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Abstract. Hybrid dynamical systems describe the mixed discrete dy-
namics and continuous dynamics of cyber-physical systems such as air-
craft, cars, trains, and robots. To justify correctness of their safety-
critical controls for their physical models, differential dynamic logic (dL)
provides deductive specification and verification techniques implemented
in the theorem prover KeYmaera X. The logic dL is useful for proving,
e.g., that all runs of a hybrid dynamical system are safe ([α]ϕ), or that
there is a run of the hybrid dynamical system ultimately reaching the
desired goal (〈α〉ϕ). Combinations of dL’s operators naturally represent
safety, liveness, stability and other properties. Variations of dL serve ad-
ditional purposes. Differential refinement logic (dRL) adds an operator
α ≤ β expressing that hybrid system α refines hybrid system β, which
is useful, e.g., for relating concrete system implementations to their ab-
stract verification models. Just like dL, dRL is a logic closed under all
operators, which opens up systematic ways of simultaneously relating
systems and their properties, of reducing system properties to system
relations or, vice versa, reducing system relations to system properties.
Differential game logic (dGL) adds the ability of referring to winning
strategies of players in hybrid games, which is useful for establishing cor-
rectness properties of systems where the actions of different agents may
interfere. dL and its variations have been used in KeYmaera X for ver-
ifying ground robot obstacle avoidance, the Next-Generation Airborne
Collision Avoidance System ACAS X, and the kinematics of train con-
trol in the Federal Railroad Administration model with track terrain
influence and air pressure brake propagation.

Keywords: Differential dynamic logic · Differential refinement logic · Differen-
tial game logic · Hybrid systems · Hybrid games · Theorem proving

1 Introduction

Hybrid dynamical systems, or hybrid systems for short, describe systems with a
mixture of discrete dynamics and continuous dynamics and have many important
applications [3,4,13,20,24,25,29,34,35,53,55]. The most canonical applications
are those where the discrete dynamics of stepwise computation comes from com-
puter controllers while the continuous dynamics following continuous functions
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comes from physical motion, as, e.g., in cars, aircraft, trains, and robots. Other
applications of hybrid systems include biological systems [1, 19] and chemical
processes [12, 14]. Many of these applications are safety-critical, which explains
why a great deal of attention has been paid to the development of techniques
that help either find mistakes in controllers or verify that there are no mistakes
by establishing that the controllers are guaranteed to satisfy the desired correct-
ness properties in the hybrid dynamical systems model [4,20,30,38,47,55]. The
fact that dealing with the real world is always difficult explains why verification
of hybrid dynamical systems is challenging. However, the benefits of a more reli-
able system outweigh the verification cost whenever applications are important
enough because mistakes incur significant financial loss or even risk loss of life.

This paper reports on the use of logic for hybrid dynamical systems. Differen-
tial dynamic logic (dL) [36–38,41,42,45,47] is a logic for specifying and verifying
correctness properties of hybrid dynamical systems that is also implemented in
the hybrid systems theorem prover KeYmaera X [18] that is available on the
web1 and has been used in interesting applications, including aircraft collision
avoidance [21], ground robot obstacle avoidance [31], and railway control [22]. In
fact, dL started its whole family of logics with several useful refinements and vari-
ations. Differential refinement logic (dRL) [28] adds refinement relations between
hybrid systems as a first-class citizen logical operator. Differential game logic
(dGL) [43,46,47]. The main purposes of all three of these logics will be sketched
in this paper. Other extensions of dL are useful but beyond the scope of this
paper, such as hybrid-nominal differential dynamic logic (dHL) whose nominals
support hyper properties such as hybrid information flow [5], quantified differ-
ential dynamic logic (QdL) for distributed hybrid systems [40], and stochastic
differential dynamic logic (SdL) for stochastic hybrid systems [39].

A technical survey of classical differential dynamic logic appeared at LICS’12
[42], a high-level survey of its principles at IJCAR’16 [44]. Information on the
theory of dL can be found in a book [38]. A very readable comprehensive account
of dL and dGL is provided in a textbook [47].

2 Differential Dynamic Logic Ideas

Differential Dynamic Logic. dL [36–38,41,42,45,47] provides a programming
language for hybrid systems called hybrid programs, which functions like an ordi-
nary imperative programming language except that it supports nondeterminism
to reflect the inherent uncertainty of the behavior of the real world and, crucially,
supports differential equations to describe continuous dynamics. Besides the op-
erators of first-order logic of real arithmetic, dL provides modalities for hybrid
programs α, where the dL formula [α]ϕ means that all final states reachable by
hybrid program α satisfy formula ϕ (safety), while the formula 〈α〉ϕ means that
some final state reachable by hybrid program α satisfies formula ϕ (liveness). A
dL formula is valid iff it is true in all states. Typical patterns for safety properties

1 KeYmaera X is available as open-source at http://keymaeraX.org/
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are dL formulas of the form:
ψ → [α]φ (1)

which are akin to Hoare triples except generalized to hybrid systems. dL formula
(1) is valid iff in every state where the precondition formula ψ is true it is the case
that after all runs of hybrid program α postcondition formula φ holds. Typical
patterns for liveness properties are dL formulas of the form:

ψ → 〈α〉φ (2)

dL formula (2) is valid iff in every state where the precondition formula ψ is true
it is the case that there is a run of hybrid program α that leads to a state where
the postcondition formula φ holds. Stability properties nest more operators of
dL. For example, stability of the origin for the differential equation x′ = f(x) is
characterized by the dL formula [58]:

∀ε>0 ∃δ>0 ∀x (Uδ(x = 0)→ [x′ = f(x)]Uε(x = 0)) (3)

The δ-neighborhood Uδ(x = 0) of the set of states where formula x = 0 is true is
definable by the formula x2 < δ2. The dL formula (3) expresses stability by saying
that for every desired ε-neighborhood of the origin there is a δ-neighborhood of
the origin from which all solutions of the differential equation x′ = f(x) always
stay within the ε-neighborhood of the origin. Attractivity of the origin for the
differential equation x′ = f(x) is characterized by the dL formula [58]:

∃δ>0 ∀x (Uδ(x = 0)→ ∀ε>0 〈x′ = f(x)〉[x′ = f(x)]Uε(x = 0)) (4)

The dL formula (4) expresses that there is a δ-neighborhood of the origin from
which the differential equation eventually stays within every ε-neighborhood
of the origin forever. Asymptotic stability of the origin is characterized by the
conjunction of dL formulas (3) and (4) [58]. This illustrates how the fact that
dL is a proper logic closed under all operators can be used to characterize many
different properties of hybrid systems in a single logic. Other properties such as
controllability and reactivity can be stated as well [49].

While it is crucial that dL has a simple and elegant unambiguous mathemati-
cal semantics [36–38,41,42,45,47] such that all dL formulas have a clear meaning,
it is just as important that the logic dL comes with a proof calculus with which
the validity of dL formulas can be verified rigorously [36–38, 41, 42, 45, 47]. For
example, the dL calculus includes the axiom of nondeterministic choice:

[∪] [α ∪ β]P ↔ [α]P ∧ [β]P

Axiom [∪] states that all runs of a hybrid program α ∪ β that has a nonde-
terministic choice between hybrid program α and hybrid program β satisfy the
postcondition P if and only all runs of hybrid program α satisfy P and, inde-
pendently, all runs of hybrid program β satisfy P . This equivalence is true in
every state and can be used in every context. By using axiom [∪] to decompose
its left-hand side [α ∪ β]P to its corresponding right-hand side [α]P ∧ [β]P , all



6 André Platzer

hybrid programs in the remaining verification question get simpler and smaller.
Of course, dL’s axioms for differential equations are fundamental to its success.

The dL proof calculus is a sound and complete axiomatization of hybrid sys-
tems relative to either discrete dynamics [41] or to continuous dynamics [36,41].
For differential equation invariants, dL’s axioms give a sound and complete ax-
iomatization [51,52] with which all true arithmetic invariants of polynomial dif-
ferential equations can be proved in dL while all false ones can be disproved in dL.
Similar soundness and completeness results hold for invariants of switched sys-
tems [59]. Liveness properties and existence properties of differential equations
have corresponding proof principles derived in dL [57] and stability properties
have proof principles derived in dL [56, 58] using Lyapunov functions.

Differential Refinement Logic. Specifying and verifying correctness proper-
ties of hybrid systems is important and useful, and dL is a versatile logic with
a powerful proof calculus for the job. But some aspects of hybrid systems cor-
rectness go beyond what dL is naturally meant for. Differential refinement logic
(dRL) [28] adds a refinement operator where the dRL formula α ≤ β means that
hybrid system α refines hybrid system β. That is, dRL formula α ≤ β is true
in a state whenever all states reachable from that state by following the transi-
tions of α can also be reached by following the transitions of β. The refinement
operator is useful, e.g., as γ ≤ α to say that all runs of a concrete controller
implementation γ are also runs of the abstract control model α. This view also
gives rise to the box refinement rule, which proves that if precondition P is true,
then all runs of the concrete system γ satisfy postcondition Q (conclusion below
rule bar) by proving that the same implication for the abstract system α (left
premise) and proving that the concrete system γ refines the abstract system α
from all states satisfying the precondition P .

[≤]
P → [α]Q P → γ ≤ α

P → [γ]Q

The box refinement rule [≤] reduces one box property (conclusion) to another
[·] property (left premise) and a refinement property (right premise), which is
clever if the abstract system α is easier to verify than the concrete system γ.
Even if the abstract system α has more behavior than the concrete γ from initial
states satisfying P according to the second premise, its description and its proof
of safety may still be easier, e.g., when the abstract system α is more nonde-
terministic leaving out implementation detail that is important for performance
of the actual implementation but irrelevant to safety. A similar diamond refine-
ment rule handles refinements of 〈·〉 properties (conclusion and left premise) but
the converse refinement is required (right premise), because only if the hybrid
system α refining the system γ can reach Q can the system γ reach Q, too:

〈≤〉
P → 〈α〉Q P → α ≤ γ

P → 〈γ〉Q
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Just as dRL’s box and diamond refinement rules [≤],〈≤〉 reduce a system
property to a refinement property (second premise), the converse reduction is
possible in dRL as well. The sequential composition refinement rule (;) reduces a
refinement of a sequential composition (conclusion) to a refinement of the first
program (left premise) and a property of the first concrete system (right premise)
which in turn refers to a postcondition that is a refinement:

(;)
P → α1 ≤ α2 P → [α1](β1 ≤ β2)

P → (α1;β1) ≤ (α2;β2)

The (;) rule of dRL is particularly clever, exploiting the fact that dRL is a proper
logic closed under all operators. Unlike the following easier (derived) version

(;)s
P → α1 ≤ α2 β1 ≤ β2
P → (α1;β1) ≤ (α2;β2)

rule (;) maintains more knowledge (such as P and the effects of the actions of
hybrid system α1) than the simple structural refinement rule (;)s which loses all
information (even just assuming P would be unsound in the second premise).
Because the simple rule (;)s has to discard all assumptions, it rarely applies,
because hybrid systems often only refine each other given the contextual in-
formation of what happened previously and what assumed initially, which is
explicitly available in the second premise of the composition refinement rule (;).

Differential Game Logic. dGL generalizes dL to provide modalities referring
to the existence of winning strategies for hybrid games [43,46,47]. Hybrid games
α of dGL have actions where each decision is resolved by one of the two players
called Angel and Demon, respectively. In dL and dRL, the modality [α] refers
to all runs of hybrid system α. Hybrid games α do not have runs like systems
do, because the outcome of a game play depends on the decisions of the players
during the game α, where Angel decides all of her choices while Demon decides
all of his choices, both of which are resolved interactively during game play.

In dGL, the modality [α] refers to the existence of winning strategies for
Demon in hybrid game α. More precisely, the dGL formula [α]ϕ expresses that
there is a winning strategy for player Demon in the hybrid game α with which he
can resolve Demon’s decisions to reach any state in which formula ϕ is true, no
matter what counterstrategy Angel plays. The dGL formula 〈α〉ϕ expresses that
there is a winning strategy for player Angel in the hybrid game α with which
she resolve Angel’s decisions to reach any state in which formula ϕ is true, no
matter what counterstrategy Demon plays. This conservatively extends dL since
player Demon has no decisions in a hybrid system α where Angel resolves all
nondeterminism, because the dGL formula [α]ϕ then exactly means that Demon
has a strategy to achieve ϕ in the game α where Demon has no say and only
Angel gets to make any decisions, i.e., ϕ is true after all runs of α. Likewise the
dGL formula 〈α〉ϕ for a hybrid system α exactly means that Angel has a strategy
to achieve ϕ in a game where Angel gets to make all decisions (so she always
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helps) and Demon can never interfere, i.e., ϕ is true after at least one run of α.
The most important defining axiom of dGL is for the duality operator αd which
swaps the roles of the two players Angel and Demon:

〈d〉 〈αd〉P ↔ ¬〈α〉¬P

Since the [·] axiom (which is called the determinacy axiom in hybrid games) still
derives [α]P ↔ ¬〈α〉¬P for dGL, the duality

〈αd〉P ↔ [α]P (5)

derives, which implies that duality operators swap diamond modalities with box
modalities and vice versa, giving rise to the dynamic interactivity of hybrid
games. The easiest way to understand the added power of dGL uses the fact that
dualities make modalities flip from box to diamond and back via (5). The dL
modalities [α] and 〈α〉 refer to all or some runs of α. Since dGL dualities αd cause
modalities to flip, every part of a hybrid game may alternate between universal
and existential resolution of the remaining decisions in the subgame leading to
unbounded alternation [43].

Read as a dGL formula with hybrid game α, dGL formula (1) is valid iff from
every state where precondition ψ is true, Demon has a winning strategy in game
α to achieve φ. As a dGL formula, (2) is valid iff from every state satisfying ψ,
Angel has a winning strategy in game α to achieve φ. The interactive nature
of game play in dGL gives both (1) and (2) as dGL formulas with hybrid games
α a significantly refined pattern of interaction between the players than merely
referring to all runs as in dL formula (1), or to some run as in dL formula (2).

In some ways, dGL is a gentle and innocent generalization of dL, because
the addition of the duality operator ·d is the only syntactic change. However,
games call for an entirely new reading of the logical modalities and a different
style of semantics for the interactivity of game play that is absent from systems
that either have a run or don’t. This change causes new proving challenges. dL’s
Gödel generalization rule, G, for instance

G
P

[α]P

concludes that any formula P with a proof also holds after all runs of hybrid
program α. But this would be unsound for dGL, because even for trivial post-
conditions such as x2 ≥ 0, is it not clear whether Demon has a winning strategy
to achieve the obvious x2 ≥ 0 in the hybrid game α in case Angel has a winning
strategy to trick Demon into violating the rules of the hybrid game α, so Demon
never even successfully reaches a final state in which x2 ≥ 0 would then hold.
dGL still obeys the monotonicity rule saying that if Demon has a strategy in
hybrid game α to achieve P , then if P implies Q (premise), Demon also has a
strategy in the same game α to achieve Q:

M[·]
P → Q

[α]P → [α]Q
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Besides properties of competitive hybrid games, dGL is particularly useful to
prove correctness properties of hybrid systems in which some but not all actions
are under the system designer’s control. This includes systems with uncertainty
caused by actions of other agents or the environment that may interfere.

3 KeYmaera X Theorem Prover for Hybrid Systems

The dL and dGL proof calculi are implemented in the KeYmaera X theorem
prover2 [18], enabling users to specify and verify their hybrid systems and hybrid
games applications. KeYmaera X provides automatic, interactive, and semiau-
tomatic proofs, as well as proof search tactics and custom proofs [17], interfacing
with real arithmetic decision procedures implemented in Mathematica or Z3.

Unlike its predecessor KeYmaera [48], KeYmaera X [18] is a microkernel
prover with an exceedingly small trusted core, which leads to several design ad-
vantages [33]. The biggest advantage of the microkernel design of KeYmaera X
is that its uniform substitution proof calculus for dL [45] is simple and parsi-
monious to implement and also verified to be sound in both Isabelle/HOL and
Coq [9]. This design isolates potential soundness mistakes in KeYmaera X to the
specific source code implementation or the decision procedures it is calling for
real arithmetic (which have sound implementations [23, 50, 54] even if they are
not yet always competitive with unverified implementations).

4 Application Overview

Applications of dL include verified collision freedom in the Federal Aviation
Administration’s (FAA) Next-Generation Airborne Collision Avoidance System
ACAS X [21], verified ground robot obstacle avoidance in the presence of ac-
tuator disturbance and sensor uncertainty [31], and verified train separation of
train controllers for the kinematic model of the Federal Railroad Administration
(FRA) with roll and curvature resistance, track slope forces, and air pressure
brake force propagation [22]. Applications of dL beyond conventional mobile
cyber-physical systems include verified controllers for chemical reactions [12].
The logic dRL is useful for proving refinement relations of implementations to
abstract verification models. Applications of dRL include general proofs estab-
lishing relations of easily verified event-triggered models to easily implemented
time-triggered models [27]. Applications of dGL include verified collision freedom
despite intruder actions in the Next-Generation Airborne Collision Avoidance
System [15] as well as structured proof languages for hybrid systems and hybrid
games [8, 11]. Constructive versions of dGL [6] also have important applications

2 The KeYmaera X prover inherits its name from its predecessor KeYmaera [48] which
was based on the KeY prover [2] and explains the spelling. KeYmaera is a homophone
to Chimaera, the hybrid animal from ancient Greek mythology, which is a hybrid
mixture of multiple animals just like KeYmaera is a prover mixing discrete and
continuous mathematics and multiple theorem proving techniques.
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in setting the foundation for monitors for cyber-physical system controllers [11],
and constructive crossovers of dGL and dRL provide refinements between hybrid
games and hybrid systems proving that winning strategies reify as programs
winning the games [7].

5 Conclusions and Future Work

Differential dynamic logic and its siblings provide a solid logical foundation for
cyber-physical systems analysis and design. They have also played an important
role in applications, including leading to the discovery of 15 billion counterex-
amples in the Next-Generation Airborne Collision Avoidance System ACAS X.

While differential dynamic logic itself shines particularly at establishing cor-
rectness of hybrid systems algorithms themselves, the correctness of lower-level
implementations is no less important. Of course, low-level implementations are
doomed to be wrong if even the high-level control algorithms are incorrect. But
low-level implementations may still have mistakes once the high-level control
algorithms are correct. The dL line of work has three potential remedies all of
which deserve further refinements to increase practicality. One is the the use of
dRL with explicit proofs of refinement of verified abstract models to concrete
controllers inheriting the safety guarantees [27, 28]. Another is the use of the
dL-based ModelPlex technique for provably correct monitor synthesis to carry
safety guarantees about hybrid systems models over to cyber-physical system im-
plementations [32], which also forms the basis of a verified pipeline from verified
hybrid systems models to verified machine code [10]. Yet another are systematic
relations in constructive dGL of verified models to monitors and controllers [7,11].

Acknowledgment. I am much indebted to Katherine Kosaian, Jonathan Laurent,
Noah Abou El Wafa, and Dominique Méry for their valuable feedback.
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