−1
12 (r, v, w, vup) ≡ −rp ≤ r < −rp +

rvmax(0, w(vup − v))
aup

bound12(r, h, v, w, vup) ≡ wrv2h >
aup

2
(r + rp)

2 + wrvv(r + rp) + rv
2hp

case−1
13 (r, v, w, vup) ≡ −rp +

rvmax(0, w(vup − v))
aup

≤ r

bound13(r, h, v, w, vup) ≡ (rv = 0 ∧ r > rp)∨
(
wrvh > max(wvup, wv)(r + rp)−

rvmax(0, w(vup − v))2

2aup
+ rvhp

)
case−1

14 (r, v, w, vup) ≡ rp +
rvmax(0, w(vup − v))

aup
< r

bound14(r, h, v, w, vup) ≡ (rv = 0)∨
(
wrvh > max(wvup, wv)(r − rp)−

rvmax(0, w(vup − v))2

2aup
+ rvhp

)

U−1
expl (r, h, v, w, vup) ≡

(
max(wvup, wv)> 0→

13∧
i=10

(case−1
i (r, v, w, vup)→ boundi(r, h, v))

)
∧
(
max(wvup, wv)≤ 0→

∧
i∈{10,11,14}

(case−1
i (r, v, w, vup)→ boundi(r, h, v))

)
C−1

expl (r, h, v, w, vlo, vup) ≡ L
−1
expl(r, h, v, w, vlo) ∨ U

−1
expl (r, h, v, w, vup)

Fig. 8 Implicit and explicit formulations of the safe region for an immediate response (upper bounds for w = 1, lower bound for w = −1)

Finally, the explicit condition for the two-sided advisory
C−1expl is built as a disjunction of the lower and upper safety
advisories, as shown in Fig. 8. A graphic representation of
C−1expl (in green) along with its associated nominal trajecto-
ries is shown in Fig. 7. We again use KeYmaera X to for-
mally prove that this explicit two-sided safe region formula-
tion is equivalent to its implicit counterpart:

Lemma 3 (Equivalence of two-sided explicit safe regions)
If w = ±1, rp ≥ 0, hp > 0, rv ≥ 0, alo > 0, aup ≥ alo then
the conditions C−1impl(r, h, v, w, vlo) and C−1expl(r, h, v, w, vlo)

are equivalent.

The assumptions of Lemma 3 are invariants of the model
in Eq. (5). As a consequence, a model of explicit safe regions
inherits the safety property from Theorem 3 which is proved
in KeYmaera X by conditional congruence reasoning.

Corollary 2 (Correctness of two-sided explicit safe re-
gions) The dL formula given in Eq. (5) remains valid when
replacing all occurrences of C−1impl(r, h, v, w, vlo, vup) with
C−1expl(r, h, v, w, vlo, vup). That is, as long as the advisories
followed obey formula C−1expl(r, h, v, w, vlo, vup) there will be
no NMAC.

5.2 Bounded-Time Safe Regions

We build on the two-sided safe region to build a model and
safe regions for bounded-time safety, i.e., regions only guar-
anteeing safety of the ownship up to some time ε. Flying
aircraft in ways that are merely safe for a bounded time
ε is inherently unsafe. It is, nevertheless, a critical build-
ing block toward constructing safeable regions, since those

A Formally Verified Hybrid System for Safe Advisories in the Next-Generation Airborne Collision Avoidance System 13

Fig. 9 Nominal trajectories of the ownship (red) and bounded-time safe region for the intruder (green), immediate response

feature advisories that are acceptable for some time ε and
can be followed up with safe subsequent advisories. An in-
tuitive understanding of bounded-time safe regions can be
gathered from Fig. 9: the nominal trajectories stop at time ε,
beyond which the safe region provides no guarantee at all.
The corresponding safe regions are truncated vertically at
r = rvε+ rp.

We call the corresponding conditions Lε
impl and Lε

expl

for lower bounded-time safety, Uε
impl and Uε

expl for upper
bounded-time safety, as well asCε

impl andCε
expl for two-sided

bounded-time safety. By convention, a negative ε < 0 sig-
nifies unbounded time, which fits to the notations L−1impl and
L−1expl, U

−1
impl and U−1expl, C

−1
impl and C−1expl from Sect. 3 and 5.1.

5.2.1 Model We modify the model of Eq. (5) to reflect
the ideas of safety for up to time ε and obtain the model
of Eq. (8), highlighting differences in bold:

1 rp ≥ 0 ∧ hp > 0 ∧ rv ≥ 0 ∧ alo > 0 ∧ aup ≥ alo
2 ∧ (w = −1 ∨ w = 1) ∧Cε

impl(r, h, v, w, vlo, vup)→
3 [(((w := −1 ∪ w := 1); vlo := ∗; vup := ∗;
4 ?Cε

impl(r, h, v, w, vlo, vup); advisory := (w, vlo, vup));

5 t := 0;

6 (a := ∗;
7 {r′ = −rv, h′ = −v, v′ = a, t′ = 1

8 & (t ≤ ε ∨ ε < 0)

9 ∧ (wv ≥ wvlo ∨ wa ≥ alo)
10 ∧ ((wv ≤ wvup ∧ wa ≤ aup) ∨ wa ≤ 0)

11 })∗
12)∗] (|r| > rp ∨ |h| > hp)

(8)

Beyond replacing the condition C−1impl by Cε
impl at lines 2 and

4, the most notable difference is the disappearance of the
?true case in the system decision (line 3 of Eq. (5)): since
an advisory can only be followed during at most time ε, we
disallow the model to loop and continue following the same

advisory. However, we need to still allow the pilot to use sev-
eral accelerations while she is following a given advisory; to
model this we add a loop (∗) around the pilot decisions on
lines 6 to 11; in Eq. (5) this second loop was not necessary
thanks to the ?true case. Finally, we add an explicit clock
variable t to model time since the last advisory was issued.
The variable t is initialized to 0 at each initial advisory (line
5), evolves with derivative 1 (line 7) and enforces that the
differential equation does not execute for longer than time
bound ε (encoded by t ≤ ε, line 8) unless time is unbounded
(ε < 0, line 8). Note that t is only reset on line 5 before the
pilot’s loop (lines 6–11), so beyond time t = ε, only repeti-
tions of the outer loop (lines 3–12) make any progress, first
issuing an updated ACAS X advisory (lines 3–4) for the pi-
lot to comply with from then on.

5.2.2 Implicit formulation of the bounded-time safe re-
gion The implicit and explicit formulations of the boun-
ded-time safe regions modify the different cases presented
in Sect. 5.1 to take into account the time bound ε. The gen-
eral philosophy is to have the bounded-time equations be an
extension of the equations presented in Sect. 5.1: to achieve
that all supplemental restrictions are of the form (ε < 0 ∨
restriction), which trivially evaluates to true when consid-
ering an unbounded time condition (represented by ε < 0).
Full equations are presented in Fig. 10.

The implicit formulations Lε
impl and Uε

impl are very sim-
ilar to the ones presented in Sect. 5.1: when considering a
bounded nominal lower or upper trajectory, we only add a
condition tn ≤ ε whenever ε ≥ 0, to truncate the nominal
trajectory at time tn = ε. As usual, the two-sided implicit
formulation Cε

impl is the disjunction of Lε
impl and Uε

impl.
We verified the proof of safety in KeYmaera X:

Theorem 4 (Correctness of bounded-time implicit safe
regions) The dL formula given in Eq. (8) is valid. That is
as long as the advisories obey formula Cε

impl there will be no
NMAC for time up to ε if ε ≥ 0, and forever if ε < 0. There
are no guarantees beyond time ε if ε ≥ 0.

14 J.-B. Jeannin, K. Ghorbal, Y. Kouskoulas, A. Schmidt, R. Gardner, S. Mitsch and A. Platzer

Implicit formulation

Lε
impl(r, h, v, w, vlo) ≡ ∀tn.∀rn.∀hn.

(
(ε < 0 ∨ tn ≤ ε)∧ rn = rvtn ∧Alo(t, hn, v, w, vlo)→ (|r − rn| > rp ∨ w(h− hn) < hp)

)
Uε

impl(r, h, v, w, vup) ≡ ∀tn.∀rn.∀hn.

(
(ε < 0 ∨ tn ≤ ε)∧ rn = rvtn ∧Aup(t, hn, v, w, vup)→ (|r − rn| > rp ∨ w(h− hn) > hp)

)
Cε

impl(r, h, v, w, vlo, vup) ≡ Lε
impl(r, h, v, w, vlo) ∨ Uε

impl(r, h, v, w, vup)

Explicit formulation

caseε1(r, v, w, vlo) ≡ case−1
1 (r, v, w, vlo) ∧ (ε < 0 ∨ r ≤ −rp + rvε)

caseε2(r, v, w, vlo) ≡ case−1
2 (r, v, w, vlo) ∧

(
ε < 0 ∨ −

min(0, wv)

alo

≤ ε
)

caseε3(r, v, w, vlo) ≡ case−1
3 (r, v, w, vlo) ∧ (ε < 0 ∨ r ≤ rp + rvε)

caseε4(r, v, w, vlo) ≡ case−1
4 (r, v, w, vlo) ∧ (ε < 0 ∨ r ≤ rp + rvε)

caseε5(r, v, w, vlo) ≡ case−1
5 (r, v, w, vlo) ∧ (ε < 0 ∨ r ≤ −rp + rvε)

caseε6(r, v, w, vlo) ≡ case−1
6 (r, v, w, vlo) ∧ (ε < 0 ∨ r ≤ −rp + rvε)

caseε10(r, v, w, vup) ≡ case−1
10 (r, v, w, vup)

caseε11(r, v, w, vup) ≡ case−1
11 (r, v, w, vup) ∧ (ε < 0 ∨ r ≤ rp + rvε)

caseε12(r, v, w, vup) ≡ case−1
12 (r, v, w, vup) ∧ (ε < 0 ∨ r ≤ −rp + rvε)

caseε13(r, v, w, vup) ≡ case−1
13 (r, v, w, vup) ∧ (ε < 0 ∨ r ≤ −rp + rvε)

caseε14(r, v, w, vup) ≡ case−1
14 (r, v, w, vup) ∧ (ε < 0 ∨ r ≤ rp + rvε)

Lε
expl(r, h, v, w, vlo) ≡

(
wvlo ≥ 0→

4∧
i=1

(caseεi (r, v, w, vlo)→ boundi(r, h, v, w, vlo))

)

∧

(
wvlo < 0→

6∧
i=5

(caseεi (r, v, w, vup)→ boundi(r, h, v, w, vup))

)

Uε
expl(r, h, v, w, vup) ≡

(
max(wvup, wv)> 0→

13∧
i=10

(caseεi (r, v, w, vup)→ boundi(r, h, v, w, vup))

)
∧
(
max(wvup, wv)≤ 0→

∧
i∈{10,11,14}

(caseεi (r, v, w, vup)→ boundi(r, h, v, w, vup))

)
Cε

expl(r, h, v, w, vlo, vup) ≡ Lε
expl(r, h, v, w, vlo) ∨ Uε

expl(r, h, v, w, vup)

Special cases of the bounded-time explicit formulation

caseε15(r, v, w, vlo) ≡ caseε16(r, v, w, vlo) ≡ ε ≥ 0 ∧ −rp + rvε ≤ r ≤ rp + rvε

boundε15(r, h, v, w, vlo) ≡
(
ε ≤

max(0, w(vlo − v))
alo

→ wh <
alo

2
ε2 + wvε− hp

)
∧
(
ε >

max(0, w(vlo − v))
alo

→ wh < wvε−
max(0, w(vlo − v))2

2alo
− hp

)
boundε16(r, h, v, w, vup) ≡

(
ε ≤

max(0, w(vup − v))
aup

→ wh >
aup

2
ε2 + wvε+ hp

)
∧
(
ε >

max(0, w(vup − v))
aup

→ wh > max(wvup, wv)ε−
max(0, w(vup − v))2

2aup
+ hp

)
L̂ε

expl(r, h, v, w, vlo) ≡ Lε
expl(r, h, v, w, vlo) ∧ (wvlo < 0→ caseε15(r, v, w, vlo)→ bound15(r, h, v, w, vlo))

Ûε
expl(r, h, v, w, vup) ≡ Uε

expl(r, h, v, w, vup) ∧ (max(wvup, wv) ≤ 0→ caseε16(r, v, w, vup)→ bound16(r, h, v, w, vup))

Ĉε
expl(r, h, v, w, vlo, vup) ≡ L̂ε

expl(r, h, v, w, vlo) ∨ Ûε
expl(r, h, v, w, vup)

Fig. 10 Implicit and explicit formulations of the safe region for bounded time

A Formally Verified Hybrid System for Safe Advisories in the Next-Generation Airborne Collision Avoidance System 15

The loop invariant used to prove Eq. (8) has a subtle differ-
ence compared to the previous theorems. Unlike in all previ-
ous theorems, Cε

impl is not an invariant of the corresponding
model Eq. (8) (but almost). To turn the implicit conditions of
Fig. 10 into an invariant, we capture the remaining time that
we must follow an advisory by simply turning ε into (ε− t).
That is after having followed an advisory for duration t we
have to follow it for the remaining duration ε−t. The condi-
tion ε < 0 encodes advisories that must be followed forever,
and remains unchanged in the invariant. So ε < 0 ∨ tn ≤ ε

turns into ε < 0 ∨ tn ≤ ε − t in both Lε
impl and Uε

impl to
obtain the invariant.

5.2.3 Explicit formulation of the bounded-time safe re-
gion The explicit formulation of the bounded-time safe
region also builds on its unbounded-time counterpart from
Sect. 5.1. In cases 1 to 6 and 10 to 14, and whenever ε ≥ 0,
only the following cases need to be modified:

– for a case that follows the bottom or top left-hand corner
of the puck, the corresponding boundary of the safe re-
gion should now stop when the puck reaches time ε, i.e.,
when the corner reaches −rp + rvε. Therefore we add
the condition r ≤ −rp + rvε. This is for caseε1, caseε5,
caseε6, caseε12 and caseε13;

– for a case that follows the bottom or top right-hand cor-
ner of the puck, the corresponding boundary of the safe
region should now stop when the puck reaches time ε,
i.e., when the corner reaches rp+ rvε. Therefore we add
the condition r ≤ rp + rvε. This is for caseε3, caseε4,
caseε11, and caseε14;

– caseε10 models the boundary above the puck at time 0

and is unaffected by bounded time;
– caseε2 should only appear if the puck ever reaches the

bottom of the parabola Eq. (6)(a), that is, only in the case
where −min(0,wv)

alo
≤ ε, which is exactly the condition

we added.

The formulas for Lε
expl, U

ε
expl and Cε

expl are constructed from
these modified cases as before.

However, those changes alone are not enough. In the
expression of Lε

expl and when wvlo ≥ 0, there is a miss-
ing explicit boundary along the bottom side of the puck at
time ε; we add it explicitly as case15 → bound15 to form
L̂ε
expl. Similarly, in the expression of Uε

expl and when we have
max(wvup, wv) ≤ 0, there is a missing explicit boundary
along the top side of the puck at time ε; we add it explicitly
as case16 → bound16 to form Ûε

expl. We still define Ĉε
expl as

the disjunction L̂ε
expl∨ Ûε

expl. These extra cases 15 and 16 are
inconsequential for the safeable result ultimately obtained
and are, thus, kept in the separate expression Ĉε

expl.

Lemma 4 (Equivalence of bounded-time explicit safe re-
gions) If w = ±1, rp ≥ 0, hp > 0, rv ≥ 0, alo > 0,

aup ≥ alo then the two conditions Cε
impl(r, h, v, w, vlo, vup)

and Ĉε
expl(r, h, v, w, vlo, vup) are equivalent.

To prove this lemma we first prove that Lε
impl(r, h, v, w, vlo)

and L̂ε
expl(r, h, v, w, vlo) are equivalent, then that conditions

Uε
impl(r, h, v, w, vup) and Ûε

expl(r, h, v, w, vup) are equivalent.

The safety of explicit safe regions follows from Theo-
rem 4 and Lemma 4 by conditional congruence reasoning.

Corollary 3 (Correctness of bounded-time explicit safe
regions) The dL formula in Eq. (8) remains valid when re-
placing all occurrences of Cε

impl(r, h, v, w, vlo, vup) with the
formula Ĉε

expl(r, h, v, w, vlo, vup). That is, as long as the ad-
visories followed obey formula Ĉε

expl(r, h, v, w, vlo, vup)

there will be no NMAC.

5.3 Safeable region

Putting together the building blocks we have presented, we
finally construct safeable regions, in implicit Csafeable(ε)

impl and

explicit form C
safeable(ε)
expl . The intuition behind the construc-

tion of the safeable region is captured in Fig. 11: we consider
all the positions and speeds at which the ownship can end
up at time ε, and in particular the lowest such position and
speed (position lower 1), and the highest such position and
speed (position upper 1). At the lowest position, we look at
the most extreme strengthening available; and at the highest
position, we look at the most extreme reversal available. The
disjunction of the two safe regions of this strengthening and
of this reversal corresponds to intruder positions that can be
avoided by an appropriate action at time ε: this is the safe-
able region. Another way of seeing safeable is that it is a
subset of bounded-time safe that also provides liveness of
the model: it ensures that the ownship does not get stuck
without safe followups at time ε.

The safeable formulation is presented in Fig. 12, and a
graphic representation in Fig. 11. Throughout this section
we suppose that ε ≥ 0, i.e., all the safe regions not explicitly
labelled as non-bounded-time (with superscript −1) have a
finite time bound.

16 J.-B. Jeannin, K. Ghorbal, Y. Kouskoulas, A. Schmidt, R. Gardner, S. Mitsch and A. Platzer

Fig. 11 Nominal trajectories of the ownship (red) and safeable region for the intruder (green), immediate response

5.3.1 Model The model is presented in Eq. (9), and builds
on the bounded-time model Eq. (8), with very few changes
again highlighted in bold.

1 rp ≥ 0 ∧ hp > 0 ∧ rv ≥ 0 ∧ alo > 0 ∧ aup ≥ alo
2 ∧ ε ≥ 0 ∧ (w = −1 ∨ w = 1)

3 ∧Csafeable(ε)
impl (r, h, v, w, vlo, v

ex
lo , vup, v

ex
up)→

4 [(((w := −1 ∪ w := 1); vlo := ∗; vup := ∗;
5 ?C

safeable(ε)
impl (r, h, v, w, vlo, v

ex
lo , vup, v

ex
up);

6 advisory := (w, vlo, vup));

7 t := 0;

8 (a := ∗;
9 {r′ = −rv, h′ = −v, v′ = a, t′ = 1 & t ≤ ε
10 ∧ (wv ≥ wvlo ∨ wa ≥ alo)
11 ∧ ((wv ≤ wvup ∧ wa ≤ aup) ∨ wa ≤ 0)

12 })∗
13)∗] (|r| > rp ∨ |h| > hp)

(9)

In fact, we are only changing the conditions toCsafeable(ε)
impl

on lines 2 and 4. But that makes a big difference: informally,
instead of having a model that gets stuck at time ε, we now
have a model that can always find a safeable advisory (al-
though we do not formally prove that last fact yet).

5.3.2 Implicit and explicit formulations of the safeable
regions The formulations presented in Fig. 12 use the for-
mulations of the bounded-time safe regions as their building
blocks. The implicit and explicit formulations are built in
very similar ways.

As shown in Fig. 11, the nominal lower bound trajectory
consists of a bounded-time lower bound trajectory starting
at time 0, followed by an unbounded-time lower bound tra-
jectory starting at time ε; this nominal trajectory is at height
hex and vertical velocity vex at time ε. Therefore the safe-
able lower bound consists of one bounded-time lower bound
up to time ε, followed by an unbounded-time lower bound
starting at time ε, height hexL and vertical velocity vexL .

The nominal upper bound trajectory consists, however,
of a bounded-time upper bound trajectory starting at time 0,
followed by an unbounded time reversed (i.e., taking −w)
lower bound trajectory starting at time ε; this nominal trajec-
tory is at height hex and vertical velocity vex at time ε. There-
fore the safeable upper bound consists of one bounded-time
lower bound up to time ε, followed by an unbounded-time
lower bound starting at time ε, height hexU and vertical veloc-
ity vexU .

As usual, the proof of safety is verified in KeYmaera X:

Theorem 5 (Correctness of implicit safeable regions)
The dL formula given in Eq. (9) is valid. That is as long as
the advisories followed obey formula Csafeable(ε)

impl there will
be no NMAC.

Before proving the equivalence of conditions Csafeable(ε)
impl

and Csafeable(ε)
expl , we prove a lemma allowing us to simplify

cases 15 and 16 presented in Sect. 5.2, in the safeable case.
Intuitively, cases 15 and 16 correspond to ensuring that the
intruder is outside of the puck at time ε. However, in the
safeable case, this is already ensured when the intruder is
outside of the initial time of the subsequent trajectory.

Lemma 5 (Simplification of cases 15 and 16) If w = ±1,
rp ≥ 0, hp > 0, rv ≥ 0, alo > 0, aup ≥ alo and ε ≥ 0:

– given hexL and vexL as defined in the definition ofLsafeable(ε)
expl

in Fig. 12, then: L−1expl(r − rvε, h − hex, vex, w, vexlo) →
caseε15(r, v, w, vlo)→ boundε15(r, h, v, w, vlo);

– given hexU and vexU as defined in the definition ofU safeable(ε)
expl

in Fig. 12, then: L−1expl(r− rvε, h− hex, vex,−w, vexlo)→
caseε16(r, v, w, vup)→ boundε16(r, h, v, w, vup).

Lemma 6 (Equivalence of explicit safeable regions) Ifw =

±1, rp ≥ 0, hp > 0, rv ≥ 0, alo > 0, aup ≥ alo and
ε ≥ 0, then the two conditions Csafeable(ε)

impl and Csafeable(ε)
expl

are equivalent.

A Formally Verified Hybrid System for Safe Advisories in the Next-Generation Airborne Collision Avoidance System 17

Implicit formulation

L
safeable(ε)
impl (r, h, v, w, vlo, v

ex
lo) ≡ Lε

impl(r, h, v, w, vlo) ∧(
∀hex

L.∀vexL .
(
0 ≤ ε <

max(0, w(vlo − v))
alo

∧ hex
L =

walo

2
ε2 + vloε ∧ vexL = waloε+ v

∨ ε ≥
max(0, w(vlo − v))

alo
∧ hex

L = vloε−
wmax(0, w(vlo − v))2

2alo
∧ vexL = vlo

)
→ L−1

impl(r − rvε, h− h
ex
L, v

ex
L , w, v

ex
lo)

)
U

safeable(ε)
impl (r, h, v, w, vup, v

ex
up) ≡ Uε

impl(r, h, v, w, vup) ∧(
∀hex

U .∀vexU .
(
0 ≤ ε <

max(0, w(vup − v))
aup

∧ hex
U =

waup

2
ε2 + vupε ∧ vexU = waupε+ v

∨ ε ≥
max(0, w(vup − v))

aup
∧ hex

U = wmax(wvup, wv)ε−
wmax(0, w(vup − v))2

2aup
∧ vexU = wmax(wvup, wv)

)
→ L−1

impl(r − rvε, h− h
ex
U , v

ex
U ,−w, vexup)

)
C

safeable(ε)
impl (r, h, v, w, vlo, vexlo , vup, v

ex
up) ≡ L

safeable(ε)
impl (r, h, v, w, vlo, vexlo) ∨ U

safeable(ε)
impl (r, h, v, w, vup, vexup)

Explicit formulation

L
safeable(ε)
expl (r, h, v, w, vlo, v

ex
lo) ≡ Lε

expl(r, h, v, w, vlo) ∧ L
−1
expl(r − rvε, h− h

ex
L, v

ex
L , w, v

ex
lo)

where


hex
L =

walo

2
ε2 + vloε and vexL = waloε+ v if 0 ≤ ε <

max(0, w(vlo − v))
alo

hex
L = vloε−

wmax(0, w(vlo − v))2

2alo
and vexL = vlo if ε ≥

max(0, w(vlo − v))
alo

U
safeable(ε)
expl (r, h, v, w, vup, v

ex
up) ≡ Uε

expl(r, h, v, w, vup) ∧ L
−1
expl(r − rvε, h− h

ex
U , v

ex
U ,−w, vexup)

where


hex
U =

waup

2
ε2 + vupε and vexU = waupε+ v if 0 ≤ ε <

max(0, w(vup − v))
aup

hex
U = wmax(wvup, wv)ε−

wmax(0, w(vup − v))2

2aup
and vexU = wmax(wvup, wv) if ε ≥

max(0, w(vup − v))
aup

C
safeable(ε)
expl (r, h, v, w, vlo, vexlo , vup, v

ex
up) ≡ L

safeable(ε)
expl (r, h, v, w, vlo, vexlo) ∨ U

safeable(ε)
expl (r, h, v, w, vup, vexup)

Fig. 12 Implicit and explicit formulations of the safeable region

6 Reduction from 3D Dynamics to 2D Dynamics

In this section, we show that, with respect to our assump-
tions, any 3-dimensional encounter (Sect. 2) can be reduced
to a 2-dimensional encounter (Sect. 3) without loss of gen-
erality. This is done using a change of reference frame and a
dimension reduction.

For the sake of clarity, let us put ourselves in a refer-
ence frame (O, i, j,k) fixed to the ownship (O). In this ref-
erence frame, the position of an intruder I is represented by
the tuple (x, y, h), and the differential equation system that
governs its motion is given by x′ = rx, y′ = ry , (h′)′ = a,
where rx, ry and a remain constant as time evolves. The mo-
tion of the encounter can be decoupled into a 2-dimensional
horizontal encounter in the reference frame (O, i, j) (hori-
zontal plane) and a 1-dimensional vertical encounter in the
reference frame (O,k). In what follows, we reduce the hori-
zontal encounter from a 2-dimensional motion to a 1-dimen-

O

I

r

−rv

i

j

k
`
P

s

n

Fig. 13 Top view of the two reference frames

sional motion, thereby simplifying the problem conceptually
and computationally by reducing its number of variables.

Fig. 13 depicts a top view of a generic encounter. We
denote by r the position, and rv the velocity, of the intruder
relative to the ownship, and by rv ≥ 0 the norm of rv .

First suppose rv > 0. The idea is to choose a refer-
ence frame (P,k, `) in which one axis k is aligned with rv ,
such that no relative motion happens in the other direction
`. Its fixed center P is defined as the orthogonal projection

18 J.-B. Jeannin, K. Ghorbal, Y. Kouskoulas, A. Schmidt, R. Gardner, S. Mitsch and A. Platzer

of point O on the direction of rv . The unit vector k is de-
fined as rv

rv
, and ` is a unit such that (P,k, `) is positively

oriented.
Let v|O (resp. v|P) denote the coordinates of a vector

v relative to the reference frame (O, i, j) (resp. (P,k, `)).
Then, the coordinates for r and rv are: r|O = (x, y), rv|O =

(rx, ry), r|P = (s, n) and rv|P = (−rv, 0). The scalar prod-
uct r ·rv and the cross product r×rv are independent of the
horizontal reference frame, therefore:
xrx + yry = −srv xry − yrx = nrv (10)

Given rx and ry , Eqns. (10) imply that the coordinates (x, y)
are uniquely determined by the choice of (s, n), as long as
rv 6= 0 (using rv2 = r2x + r2y). For any 2-dimensional con-
figuration, the encounter can thus be considered a head-on
encounter where s plays the role of r and where a new puck
radius, denoted sp, plays the role of rp.

Next, we determine the radius of the dimension-reduced
encounter, and prove that the absence of NMAC in (O, i, j),
characterized by r2 > r2p, is equivalent to the absence of
NMAC in (P,k, `), characterized by s2 > s2p. Using (10):

rv
2r2 = rv

2(x2 + y2) = (xrx + yry)
2 + (xry − yrx)2

= rv
2(s2 + n2) .

Since rv 6= 0, this implies r2 = s2+n2. Therefore, r2 > r2p
if and only if s2 + n2 > r2p or equivalently s2 > r2p −
n2. If r2p − n2 < 0, the direction of the vector rv does not
intersect the puck, the inequality s2 > r2p − n2 is trivially
true, and the encounter is safe. If r2p−n2 ≥ 0, we choose the
new puck radius sp for the dimension-reduced encounter as
sp =

√
rp2 − n2 ≥ 0, and the safety condition in (P,k, `)

becomes s2 ≥ s2p. When θv = 180◦, one has s = r, n = 0

and sp = rp as in Sect. 3–4.
As the encounter evolves in (O, i, j) along x′ = rx, y

′ =

ry , its dimension-reduced version evolves in (P,k, `) along
the differential equations s′ = −rv, n′ = 0, obtained by
differentiating Eqns. (10) and canceling rv . The following
proposition, proved in KeYmaera, combines both dynamics
and shows that the absence of an NMAC of radius rp in
(O, i, j) is equivalent to the absence of an NMAC of radius
sp in (P,k, `).

Proposition 1 (Horizontal Reduction) The following dL
formula is valid(
xrx + yry = −srv ∧ xry − yrx = nrv∧
x2 + y2 = n2 + s2 ∧ rv2 = r2x + r2y

)
→ [x′ = rx, y

′ = ry, s
′ = −rv, n′ = 0](

x2 + y2 > r2p ↔ s2 > r2p − n2
)

(11)

Observe that the horizontal NMAC condition in (P,k, `)

only depends on the change of one variable rather than two.
The proposition also applies to the special case rv = 0. In
this case the origin P is no longer defined, and Eqns. (10)

are trivially true. The variables s and n are constants (s′ =
0, n′ = 0), their initial values are only restricted by the con-
dition n2 + s2 = x2 + y2 in the assumption of the propo-
sition, but they are not unique. When the relative position
between the two aircraft does not evolve over time, if the in-
truder is at a safe distance initially, the encounter is still safe
for all time.

7 Discussion

7.1 Verification Process and Lessons Learned

The formal proofs in this paper were conducted while the
KeYmaera X system was still in active development. They
use manually written tactics for differential dynamic logic
decompositions [22] as well as Mathematica’s implementa-
tion of real quantifier elimination [2]. The core parts of the
proofs justify correctness of the safety regions (e.g., those in
Fig. 12), which requires a deep understanding of the seman-
tics of the different components of the hybrid model as well
as their interactions. Due the high computational complex-
ity of quantifier elimination (here 18 variables), the primary
proof effort involved arithmetic simplifications.

A major lesson of the formal verification task carried out
in this paper has been to use both implicit and explicit for-
mulations of the safety conditions. The implicit formulation
is better-suited for proving safety with respect to a model.
The explicit formulation is better-suited for explicit testing
and comparison to the ACAS X lookup table. Both formula-
tions are formally proved equivalent. We initially proved the
safe regions (Corollary 1) using the explicit formulation di-
rectly, which was significantly more difficult. We stress the
fact that the explicit formulation could theoretically be ob-
tained from the implicit one by quantifier elimination. Nev-
ertheless, considering the current state-of-the-art of quanti-
fier elimination algorithms, this cannot be achieved in a rea-
sonable amount of time. Even if it were, the manually con-
structed explicit region are more readable since they follow
the geometrical intuitions underlying the hybrid model.

7.2 Tightness of Conditions

The conditions L−1impl and L−1expl in Fig. 3, Dd
impl and Dd

expl in

Fig. 5, and Csafeable(ε)
impl and Csafeable(ε)

expl in Fig. 12 specify con-
ditions we have derived for safety under varying assump-
tions. While we have formally proved that each of these
conditions is sufficient to guarantee safety (soundness) of
the relevant models (cf. Theorem 1, Corollary 1, Theorem 2,
Lemma 2, Theorem 5, and Lemma 6), we have not proved
that these conditions are necessary for safety. This is often
referred to as completeness of the conditions and measures

A Formally Verified Hybrid System for Safe Advisories in the Next-Generation Airborne Collision Avoidance System 19

how tight the used conditions overapproximate the actual ex-
act safe regions. In other words, if an advisory and aircraft
geometry meet the safety conditions, then the aircraft are
guaranteed to be safe under the relevant assumptions. How-
ever, we have not proved that advisories that do not meet the
conditions of the associated geometry can cause collisions.

In some cases, our conditions are strict overapproxima-
tions. For the conditions that do not account for subsequent
advisories (safe conditions), L−1impl, L

−1
expl, D

d
impl and Dd

expl,
consider the following geometry. The aircraft are diverging
horizontally (e.g., θv = 0 and rv > 0), the intruder is suf-
ficiently above the ownship in altitude, i.e., more than hp
above the ownship (h > hp), and the aircraft are horizon-
tally separated by exactly the radius of the puck, i.e., r = rp.
Intuitively, the intruder is directly above the left edge of the
gray box in Fig. 4. If considering an up-sense advisory, this
geometry does not passL−1expl orDd

expl because the conditions
have no exception for intruders over the exact edge of the
puck. However, an NMAC would only happen if the own-
ship were to accelerate upward at an infinite rate, so NMAC
is not possible.

There are cases where advisories fail to meet the con-
ditions for subsequent advisories (safeable conditions), but
are safe under the relevant assumptions as well. Conditions
C

safeable(ε)
impl and Csafeable(ε)

expl are built from a lower-bound tra-
jectory and an upper-bound trajectory where, e.g., the lower-
bound trajectory ends with an unbounded-time trajectory
corresponding to the strongest possible upward subsequent
advisory (vertical velocity vex). Such worst-case considera-
tion leads to a reasonable overapproximation under the intu-
ition that if the strongest upward subsequent advisory makes
the lower-bound initial-trajectory safe, that subsequent ad-
visory would also make any other initial-trajectory safe. An
analogous reasoning supports the construction of the upper-
bound trajectory. This simple analysis limits completeness
as it implicitly assumes that the subsequent advisory is fixed,
or determined at the time of the first advisory. That is, it asks
if there exists one subsequent advisory now (at least either
the most extreme upward or downward advisory) that can
guarantee safety in the future. In reality, ACAS X chooses
the subsequent advisory later in time, with some knowledge
of the initial portion of the trajectory. In some cases, it is ad-
vantageous, for example, to choose the most extreme down-
ward advisory for lower initial trajectories and to choose the
most extreme upward advisory for upper initial trajectories.
The result of this overapproximation is that ACAS X could
choose a safe subsequent advisory for some geometries that
cannot be concluded safeable by Csafeable(ε)

impl or Csafeable(ε)
expl .

8 Comparison of Safety Theorems to ACAS X

The preceding theorems about safety are independent of the
tested system. To characterize the safety of ACAS X itself,
we check whether advisories indicated by the core compo-
nent of ACAS X, consisting of the timing and logic tables,
meet the conditions of the theorems. The timing and logic
tables of ACAS X contain scores for each advisory for a
finite set of discrete sample states. Each score quantifies
the desirability of issuing the corresponding advisory when
in the corresponding state and is the result of optimizing a
Markov decision process (MDP). In practice, ACAS X mul-
tilinearly interpolates advisory scores from the values stored
in the tables, given estimates of aircraft states. Although
these estimates model uncertainty in practice, we check be-
havior for the sample points themselves, assuming perfect
knowledge of state, to compare system behavior under best-
case circumstances. Table 2 shows the range of sample state
points, called cut-points, for each of the 7 dimensions of the
logic tables. These non-uniformly sampled cut-points were
chosen by the ACAS X designers to maximize system per-
formance for realistic encounters while keeping the size of
the tables modest. The previous advisory state includes the
previously-issued advisory and information about whether
the pilot was acting to comply with the advisory at the previ-
ous time step. This information is used in the MDP state for
the multi-step optimization. Together these samples make
up over 648 billion state combinations for which scores are
explicitly stored in the ACAS X logic tables.

Corollary 1 and Lemma 6 along with Theorem 5 reduce
the safety of all future trajectories to a static condition on
the current state: L−1expl or Csafeable(ε)

expl , respectively. We ex-
amine the advisory specified by the logic tables at each of
the 648 billion state combinations for which scores are ex-
plicitly stored and check the advisory against the respective
safe or safeable condition for that advisory.

One limitation of the comparison is that it assumes an
omniscient observer, with full exact knowledge of the posi-
tions and velocities of both aircraft. In practice, this is un-
realistic because of sensor inaccuracies. Furthermore, the
sampling-based approach presented in this section consti-
tutes a (thorough) test of the ACAS X logic tables, but not
a verification, as we provide no guarantees on values inter-
polated between cut-points. We plan to address these limita-
tions in future work.

Approach. To perform the comparison we use a 10-node
cluster, each with 48 cores and 128 GB RAM. Checks for
the relevant conditions are implemented in Julia3 and run
on the 648 billion cut-point combinations in parallel, taking
approximately 8 days. We first define what we mean by a
counterexample.

3 http://julialang.org/.

http://julialang.org/

20 J.-B. Jeannin, K. Ghorbal, Y. Kouskoulas, A. Schmidt, R. Gardner, S. Mitsch and A. Platzer

parameter samples range of values

relative alt. h (ft) 45 [-8000, -4000, -3600, -3200, -2800, -2400, -2000, . . . , -100, -50, 0, 50, . . . , 4000, 8000]
ownship alt. rate v (ft/s) 25 [-166.7, -83.3, -75.0, -66.7, -58.3, -50, . . . , -16.7, -8.3, -4.2, 0, 4.2, . . . , 83.3, 166.7]
intruder alt. rate vI (ft/s) 25 [-166.7, -83.3, -75.0, -66.7, -58.3, -50, . . . , -16.7, -8.3, -4.2, 0, 4.2, . . . , 83.3, 166.7]
previous advisory 33 { NONE-NONE, DNC2000-NONE, DNC2000-DNC2000, . . . , SCL2500-NONE, SCL2500-SCL2500 }
range r (ft) 101 [0, 50, 100, 150, 200, 250, 300, . . . , 1000, 1500, 2000, . . . , 39500, 40000, 100000, 200000]
relative velocity rv (ft/s) 187 [0, 10, 20, 30, 40, 50, 60, 70, 80, 90 . . . , 1700, 1750, 1800, . . . , 2350, 2400, 2450, 2500]
velocity angle θv (deg) 37 [0, 5, 10, 15, 20, 25, 30, 35, 40, 45, . . . , 145, 150, 155, 160, 165, 170, 175, 180]

Table 2 Discrete parameter ranges and number of cut-points specified by ACAS X run 13 and checked during comparison

(δ, ε) in (seconds, seconds) (ad,∆a = aup − alo)

(0, 1) (g/106, 0)
(1, 2) (g/6, g/12)
(3, 5) (g/3, g/6)
(5, 7) (g/2, g/4)

Table 3 Delay and Acceleration Parameters Swept During Logic
Comparison. The 16 combinations of these pairs are tested.

Definition 2 (Counterexample) We say that a state is a
counterexample for the safe (resp. safeable) conditions if the
advisory given by the ACAS X logic tables for that state vio-
lates L−1expl given in Fig. 3 (resp. Csafeable(ε)

expl given in Fig. 12)
and for which there exists an alternative advisory that does
satisfy the respective safety conditions.

Note that since some conditions are not tight (Sect. 7.2), not
all counterexamples constitute a safety threat. We say a state
is non-safe, or non-safeable if it is a counterexample for the
safe or safeable conditions respectively.

We selected a set of parameters for acceleration and de-
lay ranges, shown in Table 3. The delays are parameterized
by two values δ and ε. The first, δ, is the delay from time
0 to the time at which the pilot begins adjusting vertical ac-
celeration to follow the first advisory. The second delay pa-
rameter, ε, is the delay from time 0 to the time at which the
second issued advisory begins to be followed. Thus the first
advisory is followed for ε − δ seconds and we require that
ε > δ. The selections of delay parameters in Table 3 have ε
values that are at least 1 second greater than δ to allow a pe-
riod of 1 second or more of compliance with a first advisory.
The right side of Table 3 gives the parameters governing the
limits of ownship acceleration. The free acceleration, ad, as
previously defined, is the maximum absolute acceleration of
the pilot during delay or COC; it is swept between almost
zero acceleration and g/2. (We used g/106 for almost zero
to avoid divisions by zero in our conditions.) The second
parameter, ∆a, the overcompliance acceleration, is the dif-
ference between the upper limit of acceleration under the
advisory, aup, and the lower compliance limit, alo. It is tied
in each case to one half of the free acceleration ad. The de-
lay parameter pairs are also tied together during each query,
meaning that during the first query (δ, ε) = (0, 1) and for

Safe Counterexamples
(in billions) delay (δ, ε) in seconds
acceleration (ad,∆a) (0, 1) (1, 2) (3, 5) (5, 7)

(g/106, 0) 15.38 15.05 14.85 14.79
(g/6, g/12) 15.40 15.03 14.87 14.88
(g/3, g/6) 15.43 15.02 14.95 15.14
(g/2, g/4) 15.45 15.01 15.18 15.33

Unresolvable States
(in billions) delay (δ, ε) in seconds
acceleration (ad,∆a) (0, 1) (1, 2) (3, 5) (5, 7)

(g/106, 0) 10.42 10.64 10.84 10.96
(g/6, g/12) 10.42 10.75 11.16 11.51
(g/3, g/6) 10.42 10.88 11.59 12.36
(g/2, g/4) 10.42 11.04 12.13 13.46

Table 4 Number of Safe counterexamples (top) and number of unre-
solvable states (bottom) for each delay and acceleration parameter set

Safeable
Counterexamples
(in millions) delay (δ, ε) in seconds
acceleration (ad,∆a) (0, 1) (1, 2) (3, 5) (5, 7)

(g/106, 0) 266.3 99.7 39.2 31.6
(g/6, g/12) 310.0 117.2 101.4 164.9
(g/3, g/6) 353.2 138.6 277.7 544.7
(g/2, g/4) 398.9 163.6 668.8 898.7

Unresolvable States
(in billions) delay (δ, ε) in seconds
acceleration (ad,∆a) (0, 1) (1, 2) (3, 5) (5, 7)

(g/106, 0) 11.03 11.27 11.51 11.64
(g/6, g/12) 11.03 11.40 11.85 12.23
(g/3, g/6) 11.03 11.54 12.30 13.09
(g/2, g/4) 11.03 11.71 12.86 14.23

Table 5 Number of Safeable counterexamples (top) and unresolvable
states (bottom) for each delay and acceleration parameter set

the second query (δ, ε) = (0, 2), and so on. All 16 combina-
tions of delay pairs and acceleration pairs are tested against
the total 648 billion cut-point combinations summarized in
Table 2.

Counterexamples. Tables 4 and 5 summarize the number
of counterexamples (Def. 2) we found. The lower portions
of the tables show the number of initial states tested that

A Formally Verified Hybrid System for Safe Advisories in the Next-Generation Airborne Collision Avoidance System 21

were not resolvable with any of the available safe or safe-
able actions. That is, for those unresolvable states, there are
no available advisories that pass the conditions we formally
proved. For the safe comparison, the checks we perform are
limited to states in the ACAS X tables where COC is the
previous advisory (about 196 billion states). In addition, the
parameters ε and ∆a are not used in the safe conditions: ε
is fixed to −1 as we assume that the pilot will follow the is-
sued advisory forever; ∆a is not used as we assume that the
vertical acceleration has only to respect a minimal rate (alo)
to satisfy the advisory. Thus, only δ and ad vary. One can
notice that taking into account the pilot delay in the formal
model reduces the number of counterexamples. This may
seem at first counterintuitive as one expects less unsafe ad-
visories if the pilot responds immediately. However, given
that the previous advisory is a COC, the ACAS X tables are
designed to not necessarily issue a disruptive advisory right
away and will rather either issue a preventive advisory (such
as DNC or DND) or simply an MCL or MDES (maintain)
advisory before actually strengthening those advisories in
the future if needed. Those first advisories may indeed vi-
olate the safe conditions although the system is able to re-
solve the potential encounters. We also observe, on the con-
trary, that increasing the free acceleration ad results in more
counterexamples and more unresolvable encounters. This is
a straightforward effect of our worst-case analysis: if we al-
low g/2, say, as worst-case vertical acceleration, then we
have to consider that the pilot might actually accelerate at
g/2 during the delay, which may be unrealistic.

Overall, as shown in Table 4, we found billions of coun-
terexamples to Corollary 1 (safe regions). Many were used
to create test encounters and tested in the full system as a
means of targeted stress testing. The ACAS X system was
able to resolve many of those by issuing subsequent advi-
sories, which motivated the safeable extension we developed
in this paper. Indeed, safeable counterexamples represent
states where the advice
given by ACAS X may not be correctable by subsequent ad-
visories, although an alternative guaranteed safe sequence
exists for our assumptions according to Lemma 6.

We can see from Table 5 that there are considerably
fewer safeable counterexamples than safe, hundreds of mil-
lions instead of tens of billions. Theorem 5 (safeable regions)
is designed to detect points of no return. As with safe re-
gions, we see that the number of counterexamples tend to
have an inverse relationship with pilot response delay al-
though an exception to this trend occurs when delay is ex-
actly 0. We believe this exception is caused by the fact that
many states are resolvable when there is no pilot response
delay, i.e., when the pilot responds immediately to the is-
sued advice. Once a moderate response delay is assumed,
there are many fewer resolvable initial states, resulting in
fewer total counterexamples, albeit still a few hundred mil-

lion. These safeable counterexamples are also being used to
generate stressing short-time encounters that may be used
for robustness testing.

Safety Analysis. The comparison of the system to safe con-
dition D−1expl (valid by Theorem 2) gave insight into possible
improvements for ACAS X. Our analysis led to the identifi-
cation of unexpected behavior in the ACAS X run 13 (i.e.,
version 13) lookup tables. In some cases, the ACAS X advi-
sory seems to induce an NMAC, i.e., if the initial advisory is
followed and not strengthened or reverted later, an NMAC
will occur when it would not have occurred if the aircraft
continued flying straight. A typical example, found during
checking against Corollary 1 (safe regions) with δ = 0 and
ad = g/2, is shown in Fig. 14. The ownship is flying from
the left and the intruder from the right. The time 0 corre-
sponds to the time of closest horizontal approach. As time
progresses, the intruder flies towards the ownship and an
NMAC happens near the time t = 0. The original path of the
ownship does not lead to an NMAC. However, ACAS X is-
sues a Do-Not-Climb advisory. If the pilot follows this advi-
sory immediately and stops climbing, and if the initial advi-
sory is not subsequently strengthened or reversed, an NMAC
will occur.

In other cases of counterexamples to Corollary 1 (safe
regions), the advisory does not seem to have any benefit.
In those cases, flying at the vertical rates disallowed by the
advisory would actually avoid NMAC, while not all allowed
vertical rates of the advisory are safe.

Some safe counterexamples are tolerated, as ACAS X
tries to minimize alerting the pilot unless it has to do so;
for these cases, ACAS X will issue or strengthen an advi-
sory later to avoid issuing a disruptive alert immediately.
Additionally, the assumption of straight vertical flight is not
always valid. E.g., aircraft may actually be more likely to
level-off than continue at high vertical rates in some cases.
The particular unexpected behavior shown in Fig. 14 was in-
dependently identified by the ACAS X team using simula-
tion-based testing, and is being addressed in a subsequent
revision of the system.

Safeable Analysis. In Fig. 15, we see an automatically dis-
covered safeable counterexample. The pilot is assumed to
start complying with the initially issued advisory at 5 sec-
onds and will only begin complying with a potential sub-
sequent advisory after 7 seconds from the initial time (the
first advisory will thus be followed for 2 seconds). For this
state, the ACAS X tables issue the advisory MDES, main-
tain descent. The upper panel shows the most extreme up-
per and lower paths that a subsequent advisory can restrict
the ownship’s motion to. Neither of these can avoid NMAC
with the intruder. This is a relatively close range, slow clos-
ing encounter, as the initial horizontal separation is 1,500 ft

22 J.-B. Jeannin, K. Ghorbal, Y. Kouskoulas, A. Schmidt, R. Gardner, S. Mitsch and A. Platzer

Fig. 14 Safe Counterexample. Original ownship path (cyan) and intruder path (red) vs. ownship responding to a do-not-climb (DNC) advisory
issued by the ACAS X tables in starting state: r = 4,000 ft, rv = 200 ft/s, θv = 180◦, h = 600 ft, v = 1,980 ft/min, vI = −1,500 ft/min.
Time is shown counting from -20 s to time 0; the time of closest horizontal approach. The 2D projection of the NMAC cylinder is shown centered
around the ownship as a dashed rectangle; the intruder intersecting with the NMAC region is shown by a red circle.

and horizontal relative closing speed is only 90 ft/s. Both
aircraft begin descending at moderate rates, offset vertically
by 300 ft. The problem occurs because the most extreme de-
scend advisory available has a rate of only 2,500 ft/min and
with the ownship already descending at 2,000 ft/min the in-
crease in descent rate cannot avoid the intruder. In this slow
closing geometry, the two aircraft will be in horizontal con-
flict range for an extended period, which at this geometry
lasts for 7 seconds starting at t = −3.5 to t = 3.5 sec-
onds. In this case, Lemma 6 tells us that safeable actions
include DND (Do Not Descend) and CL1500 (Climb 1500).
The lower panel of Fig. 15 shows that if the ownship were,
instead, told to climb at the maximum rates allowed by a
sequence of up-sense advisories, this situation would have
been resolved, and so is indeed a counterexample.

The smaller number of safeable counterexamples are of
special interest to system verification, as they are situations
that cannot even be corrected by subsequent advisories. To
aid in robustness testing and tuning of the actual system,
we have created a set of short-time encounters based on the
counterexamples found using the safeable analysis and are
sharing these encounters with the ACAS X designers.

Overall, we have begun analyzing ACAS X using our
theorem and are identifying numerous valuable outcomes.
These results either help us characterize tradeoffs
being made or help us identify undesirable behaviors in the
system. As one of our next steps, we aim to prove that
ACAS X gives safe advice for continuous regions of the
state space. When comparisons are extended to check con-
tiguous regions of the state space, our approach will have
the potential for a complete analysis of the system over all
potential encounter configurations, thereby reducing vulner-
ability to the sampling of encounter scenarios.

9 Related Work

Kochenderfer and Chryssanthacopoulos [14] describe the
design of the ACAS X lookup-tables. Their principled ap-
proach, based on optimizing an MDP, guarantees the selec-
tion of optimal advisories according to a cost model. The
state space and dynamics are discretized. Their notion of op-
timality depends on costs assigned to various events.

Holland et al. [12] and Chludzinski [1] simulate large
numbers of encounters, including tracks from recorded
flight data, to evaluate the performance of ACAS X. These
simulations account for high-fidelity details of an encounter,
but they only cover a finite set of the continuous state space
with no formal guarantees.

Von Essen and Giannakopoulou [4] use probabilistic
model-checking to analyze an MDP based on [14]. They in-
vestigate the probability of several undesirable events occur-
ring. Because they ostensibly analyze an MDP, their work
inherits many of the assumptions of ACAS X, including
errors due to discretized dynamics. Their analysis depends
heavily on the MDP considered and thus needs to be redone
in full on every version of ACAS X.

Lygeros and Lynch [19] use hybrid techniques to for-
mally verify the TCAS conflict resolution algorithms. They
assume—rather than prove—that TCAS ends up in a state
where one aircraft has a climbing advisory and the other
a descending advisory. They then prove (by hand) a lower
bound on the vertical separation of both aircraft at the point
of closest approach. In contrast, we do prove as opposed to
assume that and when advisories are safe.

Tomlin et al. [25], Platzer and Clarke [24], Loos et al.
[18] and Ghorbal et al. [11] use hybrid systems approaches
to design safe horizontal maneuvers for collision avoidance.
Dowek et al. [3] and Galdino et al. [10] describe and verify
in the PVS theorem prover a collision avoidance system of
their design called KB3D.

A Formally Verified Hybrid System for Safe Advisories in the Next-Generation Airborne Collision Avoidance System 23

(a) Illustration of a Safeable Counterexample

(b) The Counterexample Under a Safeable First Advisory

Fig. 15 Safeable counterexample, where “delay 1” (δ) = 5 s, “delay 2” (ε) = 7 s, ad = g/106, and ∆a = 0. Action issued is “maintain” for
the initial state r = 1, 500 ft, rv = 90 ft/s, θv = 2.88 rad, h = 300 ft, v = −33.33 ft/s, vI = −50 ft/s, previous advisory = None. Plots
show absolute altitude of ownship vs. time and intruder vs. negative time; ownship travels left to right and the intruder right to left. Time is shown
counting from -16 s to time 0; the time of closest horizontal approach. The delay times are shown in vertical dashed lines. The 2D projection of
the NMAC cylinder is shown centered around the ownship as a dashed rectangle. When the intruder intersects with the NMAC region, it is shown
by a red circle, and when the intruder misses the NMAC region it is shown as a red dot.

Overall, our approach is different from previous comple-
mentary work in that:

– unlike [4,14], we rely on an independent model from the
one used to design ACAS X;

– unlike [3,10,11,18,24,25] we analyze an independent
industrial system and not a safe-by-design system;

– unlike [3,4,10] our analysis uses continuous dynamics,
which is more realistic;

– unlike [19,25,4] we provide universal safe regions that
can be reused for new versions of ACAS X or new sys-
tems;

– unlike [1,12,15,19,25], we provide mechanized rigor-
ous proofs of correctness of our model.

10 Conclusion and Future Work

We developed a general strategy for analyzing the safety
of complicated, real-world aircraft collision avoidance sys-
tems, and applied it to ACAS X. Our strategy identifies safe
regions where an advisory is proved to always keep the air-
craft clear of NMAC, under the assumptions of the model.
We identified states where ACAS X is provably safe, and
delivered others showing unexpected behaviors back to the
ACAS X development team. The identified safe regions are
independent from the version of ACAS X and can thus be
reused for future versions. In future work, we plan to ex-
tend our hybrid model to account for curved trajectories of
both aircraft, vertical acceleration of the intruder, and sensor

24 J.-B. Jeannin, K. Ghorbal, Y. Kouskoulas, A. Schmidt, R. Gardner, S. Mitsch and A. Platzer

uncertainties. We would also like to extend our table com-
parison to provide safety guarantees on interpolated values.

Acknowledgments. This research was conducted under the
sponsorship of the Federal Aviation Administration Traffic
Alert & Collision Avoidance System (TCAS) Program Of-
fice (PO) AJM-233 under contract number DTFAWA-11-C-
00074. Additionally, support for the basic verification tech-
nology used as a foundation for this research was provided
by the National Science Foundation under NSF CAREER
Award CNS-1054246.

The authors would like to warmly thank Neal Suchy for
his lead of the ACAS X project and support of this work, as
well as Nathan Fulton, Ran Ji and Jan-David Quesel for their
support of the KeYmaera X tool. The authors would also
like to thank Jeff Brush, Barbara Chludzinski, Dane Fichter,
Jessica Holland, Robert Klaus, Barbara Kobzik-Juul, Mykel
Kochenderfer, Ted Londner, Sarah Loos, Jessica Lopez, Ed
Morehouse, Wes Olson, Michael Owen, Anshu Saksena,
Joshua Silbermann, the ACAS X development team, and the
anonymous reviewers for their interesting feedback.

References

1. Chludzinski, B.J.: Evaluation of TCAS II version 7.1 using the
FAA fast-time encounter generator model. Tech. Rep. ATC-346,
MIT Lincoln Laboratory (2009)

2. Collins, G.E.: Hauptvortrag: Quantifier elimination for real closed
fields by cylindrical algebraic decomposition. In: Automata The-
ory and Formal Languages, LNCS, vol. 33, pp. 134–183. Springer
(1975)

3. Dowek, G., Muñoz, C., Carreño, V.: Provably safe coordinated
strategy for distributed conflict resolution. In: AIAA Guidance
Navigation, and Control Conference and Exhibit (2005)

4. von Essen, C., Giannakopoulou, D.: Analyzing the next genera-
tion airborne collision avoidance system. In: TACAS, LNCS, vol.
8413, pp. 620–635. Springer (2014).

5. Federal Aviation Administration: Introduction to TCAS II (2011).
Version 7.1

6. Federal Aviation Administration TCAS Program Office: Algo-
rithm design description for the surveillance and tracking module
of ACAS X (2014). Run12

7. Federal Aviation Administration TCAS Program Office: Algo-
rithm design description for the threat resolution module of ACAS
X (2014). Version 3 Rev. 1

8. Felty, A., Middeldorp, A. (eds.): International Conference on Au-
tomated Deduction, CADE’15, Berlin, Germany, Proceedings,
LNCS, vol. 9195. Springer (2015)

9. Fulton, N., Mitsch, S., Quesel, J.D., Völp, M., Platzer, A.: KeY-
maera X: An axiomatic tactical theorem prover for hybrid systems.
In: Felty and Middeldorp [8], pp. 527–538.

10. Galdino, A., Muñoz, C., Ayala, M.: Formal verification of an op-
timal air traffic conflict resolution and recovery algorithm. In:
WoLLIC, LNCS, vol. 4576. Springer (2007)

11. Ghorbal, K., Jeannin, J.B., Zawadzki, E., Platzer, A., Gordon, G.J.,
Capell, P.: Hybrid theorem proving of aerospace systems: Appli-
cations and challenges. Journal of Aerospace Information Systems
(2014)

12. Holland, J.E., Kochenderfer, M.J., Olson, W.A.: Optimizing the
next generation collision avoidance system for safe, suitable, and
acceptable operational performance. Air Traffic Control Quarterly
(2014)

13. Jeannin, J.B., Ghorbal, K., Kouskoulas, Y., Gardner, R., Schmidt,
A., Zawadzki, E., Platzer, A.: A formally verified hybrid system
for the next-generation airborne collision avoidance system. In:
C. Baier, C. Tinelli (eds.) TACAS, LNCS, vol. 9035, pp. 21–36.
Springer (2015).

14. Kochenderfer, M.J., Chryssanthacopoulos, J.P.: Robust airborne
collision avoidance through dynamic programming. Tech. Rep.
ATC-371, MIT Lincoln Laboratory (2010)

15. Kochenderfer, M.J., Espindle, L.P., Kuchar, J.K., Griffith, J.D.:
Correlated encounter model for cooperative aircraft in the national
airspace system version 1.0. Tech. Rep. ATC-344, MIT Lincoln
Laboratory (2008)

16. Kochenderfer, M.J., Holland, J.E., Chryssanthacopoulos, J.P.:
Next generation airborne collision avoidance system. Lincoln
Laboratory Journal 19(1), 17–33 (2012)

17. Kochenderfer, M.J., Monath, N.: Compression of optimal value
functions for Markov decision processes. In: Data Compression
Conference. Snowbird, Utah (2013)

18. Loos, S.M., Renshaw, D.W., Platzer, A.: Formal verification of
distributed aircraft controllers. In: HSCC, pp. 125–130. ACM
(2013).

19. Lygeros, J., Lynch, N.: On the formal verification of the TCAS
conflict resolution algorithms. In: IEEE Decision and Control,
vol. 2, pp. 1829–1834. IEEE (1997).

20. Platzer, A.: Differential dynamic logic for hybrid systems. J. Au-
tom. Reas. 41(2), 143–189 (2008).

21. Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theo-
rems for Complex Dynamics. Springer (2010).

22. Platzer, A.: Logics of dynamical systems. In: LICS, pp. 13–24.
IEEE (2012).

23. Platzer, A.: A uniform substitution calculus for differential dy-
namic logic. In: Felty and Middeldorp [8], pp. 467–481.

24. Platzer, A., Clarke, E.M.: Formal verification of curved flight col-
lision avoidance maneuvers: A case study. In: FM, LNCS, vol.
5850, pp. 547–562. Springer (2009).

25. Tomlin, C., Pappas, G.J., Sastry, S.: Conflict resolution for air traf-
fic management: A study in multiagent hybrid systems. Automatic
Control, IEEE Transactions on 43(4), 509–521 (1998)

	Introduction
	Overview of the ACAS X Modelling Approach
	Safe Region for an Immediate Pilot Response
	Safe Region for a Delayed Pilot Response
	Safe Region for Subsequent Advisories
	Reduction from 3D Dynamics to 2D Dynamics
	Discussion
	Comparison of Safety Theorems to ACAS X
	Related Work
	Conclusion and Future Work

