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Abstract

We present VeriPhy, a verified pipeline which automatically
transforms verified high-level models of safety-critical cyber-
physical systems (CPSs) in differential dynamic logic (dL) to
verified controller executables. VeriPhy proves that all safety
results are preserved end-to-end as it bridges abstraction
gaps, including: i) the gap between mathematical reals in
physical models and machine arithmetic in the implemen-
tation, ii) the gap between real physics and its differential-
equation models, and iii) the gap between nondeterministic
controller models and machine code. VeriPhy reduces CPS
safety to the faithfulness of the physical environment, which
is checked at runtime by synthesized, verified monitors. We
use three provers in this effort: KeYmaera X, HOL4, and Is-
abelle/HOL. To minimize the trusted base, we cross-verify
KeYmaera X in Isabelle/HOL. We evaluate the resulting con-
troller and monitors on commodity robotics hardware.
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1 Introduction

Safety-critical cyber-physical systems (CPSs) such as self-
driving cars, trains, aircraft, and ground robots are increas-
ingly autonomous. Hence, providing strong safety guaran-
tees for their implementation is key.

Safety assurance for CPSs poses a unique challenge: Con-
trol software for CPSs is constrained by its physical environ-
ment (or plant). CPS safety emerges as a joint property of the
system itself, its operating environment, and assumptions we
make about the environment. For example, a ground robot
avoiding collisions requires not only correct control, but that
other agents behave reasonably and that the robot’s brakes
are operational. Assumptions about the environment are just
as safety-critical as the control logic.

Differential dynamic logic (dL) enables verifying high-level
CPS models featuring real arithmetic, nondeterminism, and
differential equations. Real arithmetic is crucial for physical
models, and abstracts away low-level details of controller
implementation, simplifying mathematical reasoning. Non-
determinism both abstracts away irrelevant details of control
algorithms and accounts for environmental uncertainty. Dif-
ferential equations are crucial to describing physics, e.g.,
continuous motion. To achieve safety guarantees at the exe-
cutable level, we must not only achieve safety at the source
level, but preserve safety as we soundly implement the ab-
stractions of a)real controller arithmetic b) nondeterministic
control and c¢) environment assumptions.

We introduce VeriPhy, an automated pipeline for gener-
ation of verified CPS controller executables from verified
models, which, as shown in Fig. 1:

e Begins with a dL model verified safe in KeYmaera X
[15] and an untrusted controller implementation.

e Extends the ModelPlex [32] feature of KeYmaera X to
generate a verified sandbox controller to provably de-
tect model violations in the environment and untrusted
controller, engaging a verified fallback controller.

e Generates CakeML [25, 45] source which implements
real arithmetic soundly with machine-word intervals
and is verified against a model of the environment.

e Generates verified executables with the CakeML com-
piler. Safety (in compliant environments) is preserved.
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Step 1
Prove model safety

Step 2
Synthesize safe sandbox

CPS Model (dL) Sandbox (dL) ]
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Step 3
Compile

Sandbox

¢ — [a*]y ¢ — [sandbox]WJ : “| (ARM/x64 exec.)
Soundness proof !
Safety proof Safety proof (Section4) Soundngss proof
(Section 2) (Section 3) ' v  (Section5)
Intervals sound Compilation
[ Sandbox safe J [Checker SOURE ] [ sound }
KeYmaera X Isabelle/HOL HOL4+CakeML

Figure 1. High assurance artifacts and steps in the VeriPhy verification pipeline

To resolve the high-level abstractions of the source model
in low-level machine code, VeriPhy exploits multiple theo-
rem provers: KeYmaera X is used to verify hybrid systems
models of CPS while HOL4 provides executable-level guar-
antees via CakeML. The foundations of KeYmaera X and
higher-order logic differ greatly; we bridge them to improve
trust. In Step 3, the semantic gap from dL’s real arithmetic
to machine-word interval arithmetic must also be bridged.

Supporting Pipeline Stages. A foundational bridge requires
formalizing both hybrid systems and machine-word arith-
metic. However, KeYmaera X knows only hybrid systems
and HOL4 lacks a hybrid systems formalization. We build the
bridge in Isabelle/HOL because it has a dL formalization [2],
can express word arithmetic, and has a similar logical foun-
dation to HOL4:

o We first extend KeYmaera X with a proof term exporter.

e We verify a dL proof term checker in Isabelle/HOL.

e We rewrite the proof checker definitions in HOL4 for
verified CakeML extraction [35] and, after adding a
trusted parser, compilation to a verified executable.

We prove that the checker only accepts proofs of true dL
formulas and that interval arithmetic semantics are sound
with respect to standard dL semantics, thus bridging dL with
higher-order logic and interval arithmetic. We exploit each
prover for its strengths: KeYmaera X for its hybrid systems
automation, HOL4 for its verified CakeML compiler, and
Isabelle/HOL for its dL formalization and word libraries.

Trusted Computing Base. The cost of using multiple provers
is increased trusted computing base. We summarize the
trusted base and why each component is either simple or
can be addressed in future work. We assume:

o The cores of HOL4 and Isabelle/HOL (~12K lines, well-
tested) are sound. Translations of definitions from
Isabelle/HOL to HOL4 must be accurate. Some are
nontrivial, e.g. we simulate Isabelle/HOL’s typeclasses
manually in HOL4. Trust in Isabelle/HOL is partial,
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e.g., a system safety proof is valid unless both the KeY-
maera X and Isabelle/HOL cores fail at once.

e The hand-written proof term parser is correct. The
parser is simple and the checker prints the proof con-
clusion, which can be inspected as a cross-check.

e Arithmetic solving is sound. Proof-producing solvers
[42] fit our proof term framework, but were not used
because making them scalable is an open problem.

e Untrusted controllers obey memory isolation with re-
spect to the sandbox controller. Verified isolation is an
established but active area of study [34].

The above list shows the components that must be trusted.
In return we gain the first automatic pipeline from verified
CPS models to verified controller executables.

2 Hybrid Programs

The mathematical essence of a CPS is a hybrid system [20]
combining discrete and continuous dynamics for control and
physics. We review the hybrid program (HP) language for
hybrid systems and differential dynamic logic (dL) [37, 38, 40]
for verifying HPs. Table 1 gives their syntax and meaning.

Table 1. Hybrid Programs (HPs)

Statement Meaning

a; p Sequentially composes f after o

aUp Executes either  or ff, nondeterministically
a* Repeats a zero or more times

x:=0 Assigns value of term 0 to x

X =% Assigns an arbitrary real value to x
x' = 0&Q Continuous evolution'
?0 Aborts run if formula Q is not true

Atomic hybrid programs (HPs) comprise deterministic
(x := 0) and nondeterministic (x := *) assignments, tests (?Q),

1A continuous evolution along the differential equation system x” = @ for
an arbitrary real duration within the region described by formula Q.
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and differential equations constrained to evolution domains
(x" = 0 & Q). Here, 0 is a real arithmetic term, possibly men-
tioning x, and Q a first-order real arithmetic formula. The
program connectives provide sequencing («; ), nondeter-
ministic choice (¢ U f8), and nondeterministic repetition (a*).
Familiar program constructs like if-then-else are derived:

if(Q)aelse f = 20,0 U?-0; 8 @

The formulas of dL are generated by the following gram-
mar (~ is a comparison operator, <,<,=,#,>,>, and 01,0,
are arithmetic expressions in +,—, - over the reals):

pi=—¢ldAYdVY I[Py
161~ 0 | Vx | Ix P | [a]) | (a)p

The standard logical connectives are as in classical first-
order logic (see semantics below). Modal formulas [a]¢ and
{a)¢ hold if all or some runs of the (possibly) nondeterminis-
tic hybrid program « end in states satisfying ¢, respectively.
We will often use partial correctness assertions ¢ — [a]y
stating that when precondition ¢ holds initially, all states
reached by running « satisfy the postcondition .

Formal Semantics. The semantics of dL [37, 38, 40] is a
Kripke semantics in which the states of the Kripke model
are the states of the hybrid system. Let R denote the set of
real numbers and V denote the set of variables. A state is a
map  : V — R assigning a real value w(x) to each variable
x € V. The set of all states is denoted by S. We write w |= ¢
if formula ¢ is true at state o (Def. 2). The real value of term 0
at state w is denoted w[[0]].

The semantics of HP « is expressed as a transition relation
between states (Def. 1). A differential equation x’ = 0 & Q
can transition between any pair of states connected by a
continuous flow ¢ that respects the differential equations
and evolution domain. We write ¢ |= x’ = 0 & Q to mean
that ¢ is a flow of the differential equation x’ = 6 contained
within the region Q, see [37, 38, 40] for full details.

Definition 1 (Transition semantics of hybrid programs).

The transition relation [[«]] specifies which states v are reach-

able from a state w by operations of a. It is defined as follows:
1. (w,v) € [x:=0]] iff v(x) = w[0]], and for all other-

variables z # x, v(z) = w(2)

. (w,v) € [[x:=x]] iff v(z) = w(z) for all variables z # x

Aw,v)e[PQlliffo=vandw = Q

. (w,v) € [[x" = 0 &Q]] iff exists solution ¢:[0,7r] = S

forr > 0 with ¢(0) = w, p(r) = v,and ¢ = x' =0&Q

[V f] = [[a]] U [A]

[a; BT = {(w,v) : (w0, p) € [[a]], (1, v) € [[B]], exists u}

[a*] = [a]l*, the transitive, reflexive closure of [[«]]

w

5.
6.
7.

Definition 2 (Interpretation of dL formulas). Truth of dL

formula ¢ in state w, written o |= ¢, is defined as follows:
1. wlE 6 ~ 6 iff 0[[0:]] ~ w[[6:]] for ~ € {=,<,<,>,>}
22.o0F Ay iffo = gandw = ¢, so on for -, V,—, &

619

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

3. w = ¥x ¢ iff v |= ¢ for all states v that agree with w
except for the value (in R) of x

4. o |= Ax ¢ iff v |= ¢ for some state v that agrees with w
except for the value (in R) of x

5. 0 |= [a]@ iff v |= ¢ for all v with (w,v) € [a]]

6. w |= (a)p iff v |= ¢ for some v with (w,v) € [a]]

We denote validity as E @, i.e., » |= ¢ for all states w.

Running Example. We introduce an abstract dL model of a
ground robot in a corridor, which we reduce throughout the
paper to a verified implementation running on commodity
robot hardware. The robot must avoid hitting walls and
other obstacles but can drive freely otherwise. We model the
robot with instantaneous control over its velocity v. This
abstraction is faithful as shown in Section 6 because our robot
drives slowly relative to its braking power. The controller
is time-triggered, i.e., the system delay between controller
runs is bounded by some ¢.

Formula (2) expresses safety of the model in a dL formula
¢ — [(ctrl; plant)*]y. It says all states satisfying assump-
tions ¢ lead to safe states (V) no matter how long the sys-
tem loop (ctrl; plant)” repeats. The program ctrl is a discrete
time-triggered controller, while the program plant describes
physical environment assumptions as a differential equation.

¢ _
d>0AV>20Ae>0- [(ctrl;plant)*]d =0 (2)

ctrl = (drive U stop); t:=0 (3)
drive=?d > ¢V, v:i=%, 20<0v <V (4)
stop=v:=0 (5)
plant={d' = —v, t' = 1&t < ¢} (6)

Initially, the robot is driving at a safe distance d > 0 from
the obstacles. We also know the system delay ¢ > 0 and max-
imum driving speed V > 0. Our safety condition d > 0 says
the robot does not drive through the obstacles. Its controller
(3) can either drive or stop (drive U stop), followed by setting
a timer ¢ := 0 which, by (6), wakes the robot controller again
after at most time e. When the test in (4) passes, it is safe to
keep driving for ¢ time, and the robot can choose any veloc-
ity v :=* up to at most the maximum velocity (70 < v < V).
In each case, the controller is allowed to stop the robot (5)
by setting velocity v to 0. Finally, the plant (6) changes the
distance according to the chosen velocity v via the differen-
tial equation d’ = —v. Time advances at the rate t’ = 1, for
any duration t < e. The program ctrl; plant can then repeat
and the controller can make its next decision. The validity
proof of formula (2) is elaborated next.

Proving Safety. The VeriPhy pipeline starts with a safety
proof in dL of the partial correctness assertion

¢ — [(ctrl; plant) ]y
in the hybrid systems theorem prover KeYmaera X [15].

(7)
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The proof of formula (7) is input as a proof script for dL in

the Bellerophon language [14]. Bellerophon scripts combine
high-level automated search procedures from the standard
library with manual uses of dL axioms [37, 38, 40]. Typi-
cal scripts focus on key system insights, such as invariants
for loops and differential equations, and manually assist-
ing automation with challenging sub-problems, like proving
statements about real arithmetic. For models like those in
this paper, proving is typically automatic once invariants
are provided. Interactive proofs from the web-based UI can
also be exported to Bellerophon [31], then passed to VeriPhy.
Step 1 of VeriPhy checks the Bellerophon script to establish
that the source model has been verified:
Definition 3 (Verified input). The HP a = (ctrl; plant)”
for time-triggered ctrl is verified (with ¢) if a dL formula
¢ — [a]y has been proven valid via a loop invariant ¢, i.e.,
¢ — ¢, 9 = Y and ¢ — [a]p have been proven valid.

3 ModelPlex Sandbox Synthesis

To enable abstraction in controller models, dL provides fea-
tures which make it ill-suited for direct execution, such as
nondeterminism. Nondeterministic controller models are a
natural fit, however, for sandboxing the results of an external
unverified controller by monitoring it for compliance with
the dL model and executing a safe deterministic fallback upon
compliance violation. Step 2 synthesizes from the system
safety proof and loop invariant ¢ such a sandbox controller en-
forcing runtime safety by sandboxing untrusted controllers.
Correct-by-construction monitors detect controller bugs and
environment model violations [32, Thms. 1+2], invoking ver-
ified fallback control or signaling an error, respectively.

The shape of the synthesized sandbox controller is shown
in Fig. 2. For clarity, we denote by X the vector of all variables
in the current program state before executing ctrl; plant, and
denote by ¥* the tentative next state. In all, the sandbox
controller performs the following tasks: It i) nondetermin-
istically assigns (X := =) arbitrary values to configuration
parameters and initial system state from external sensors in
(8), checking that they satisfy the precondition ¢; ii) checks
that the untrusted controller decision x* (9) satisfies the
monitor formula ctrIMon(¥,X*) in (10); iii) otherwise allows
only a safe fallback action (11); iv) actuates the decision ¥*
by assigning it to state ¥ (12); v) models sensing with nonde-
terministic assignments X¥* := * and monitors whether the
sensor values comply with the environment model in (14)
before storing them for the next iteration with ¥ := X¥* (15).

Lines (10)—(11) correspond to a nondeterministic if-then-
else (1) where the else branch in (11) is always allowed. This
flexibility becomes important in Section 4 when machine
arithmetic introduces uncertainty in the test of (10).

We first discuss the key ingredients of sandboxing: the con-
trol monitor ctrIMon (10) for detecting errors in untrusted
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sandbox =

X =% 2¢; read initial state (8)

(
X" = extCtrl(%); run external control 9)
( ?ctriIMon(¥,x%) check if safe action (10)
U#*:=fallback(¥));  or fallback control (1)
X:i=x" actuate action (12)
X = sense next state (13)
?plantMon (%, %); check safe env. (14)
Xi=x" store sensors (15)
)t repeat (16)

Figure 2. Sandbox controller overview

controllers and the plant monitor plantMon (14) for detect-
ing unexpected environment behavior. We then discuss their
incorporation into the verified sandbox controller (Fig. 2)
with safe fallback control (11).

3.1 Controller Monitor Formula

We use nondeterminism in dL controller models to abstract
away control algorithm details that are not safety-relevant
(e.g., optimizations to save power or ensure smooth travel).
Any such details are supplied by the untrusted controller,
which can be implemented freely, even in languages that
were not designed for verification. The untrusted controller
is only known to be safe, however, if it behaves consis-
tently with the verified controller model. ModelPlex [32]
synthesizes a real arithmetic formula ctrlIMon(X,X*) over
the model’s state variables to check control decisions for
compliance with the model. The condition ctrIMon(¥,x*) is
efficiently checked at runtime for concrete values ¥ of a start
state (e.g., distance sensed before the controller runs) and ¥*
of an end state (e.g., new speed, chosen by the controller).
We give a brief overview of monitor synthesis here, and
refer the reader to the literature [32] for full details on how
monitor formulas can be automatically synthesized from an
input model and verified. ModelPlex composes the safety
theorem ¢ — [(ctrl; plant)*]y with offline transformation
proofs [32, Lem 4-8], reducing system safety to online mon-
itor compliance. ModelPlex monitors the precondition ¢
when the system starts in state wy (check wy |= ¢ in equa-
tion (8) of the sandbox) and the controller monitor condi-
tion ctrlIMon(X,X*) at every observed transition (w, v) (check
ctrlMon(%,X*) in equation (10)). As a result, we get online
safety v |= ¢ up through the current state v by [32, Thm 2].

Definition 4 (Compliance). We say transition (w,v) com-
plies with ctrlIMon(X,X*) , written (w,v) |= ctrlMon(¥, %),
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iff ctriIMon(¥,X*) holds using the values of state w for plain
variables x and the values of v for variables x* in ¥*.

The equations in Fig. 3 illustrate the offline transformation
proof for synthesizing controller monitor conditions ctrlMon
to check controller implementation correctness. The proof
starts at the semantic statement (w, v) € [[(ctrl; plant)*]] and
obtains an arithmetic monitor condition ctrIMon(¥,%x*). Con-
dition ctrlIMon(¥,X*) also checks that the plant evolution
domain constraint Q holds so that the controller does not
itself cause a plant violation upon actuating the output x*.

(w,v) € [[(ctrl; plant)*]] Semantical condition

g by [32, Lem 4]
(w,v) = {(ctrl; plant)*)(¥ = ¥*) Logical criterion

) by [32, Lem 5]
(@,v) |= (ctrl; plant)(¥ = ¥*) thus v = ¢

i by [32, Lem 6]

(w,v) [ {ctr)(X = X" A Q)
by ModelPlex-generated dL proof, Lemma 1

(w,v) [ ctriMon(%,%7) by online monitoring

Figure 3. ModelPlex controller monitor synthesis [32]

Monitor Correctness Proof. ModelPlex’s synthesized con-
troller monitor conditions are correct by construction [32]
from the process in Fig. 3, which guarantees Lemma 1. The
controller monitor synthesis process of Fig. 3 starts by ob-
taining logical criterion {(ctrl; plant)*)(¥ = ¥*) from the
proved property ¢ — [(ctrl; plant)*]y. We denote by ¥ = ¥*
component-wise equality between vectors ¥ and X*.

Lemma 1 (Controller monitor correctness). The controller
monitor ctrlMon(¥,x™) relating control input ¥ to control out-
put X* guarantees that control output X* is permitted by the
verified control model ctrl on input ¥ and respects the plant
evolution domain constraint Q, i.e.:

E ctriMon(%,x") — (ctrl)}(X = ¥ A Q)
Lemma 1 is a crucial lemma in the sandbox safety proof.

Example. In our running example, the monitor checks the
bound variables d, v, t:

(ctr(¥ = X" A Q) =
<(?d > Vi vi=x%; 20<v<V U v:=0);
t= 0>(d+=d AV =oALt =t AL <€)

The offline monitor transformation proofs are implemented
as automation in KeYmaera X, outside the trusted core. On
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the above formula, this monitor formula is output:

ctrlMonE((ngVAOSv+SV) \ v+=0)
AO<eAV 20Nt =0Ad" =d

The monitor checks both possible paths through the con-
troller: the first disjunct captures the test conditions for driv-
ing with a new velocity v* (nondeterministic assignment
v := * followed by test 70 < v < V), whereas the second
disjunct captures the emergency stop (v := 0), so v* = 0.
The conditions further state that the constants are chosen
according to the model assumptions (0 < ¢ AV > 0), that
both paths reset their clocks t* = 0 to correctly measure
the duration until the next controller run, and that neither
controller path alters the distance measurement, so d* = d.

3.2 Plant Monitor Formula

ModelPlex also synthesizes a formula plantMon(¥,X*) which
holds only if the values ¥ and X¥* sensed in successive states
comply with the plant model. For example, the plant monitor
for our ground robot tests that sensed motion is consistent
with the maximum speed V.

Exact compliance is typically too restrictive: A differen-
tial equation specifies a single exact trajectory for each
point, from which realistic sensors will deviate slightly. How-
ever, safety proofs need not employ the exact trajectory, but
rather often employ invariant arguments which specify a
broader safety region. In our example, safety eschews the
exact trajectory d* = d — vt™ in favor of the looser invariant
d* > v(e — t7). It suffices for safety to construct plantMon
from the plant model’s evolution domain Q (e.g., t < ¢)
and the ODE invariants in the safety proof of Step 1 (e.g.,
d > v(e — t)). In the sandbox controller Fig. 2, the condition
plantMon(X,x*) checks that the observed evolution from
the sensed values ¥ of the previous iteration to the new val-
ues X* is within this relaxed safety region. If a plant monitor
fails, a violation raises an alarm, upon which best-effort fall-
back control is typically done. Unlike in the ctrl monitor
case, however, fallback controller safety cannot be guaran-
teed when all of the physical assumptions are violated.

Lemma 2 (Plant monitor correctness). Let (ctrl; plant)* be
verified with ¢, and let ctrlIMon(X,X*) be a correct controller
monitor according to Lemma 1. Then, loop invariant ¢ is pre-
served when the plant monitor plantMon(X,X*) is satisfied.

E ctrlMon(¥,x%) — [?plantMon(X,%")]¢

3.3 Fallback Control

Unsafe control choices are detected by the controller monitor
and replaced with provably safe fallback control choices. Any
controller that satisfies the controller monitor can be used
for safe fallback according to Lemma 3. Concretely, we take
the verified fallback from the controller ctrl, e.g., v := 0;¢:=0
for our ground robot.
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Lemma 3 (Fallback correctness). Let program (ctrl; plant)*
be verified with ¢ and let ctrlIMon(¥,X") be a controller mon-
itor per Lemma 1. A fallback controller is correct if all runs
starting in states satisfying the loop invariant ¢ comply with
the controller monitor ctrlIMon(¥,x"):

E @ — [x¥" :=fallback(X)]ctrIMon(X,X")

3.4 Provably Safe Sandboxing

Theorem 4 says safety results transfer: from the theorem
¢ — [(ctrl; plant)*]y for program (ctrl; plant)*, we obtain
safety of the synthesized sandbox.

Theorem 4 (Sandbox safety). Let program (ctrl; plant)” be
verified. Assume a correct controller monitor, correct plant
monitor, and correct fallback. Then all runs of the sandbox
program (from Fig. 2) starting in ¢ (from Def. 3) are safe ():

E ¢ — [sandbox]y

Proof. By dL proof from Lemma 1, Lemma 2, and Lemma 3.
m}

Running Example. The provable dL formula in Fig. 4 illus-
trates the controller and plant monitor conditions of our
running example embedded into their sandbox.

see (2):d>0AV 2>20Ae>0
E—) [V::*; =% d:i=x%; =%
?2d>0AV>0Ae >0
( tT =% vt =% dt =]
( ?ctriMon(d,t,v,d*,t*,0")
Utt:=0; v":=0);

/] X:=x
/17?4
/] ¥ :=extCtrl

// ¥t :=fallback

t:=t" vi=0"; /] ®¥:=x
d+:=>k; t+::>k; //f*’::*
?(0St+S£ Adt>u(e - t*)); // ?plantMon(%,x")
d=d*; t:=t* /] =%
)]y
L
see(2): d>0

Figure 4. Sandbox of a velocity-controlled ground robot

Truth of the monitor formula implies runtime safety of
the CPS, but the monitor formulas and sandboxes are hard
to execute until we concretely implement the arithmetic and
nondeterministic approximations contained therein.

4 Interval Word Arithmetic Translation

Having shown safety of a sandbox controller in dL, we turn
our attention toward correct compilation, the first step of
which is to formally justify implementing real numbers with
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interval arithmetic over machine words. We formalize both
real arithmetic and interval arithmetic semantics for dL (in
the style of Section 2) and show a soundness theorem: any
formula which holds in the interval semantics holds in the
real-number semantics. This is a theorem about the seman-
tics of dL, making it outside KeYmaera X’s purview. We now
transition to Isabelle/HOL to reason about dL semantically.

For a provably sound transition, we develop a bridge from
dL proofs in KeYmaera X to semantic truth in Isabelle/HOL,
removing KeYmaera X from the trusted base in the pro-
cess, then verify interval arithmetic soundness within Is-
abelle/HOL. The bridge builds on an existing formalization
of semantics, proof calculus, and soundness of dL [2].

4.1 Proof Export and Import

While using multiple provers in VeriPhy simplifies reason-
ing across domains (from hybrid systems to machine code),
it places additional correctness demands: i) shared defini-
tions must have the same semantics in all provers and ii) all
provers must be sound. We address both problems simulta-
neously by cross-verifying KeYmaera X into Isabelle/HOL.
We implemented proof-term export for KeYmaera X and a
verified proof-term checker in Isabelle/HOL.

The proof checker uses a deep embedding of dL [40] in
Isabelle/HOL. We extend a previous [2] soundness proof for
the core dL calculus theory [40] with more mature formal-
izations of features needed for practical proofs, such as non-
deterministic assignments, systems of differential equations,
variable renaming, and sequent calculus. These extensions
are tied together by a proof-checking function formalized
in Isabelle/HOL which takes a KeYmaera X proof term and
returns the theorem proved by it, if any:

pteval : pt — rule option

The result is a KeYmaera X proof state, i.e. an arbitrary de-
rived rule. Proven dL formulas are rules with no premisses.

Theorem 5 (Proof-checker soundness). If all real arithmetic
subgoals are valid and the proof checker accepts the proof term,
the output derived rule is sound, i.e.:

arith_valid pt A pteval pt = Some rule — sound(rule)

This assumes all arithmetic goals in the proof are true.
They are decidable, but expensive to check in practice. Veri-
fied real arithmetic proving is an active research area in its
own right [19, 33, 42], which we leave as future work.

KeYmaera X is actively developed, so our goal is not to
support all proofs. Our checker supports all sandbox safety
proofs in this paper, on the scale of ~200,000 proof steps.

Tests with shorter proofs indicate these would take days
to check in Isabelle/HOL. We generate an executable checker
instead, currently hand-translated to HOL4 for extraction
because its verified CakeML extractor [35] is mature, while
Isabelle/HOL’s [21] cannot yet target machine code. Com-
bined with a trusted parser, it rechecks KeYmaera X proofs
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quickly (e.g., 6.5s for our example). In all, our extensions
to the dL soundness proof are ~7,000 lines of Isabelle/HOL
proof based on 15,000 for the initial proof.

4.2 Interval Arithmetic Translation

We have soundly transitioned from proofs of system safety
in KeYmaera X to the truth of system safety according to
the semantics of dL in Isabelle/HOL. The standard semantics
of dL feature arithmetic on real numbers, which are crucial
for physics but ill-suited to efficient execution. Next, we
soundly approximate the real semantics with a computable
32-bit integer interval arithmetic semantics, enabling effi-
cient sandbox execution. Here, we present our translation
to interval arithmetic and prove it sound in Isabelle/HOL.

The major design choice here is arithmetic representation.
We wish to keep compilation simple, support a wide variety
of hardware, and keep the arithmetic soundness proof sim-
ple. We chose fixed-precision integer (interval) arithmetic
because it is widely used in embedded software for its pre-
dictability and is universally supported by hardware and
compilers. In Section 6, we show that limited precision was
not an issue on our hardware platform, because physics lim-
its the range and precision of sensor values.

Semantics. The transition to interval arithmetic does not
require transforming the program source; we merely assign
a new semantics to the existing constructs of dL. Represen-
tative cases of the term, formula, and program semantics
are in Fig. 5. We write wy, vy for interval states assigning to
each variable x an interval [I,u] of 32-bit machine words for
lower and upper bounds on the (real number) value of x, re-
spectively. Machine words are interpreted as signed integers
in standard two’s-complement format, excepting sentinel
values for negative (co},) and positive (co,) infinity.

We write w;[(0)] : [R,R] for the value of term @ in the
interval state wy, which is a closed interval in the extended
reals. Likewise, we write (wy,vy) € [(«)] when interval state
wy can reach vy upon running HP «. Because interval arith-
metic is conservative, the resulting formula semantics is
three-valued: we write wr[(¢p)] = T when ¢ is definitely true
in interval state wy, L when it is definitely false, or U when
it is unknown. Arithmetic operations augmented with over-
flow checks are written with a subscript ,, and trunc(w)
returns positive or negative infinity when w is out of range.

We implement bounds checking by sign-extending to 64-
bit words, where our operations on 32-bit values are guaran-
teed not to overflow, and then checking the result. This is
done, e.g., in +,, and +,,, (casts between 32- and 64-bit words
are omitted for brevity). Rounding modes differ in handling
of infinite inputs, e.g., oo}, + 007, is indeterminate, bounded
below only by oo, and bounded above only by co,.

In three-valued semantics, inequalities <,,, <,, have the
truth value U (unknown) when the intervals for both sides
of an inequality overlap. For example, x <,, x +,, y could be
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trunc(w) = max(co,,, min(co},, w))

wiHwy = if max(wi, w;) € {00],,007,} then max(w;,w;)
else trunc(w; + ws)

wiFwwy = if min(wy,w;) € {ootv,oo;,} then min(wy,w;)
else trunc(w; + wy)

wr[(0y + 02)] = [LiFwlz,urtyuz] where wr[(0;)] = [1iu;]

if wr[(6;)] = (l;,u;) and uy < Iy

if wr[(0:)] = (li,u;) and Iy > u,

U otherwise

T
wr[(0:1<02)] 1
(wr1,vr) € [(x :=0)] iff vi = wr except vi(x) = wr[(0)]
(wr,v1) € [(?Q)]  iffor=viand 0f[(Q)] =T
(or,v1) € [( U B)] iff (w1, v1) € [(@)] or (wr,vr) € [(B)]

~—

Figure 5. Interval arithmetic for executable dL, 3-valued
truth tables (true T, false L, unknown U)

either true or false in the state v; = {x — [1,2],y — [0,1]},
so conservatively is U. In contrast, x <,, x +,, y is T.

Relating Real and Interval Semantics. We now formalize
our notion of correctness: the interval semantics is sound
with respect to real-number semantics if all word intervals
contain their corresponding real numbers. Formally, we de-
fine a notation v € [(v7)] saying the values of all variables in
interval state v; contain their correspondents in real-number
state v. We define the notation r € [(w;, w, )] likewise when
the real number r is in the interval [w;, w,]:

. wr Wr
rel(w,w,)iffwy <randw, >r

o € [(p] iff ¥x € V w(x) € [(wr(x))]

To simplify the proof structure, the definition is decom-
wr wr
posed into one-sided safe bounds w < r and w > r saying

word w is a lower or upper bound for real r, respectively:
wroo, wr ,
w < riffw=r"forsomer’ <r
wroo. wr ,
w2 riff w=r"forsomer’ >r

The inexact bounds are defined with exact bounds w = r
saying word w exactly represents real r. Here, w2r is the
standard injection of two’s-complement words into reals:

cof, Z riff r > w2r(co?,)
0o, Zriffr < w2r(co,)

w = w2r(w) otherwise
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Soundness. We use the above definitions to state and prove
soundness theorems that conservatively relate the interval
semantics to the real semantics.

Theorem 6 (Soundness for terms). Interval valuations of
terms contain their real valuations. That is, if 0[[0]] = r and
€ [(wy)] thenr € wi[(09)].

Proof. By induction on 6. We examine the representative
case 8 = 0; + 6;. The case reduces to qualitative correct-
ness of rounding modes: upward-rounding operations pre-
serve upper bounds and downward-rounding operations
preserve lower bounds. We prove these properties ourselves
as they are not provided by existing Isabelle/HOL arithmetic

wr wr
libraries [46]. For example, we prove: If w; > r; and wp > 1y

then wy+,,wy g r1 + rz. The proof is by cases, following the
structure of the definition of w; +,,w,. When bound checks
detect overflow, they soundly return infinities. When w; and
wy are both finite and bounds checks pass, it suffices to show
that the casts are sound, which they are. O

Theorem 7 (Soundness for formulas). If the interval seman-
tics of a formula is true or false, the real semantics agree.

o il = T and o € [(@y)] then o = ¢,

e [forl@) = L andw € [(or)] then o |« ¢.
o Ifwr[(¢)] = U we make no claim.

Proof. By induction on fact w; € [(¢)], appealing to The-
orem 6. We show the representative case ¢ = (0; < 0,).
Comparisons §; < 6, bridge terms to formulas. For sound-
ness, we conservatively compare the upper bound of 6; with
the lower bound of 8,, and comparison of overlapping inter-

vals returns undefined (U). Stated formally: If w; ‘g ry and

wr
wy < rp and wy <, wy then ry < ry. The proof is direct, by
wr T

wr
the definitions of <,>,=, and <,,. O

Theorem 8 (Soundness for programs). If (wr,vr) € [(«@)] and
w € [(wy)], then there exists v € [(vi)] where (w,v) € [«]].

Proof. By induction on programs «, using Theorem?7. O

Together, these show that all program behaviors accepted
by the sandbox program in interval semantics correspond to
behavior in the real semantics, which is safe by Theorem 4:

Corollary 9 (Sandbox soundness). If (ctrl; plant)*is verified
and sensing is sound (v € [(wr)]) and the sandbox implemen-
tation transitions (wr[(¢)] = T and (w1, vy) € [(@)]), then there
is a real state v underlying the final interval state (v € [(v1)])
which is safe, i.e, v |= .

Proof. By sensing soundness and Theorem 7, w |= . By The-
orem 4, since (ctrl; plant)”is verified then ¢ — [sandbox]y
is valid. By Theorem 8, (w,v) € [[«]] for some v € [(v)]. By
the above implication, v |= . O
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Now the sandbox is executable at a high level and still
safe. Next, we will soundly implement the executable interval
semantics at the machine level.

5 Sandbox Implementation in CakeML

By Corollary 9, we may now understand the sandbox HP
from Fig. 2 using the interval semantics. This allows us to im-
plement the monitoring checks (10) and (14) using machine
arithmetic. However, the sandbox still contains high-level
abstract constructs. Nondeterministic assignments are used
to represent sensing in (8) and (13) and external control in (9).
Sound implementation of external control (9) and actuation
(12) are still expressed abstractly. Nondeterminism must be
resolved also in choosing between external (10) and fallback
(11) control, and in choosing the sandbox loop duration.

In this section, we explain how the sandbox is imple-
mented as a CakeML program (Section 5.1). We resolve the
aforementioned sources of nondeterminism, external con-
troller calls, and actuators all with CakeML’s support for
foreign function interfaces (FFIs). The resulting program is
then compiled down to machine code (ARMv6, x64, etc.)
using the verified CakeML compiler [45].

By employing the verified CakeML compiler, we know that
the compiled machine code soundly implements CakeML
source programs. It remains to show (Section 5.3) that our
CakeML program soundly implements the sandbox. This
verification step is made easier because CakeML is itself a
high-level programming language with an accompanying
suite of verification tools [16, 35]. The CakeML program,
however, senses and actuates in the real world, so its sound-
ness relies on assumptions about the correctness of sensor
and actuator FFIs (Section 5.2).

5.1 CakeML Sandbox

We first explain how we implement nondeterminism and
external interaction. The following pseudocode snippet il-
lustrates the sandbox loop implementation. Corresponding
lines from Fig. 2 are indicated on the right.

fun cmlSandboxBody state =
if not (stop ()) then

state.ctrl®:= extCtrl state; 9)
state.ctrl := if intervalSem ctrlMon state=T
then state.ctrl™ (10)
else fallback state; (11)
actuate state.ctrl; (12)
state.sensors®:= sense (); (13)
if intervalSem plantMon state = T then (14)
Runtime.fullGC ();
state.sensors := state.sensors?; (15)
cmlSandboxBody state (16)

else violation "Plant Violation"
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The tail-recursive function cmlSandboxBody keeps track of
a CakeML representation of the current state (state). We
use record-update notation for state, closely following the
assignments in Fig. 2. Loop termination is decided by the
stop FFI wrapper. The stop wrapper itself makes an FFI call
to external code (ffiStop) which decides whether to stop
the loop, e.g., upon user request or battery depletion.

Nondeterministic assignments for external control and
actuation are implemented with the extCtrl and sense FFI
wrappers which control and sense via external drivers. From
the current state variable vector ¥, we single out the sensor
variables (state. sensors), actuated variables (state.ctrl),
and constants (state.consts); ¥* is treated likewise.

The actuate FFI wrapper executes the control decision
state.ctrl, taken from extCtrl when the controller mon-
itor ctrlMon is satisfied or the fallback otherwise.

The above nondeterminism came from the environment
and was thus resolved externally with FFIs. The nondeter-
ministic choice between (10) and (11), in contrast, simply
provides us freedom in controller implementation. We ex-
ploit this freedom when the ternary truth-value of ctrlMon
in the interval semantics (intervalSem) is unknown (U):
we are free to use the fallback (11) even when ctrlMon is
not definitely false (L), so we conservatively use it in the
unknown (U) case as well.

If the plant monitor fails, however, sandboxing cannot
guarantee safety. Here, cmlSandboxBody exits the control
loop by calling the violation function with an error mes-
sage. The function returns control to user code, which may
initiate (unverified) best-effort recovery measures in the case
of plant violations. For time-triggered controllers, the plant
monitor only holds when the system delay is within our
specified limit e. We minimize the risk of a delay violation by
garbage-collecting (Runtime. fullGC) after each cycle, mak-
ing runtimes predictable. The cost is negligible in practice
because each control cycle does minimal heap allocation.

The sandbox entry point cmlSandbox, elided here, simply
invokes cmlSandboxBody on the initial state after checking
initial conditions ¢. We have thus reduced implementation
of the sandbox to implementation of the FFIs.

5.2 CakeML FFIs

We now specify and implement the FFIs. FFIs bridge CakeML
to the external world: physical sensing/actuation and un-
trusted control. Thus, the crucial specification step is to
model external behavior in HOL4: We write es:ext for an
external state, a record capturing all external state and ef-
fects, current and future. The external state is taken as the
ground truth of the world, which all (e.g. sensing/actuation)
FFIs must read or change. This makes the notion of sens-
ing/actuation correctness precise. The 6 FFIs assumed by
VeriPhy are summarized in Table 2, along with their infor-
mal meanings. Of these, we take ffiSense and ffiStop as
our examples.
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Table 2. External functions and their intended meaning

External func. Intended Meaning

ffiConst Get the values of system constants
ffiSense Get the current sensor readings
ffiExtCtrl Get the next (untrusted) control decision
ffiActuate Actuate a control decision

ffiStop Check whether to run more control cycles
ffiViolation Exit control loop due to a fatal violation

FFI Model. Each FFI specification consults the external state
to determine the ground truth of the current state and effect
of external code. They each return a result r and a new
external state es when invoked safely (i.e. SOME(r,es’)) or
NONE if calling conventions were violated. For example, the
ffiSense calling convention expects one word per sensor
in the array bytes, then we specify that the values sensed by
ffiSense match the ground truth es.sensor_vals:
ffiSense bytes (es:ext) =

if LEN bytes = NSENSORS*WORD A

LEN es.sensor_vals = LEN bytes
then SOME (word_to_bytes es.sensor_vals,es)
else NONE

Unlike ffiSense, which must always return the current
sensor values, ffiStop has complete freedom to decide when
the loop should stop. This external nondeterminism is re-
solved by querying an oracle (es.stop_oracle):
ffiStop bytes (es:ext) =

if LEN bytes = 1

then SOME (query es.stop_oracle,es)

else NONE

When queried, the oracle returns a bit, with 1 indicating that
the sandbox loop should stop.

Neither ffiSense nor ffiStop modifies the state of the
external world, so the external state es is unchanged. The ex-
ternal state is modified, e.g., when ffiActuate sends control
values to actuators.

The full specification is ~#150 lines of HOL4, and formally
captures the assumed behavior of each FFI from Table 2.

FFI Stub Implementation. The end-user must provide ex-

ternal FFI implementations. Here, we implement ffiSense

by filling a VeriPhy-generated C stub with calls to application-

specific drivers. Per the specification, ffiSense populates

sensor_vals with the actual sensor values:

void ffiSense(int32_t *sensor_vals, long nSensors) {
sensor_vals[@] = distanceDriver(); // return d
senser_vals[1] = currentTime(); // return t

}

CakeML FFI Wrapper. The CakeML sandbox program ac-
cesses the FFIs through CakeML wrapper functions. For ex-
ample, the sense function wraps the ffiSense FFI:
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fun sense () =

let val sensorArr = Word8Array.array (NSENSORS*WORD) @
val () = #(ffiSense) sensorArr

in arr_to_list sensorArr end

The function first allocates a byte array sensorArr with
one word per sensor value. It then invokes ffiSense using
CakeML’s FFI call syntax #(ffiSense). Once sensorArr
is populated with real sensor values, sense returns them
reformatted as a list.

The remaining FFIs are modeled and implemented sim-
ilarly to the representative examples shown above, with
ffiCtrl and ffiActuate also having their own oracles to
model external control and actuation, respectively.

5.3 Verifying the CakeML Sandbox

Next, we verify the CakeML program cmlSandbox, assuming
that the FFIs behave according to our FFI model. The main
verification work is carried out with CakeML’s Characteris-
tic Formulae (CF) framework [16], which allows reasoning
about the FFIs with separation logic-style assertions. As with
interval arithmetic soundness, our results are generic across
all sandbox instances.

We write [{w}]] for a CakeML state containing an external
state es:ext and a runtime store. We write ( [w]], [{v}]) €
[{cmlSandbox}] to mean that executing the CakeML sand-
box (cmlSandbox) from the initial CakeML state [{w]] termi-
nates with the CakeML state [{v]], see [16] for formal details.
The states implicitly agree with cmlSandbox as to which
variables are sensors/actuators, etc. For any CakeML state
[w]], the corresponding interval state [(w)] represents each
value [{w}](x) = w exactly by a point-interval [w, w], which
implies that sensing is exact. Sensor uncertainty could in
principle be encoded with non-point intervals.

Theorem 10 (CakeML sandbox correctness). For any ini-
tial CakeML state [{w}], assuming that its stop oracle even-
tually stops the loop (by returning the bit 1 when queried),
then we have a CakeML state [{v}] such that ([{a)}], [{v}]) €
[{cmlSandbox}]. In addition,

1. If [{w)] violates initial condition ¢, then cmlSandbox
leaves the initial CakeML state unchanged: [{w}] = [{v}].

2. Otherwise, either the stop oracle of [{v}]] stopped the
loop when queried and ([(w)], [(v)]) € [(sandbox)], or

3. There exists [{u}] where ([(w)], [(11)]) € [(sandbox)] and
[{v}] was obtained by actuating (12) in [{u}] where (after
sensing) intervalSem raises a plantMon (14) violation.

We assume that the stop oracle eventually stops the loop
because real systems do not run forever. Under this assump-
tion, soundness is verified simply by induction on execution
traces. The violation in Case 3 of Theorem 10 is raised con-
servatively when plantMon has an unknown truth value (U),
analogously to the control monitor ctr1Mon. The violation is
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guaranteed to be raised when plantMon first fails, ensuring
early detection of any model deviations.

Using CakeML’s compiler correctness theorem [45], we
extend Theorem 10 to the compiled, machine code imple-
mentation of cmlSandbox. We write CML(cmlSandbox) for
the result of running the CakeML compiler on cmlSandbox,
{ICML(cm1Sandbox)|} for its (machine code) semantics, and
accordingly {lw|} for a machine-level program state.

Theorem 11 (Sandbox machine code correctness). Under
the standard CakeML compiler correctness assumptions [45], let
{lwl} be an initial machine state whose stop oracle eventually
stops the loop. Then we have a machine state {|v|} such that
(lolh, v}) € ficML (cmISandbox)}, and {lel) {Iv} satisfy one
of the three cases listed in the conclusion of Theorem 10. The
machine code may also exit with an out-of-memory error if
the CakeML runtime exhausts its heap or stack.

As a corollary, we have the following end-to-end chain of
correctness guarantees for VeriPhy:

Corollary 12 (End-to-end implementation guarantees). Un-
der the assumptions of Theorem 11, assume further that Case
2 of the theorem occurs and the CakeML runtime does not run
out of memory. Let (ctrl; plant)” be verified, external interac-
tion be sound, then there is a real state v underlying state {|v|}
which is safe, i.e., v |= .

Proof. By composing Corollary 9 with Case 2 of Theorem 11.
Here soundness of external interactions consists of sensing
soundness per Corollary 9 and correctness of FFI with re-
spect to the external state model and the CakeML compiler
correctness assumptions [45]. O

6 Experimental Evaluation

The pipeline has successfully synthesized sandboxes for our
velocity-controlled robot example, a train safety controller
[41], and acceleration-controlled motion [43]. Our proofs
guarantee soundness, so sandbox controllers execute only
provably safe control choices. We experimentally evaluate
operational suitability of the velocity-controlled robot, show-
ing that sandboxing does not make the controller overly
conservative. We see that the controllers and machine arith-
metic are fast and precise enough in practice and that moni-
tors alert the user if modeling simplifications affect safety,
but do not raise excessive false alarms. Since monitors de-
tect model violations, the absence of excessive alarms also
helps validate the input model. We run our robot example
on commodity robot hardware with several controllers. This
common platform minimizes hardware cost while our mul-
tiple controls allow testing the approach’s generality. We
augment the experiments with simulations showing how the
sandbox responds to non-compliant environments.

Hardware Platform and Calibration. We use a GoPiGo3
Raspberry Pi-based robot. It is equipped with two separately
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controlled motors and a laser distance sensor with 25° field-
of-view and typical indoor measurement range on white
background of 200 cm with ~94% obstacle detection rate. De-
pending on operating temperature and voltage, the distance
measurements are off by at most +3 cm. The motors take
speed commands in the range —25 <F to 25 <F, controlled
internally with a proportional-integral-derivative (PID) con-
troller. It has a stopping margin of about 2.5 cm from engag-
ing “brakes” by setting v = 0 until full stop from maximum
speed. The sensed distance incorporates this margin, closely
mimicking instantaneous stopping per our model.

Drivers. GoPiGo3 provides C drivers for the motors, but
only Python drivers for the distance sensor. Between sensing,
control, and actuation, the control cycle time is 180-220 ms. It
is dominated by distance sensor interaction through Python.

Experiment Setup. The robot is initially stationary, 75 cm
from an obstacle, then drives straight toward the obstacle
with user-defined constant speeds 10, 15, 20, 25 % (maximum
speed of the robot). Since the robot measures time in ms, we
measure speed in % and distance in ym. Thus the greatest
distance in the system, 75 cm, can be represented in 20 bits,
well within our 32-bit limit. We performed the experiment
with both stationary and moving obstacles. The robot stops
close to a stationary obstacle, with =3 cm safety margin to
account for sensor and actuator uncertainty. If the obstacle
moves away, the robot follows, stopping close to the obsta-
cle’s final position. If the obstacle moves closer, the robot
stops before reaching the obstacle.

We tested two implementations of the untrusted external
controller. Controller A follows a user-defined speed when
safe and otherwise stops. This is safe and thus does not
violate the monitor. Controller B first sets a user-defined
speed then spikes to maximum speed near the obstacle. This
is unsafe and violates the monitor, invoking fallback control.
Our experiments on both the real robot and a simulated plant
record distance, speed, and monitor violations vs. time.

Experiment Results. Fig. 6 plots distance over time in sim-
ulation for maximum speed V = 25F, system delay ¢ =
220 ms, initial distance 75 cm, with varying sensor distur-
bance and both passive and malicious obstacles. Fig. 7 plots
results on the real robot. Both figures show that monitors
correctly detect plant violations. Fallback is then engaged as
a safety best-effort, which ensured safety in simulation.

The robot engaged fallback at ~4.6 cm from the obstacle,
stopping at ~2.6 cm (due to the safety margin). Under small
disturbances, the plant monitor holds and safety is assured.
Malicious obstacles or dangerously high disturbances are
detected as plant violations, triggering fallback. We simu-
lated controller faults at d ~ 50 cm by issuing v = V = 255
continually. The fallback engages right before the faulty con-
troller would become unsafe (d < €V).
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distance [cm]

Controller A (correct)
Controller B (faulty)
Malicious obstacle
Small disturbance
Large disturbance

60

40

20
Cv

C? time [s]

Figure 6. Controller sandbox, simulated plant. Solid lines:
sandbox controller safe; fallback engaged if control violation
occurs. Dashed lines: plant violation, environment caused
collision. C%,C#,P¢,Cvindicate speed spike, control/plant
violations, and restoration of normal control, respectively.

distance [cm] —— Controller A (correct)

\ ‘ = Controller B (faulty) I
60 |- \ Approaching obstacle | |
\ — Robot follows obstacle
AN
40 |- A \ .
20 |- \ \ s
C/ \
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Figure 7. Controller sandbox, real robot: correct controller
approaching a stationary obstacle, faulty controller ap-
proaching a stationary obstacle, obstacle approaches robot,
and robot follows a moving obstacle. Ob+, Ob0, Ob- indicate
proceeding, stopped, and receding obstacles, respectively.

7 Related Work

CPS Verification. Differential dynamic logic [37, 38], as im-
plemented in KeYmaera X [15], has been successfully applied
in a number of case studies [39]. Soundness of its core calcu-
lus [40] has been cross-verified in Isabelle/HOL and Coq [2],
which this work extended to a verified proof-term checker
in Isabelle/HOL.

General-purpose logics have also been used for CPS proofs.
ROSCoq [1] and VeriDrone [27] allow CPS specification,
implementation, verification, and code generation in Coq.
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However, they do not synthesize and automatically verify
monitors nor is their machine code verified.

We provide greater automation: the user need only verify
the source model and can exploit KeYmaera X automation.
On the other hand, Coq provides ROSCoq and VeriDrone
with greater freedom in models and verified controllers,
which VeriPhy has only in the untrusted controller.

Hybrid model checking [8, 10, 13] typically has a large
trusted base and sacrifices expressiveness to increase automa-
tion, being restricted, e.g., to linear differential equations,
bounded-time safety, or bounded state-space verification.

Toolchains. High-Assurance SPIRAL [12] translates Model-
Plex monitors to x64 machine code. Its verification is not
end-to-end: because it only treats hybrid systems syntacti-
cally, it cannot verify across semantic gaps, e.g., in interval
arithmetic and compilation. Its optimizer employs features
such as SIMD instructions that would make verified com-
pilation especially challenging. Ivory [11] and Tower [36]
are used to ensure high-assurance embedded software is
memory safe, but do not verify the functional correctness of
cyber nor physical behavior.

Verified Compilation. We use the CakeML [45] verified
ML compiler and its associated verification tools [16, 35].
CakeML is higher-level than other languages such as Clight
with verified compilers such as floating-point CompCert [4].
This makes the verification of sandbox implementation in
CakeML against hybrid systems semantics painless. We chose
this over, e.g., translation validation with unverified compil-
ers [44] since translation validation can be brittle.

Lustre [17] is a CPS-centric language with a verified com-
piler, Vélus [7]. Writing and compiling a Lustre controller
provides no end-to-end guarantees because physical model-
ing and verification are left unanswered. It could be used as
a code generation target, but this would be a detour because
the Lustre language differs greatly from hybrid programs.

Machine Arithmetic Verification. Machine arithmetic cor-
rectness is a major VeriPhy component. We verify arithmetic
soundness foundationally. This is an active research area
with libraries available in HOL Light [18], Coq [3, 5, 9, 30],
Isabelle/HOL [46], etc. Of these, only PFF in Coq [9] pro-
vides the qualitative rounding correctness results we need,
so we prove them in Isabelle/HOL using the seL4 [24] ma-
chine word library. We chose Isabelle/HOL and HOL4 over
Coq because their combination of cutting-edge analysis li-
braries [23], mature formalization of dL [2], proof-producing
code extraction [35], and classical foundations positions
them well for our end-to-end pipeline. Static analysis of
arithmetic for hybrid systems has been studied [6, 26, 28],
but without foundational safety proofs for general dynamics.

B. Bohrer, Y. K. Tan, S. Mitsch, M. O. Myreen, and A. Platzer

8 Conclusions and Future Work

VeriPhy is the first automatic, verified pipeline from verified
CPS models to verified controller executables. High-level dL
proofs provide safe interaction between code and physics,
which we have transported to the implementation level.

We summarize the chain of proofs in Fig. 8: A verified dL
model is transformed to a verified sandbox featuring a syn-
thesized monitor. The sandbox is then soundly reinterpreted
over interval arithmetic and compiled by CakeML to, e.g.,
ARM or x64. So long as the executable does not report a
model violation, the system remains in a safe state.

vEY
i) by Section 3: Theorem 4

(w,v) € [[sandbox]]
| I —
ﬂ dL (KeYmaera X)

Real arithmetic,
nondeterministic

by Section 4: Theorem 8

Interval word arithmetic,
nondeterministic

(a)I, V[) € [(sandbox)]

L
n dL (Isabelle/HOL) by Section 5: Theorem 10

Interval word arithmetic,
deterministic

by CakeML compiler [45]

([{w}],[{v}]) € [{cmlSandbox}]
—

1 CakeML (HOL4)

({|w|}’ {|V|}) € {|CML(cm1Sandbox) |} Interval word arithmetic,
L

| machine-executable

ARM/x64

Figure 8. End-to-end proof chain for end-to-end result

To cross the wide gap between hybrid systems and exe-
cutable code, VeriPhy employs multiple tools, gaining conve-
nience at the cost of an enlarged trusted base. The VeriPhy
approach incorporates measures to ensure that the connec-
tions between tools are sound, which we wish to strengthen
in future work to further mitigate trusted base size. The cross-
verification of KeYmaera X into Isabelle/HOL can be made
more trustworthy by incorporating proof-producing arith-
metic solvers [19, 29, 33, 42]. The link between Isabelle/HOL
and HOL4 could be made more trustworthy by automatically
converting specifications with OpenTheory [22]. The treat-
ment of memory-management, while already trustworthy,
could be made even more suitable for real-time systems by
generating allocation-free code in the backend. With these
additions, we can maintain convenient end-to-end guaran-
tees from high-level models with even higher reliability.
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