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ABSTRACT
This paper reports on a course breaking with the myth that
cyber-physical systems are too challenging to be taught at
the undergraduate level. Cyber-physical systems (CPSs)
such as computer-controlled cars, airplanes or robots play an
increasingly crucial role in our daily lives. They are systems
that we bet our lives on, so they need to be safe. Getting
CPSs safe, however, is an intellectual challenge, because of
their intricate interactions of complex control software with
their physical behavior. Who can design these notoriously
challenging systems with the scrutiny that is required to
make sure they can be used safely? How can students, sci-
entists, and practitioners acquire the required background in
logic as well as in discrete and continuous mathematics and
control in a single course in a way that meets the demands
on rigor required in safe CPS design? This paper reports on
the experience with a new undergraduate course, Founda-
tions of Cyber-Physical Systems, that teaches students how
to design a correct CPS, identify required safety properties,
and justify that their designs meet these safety goals.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education

1. INTRODUCTION
Cyber-physical systems (CPSs) combine cyber (computa-

tion and communication) with physics (motion or process
control) and are prominent in, for example, aeronautics, au-
tomotive, and robotics industries and medical devices [1].
Despite the growing ubiquity of and reliance on software
in safety-critical systems, the authors are not aware of any
(undergraduate) course that provides students with the nec-
essary theoretical foundations for analyzing safety in cyber-
physical environments. This may stem from the fact that
teaching CPS-related topics is notoriously challenging. A
few students may have a strong background either in engi-
neering physical systems, or in some areas of formal meth-
ods, but almost never in both. A sharp educational gap has
been identified across the board at a workshop on CPS edu-
cation [5]. This brings up the question of how to best teach
the core aspects of CPS with the rigor that is required to
prepare students and professionals for the challenges that lie
ahead in enriching our world with safe and reliable cyber-
physical systems. Systems that we can bet our lives on.

In Fall 2013, we introduced a new undergraduate course,

Foundations of Cyber-Physical Systems (FCPS)1 [12], at Carnegie
Mellon University in which undergraduate students quickly
advance from learning the basic concepts underlying CPS to
being able to prove safety properties about complex CPS. A
shorter version of the course was then offered as a research
school at ENS Lyon and at University of Minho in 2014.

The primary insight behind the course design is that logical
scrutiny, formalization, and correctness proofs are critical
for CPS! Because CPSs are so easy to get wrong, these
logical aspects are an integral part of CPS design and critical
to the students’ understanding of the intricate complexities
of CPS. This paper advocates for a foundational approach
that tames some of the complexities of CPS by focusing on a
simple programming language to illustrate the core aspects
of CPS. This language is introduced gradually in layers that
the students master completely before moving on to the next
challenge, like in approaches for introductory programming
[6]. The attention is on the core elements of CPS hand-
in-hand with their reasoning principles, because abstraction
is a key factor for success in CPS and retrofitting safety
is not possible in CPS. Overall, the FCPS course realizes
computational thinking [13] for cyber-physical systems.

2. CPS EDUCATION OVERVIEW
How can we design a CPS course, which necessarily will

cover topics spanning multiple disciplines, for students who
likely will not have suitable background and prerequisites in
all related areas? Nearly every paper included in the 2013
CPS-Education Workshop (CPS-Ed) [5] asks and attempts
to address this question. The answer is not clear even at the
graduate level, but it is an especially crucial issue to address
for undergraduates. Some universities have gone so far as to
create CPS concentrations or majors which require students
to take years of coursework before getting into any core CPS
materials. Because students often do not have the benefit of
a breadth of prerequisites prior to taking a CPS course, it
is hard to cover and balance both theoretical and practical
approaches, as mentioned in several CPS-Ed papers [5].

The most common approach for teaching CPS is in a sim-
ulation environment, in which students can interact with
their CPSs and update designs by trial and error [5]. One
advantage of simulation is the ability to use an autograder,
which can allow for the possibility of a massive open online
course [4]. While students certainly have fun interacting
with a virtual world, the findings we present in our analysis
of lab submissions comparing across three offerings of the

1Materials for the Fall 2013 course offering can be found
online: http://symbolaris.com/course/fcps13.html

http://symbolaris.com/course/fcps13.html


course (see Section 6) and comments in our course evalua-
tions actually indicate that simulations, while pretty, are not
so helpful for ensuring correctness. With a physical environ-
ment, it is impossible to observe every scenario the system
must be designed to safely handle. Moreover, seeing bad
behavior only in a simulation may incentivize the student to
create a patch for that specific scenario, while still allowing
the root cause of the error to persist. Using trial and er-
ror to design CPS might still work in a controlled classroom
environment, but this is a dangerous methodology to teach
students in preparation for industry. Real software requires
that people frequently bet their lives on its safe functioning
in a wide range of circumstances.

In courses that cover background materials, theoretical
principles of cyber-physical systems, and still provide hands-
on practice, there is rarely any time leftover to properly
cover verification and safety analysis. Verification frequently
gets listed as future work in the CPS-Ed literature [5].

Even though teaching CPS is hard, getting it right is im-
perative as the reliance on software in safety-critical systems
continues to increase. One message was clear from every pa-
per in CPS-Ed [5]: we need to train the future generation of
scientists and practitioners to handle CPS correctly.

Unlike other courses, we teach CPS through the lens of
verification. The uniqueness of our “safety first” approach is
not surprising, as many people still consider safety verifica-
tion to be too hard for industry and too hard for undergrad-
uates. We have observed exactly the opposite. By formaliz-
ing the specifications and proving they are satisfied from the
very beginning, students gain an intimate understanding of
the complexities of their systems from day one. This allows
us to quickly advance to more challenging problems. We can
also get into the details of CPS with challenging labs and
course projects, rather than teaching a general appreciation
or seminar course, as are often found at the graduate level.

In addition to this overview of the state of CPS educa-
tion as a whole, we discuss courses based on two embedded
systems textbooks [8, 7]. These embedded systems design
courses focus primarily on system architecture or modeling
and simulation. These courses touch on verification topics
(e.g. specifications, model checking, reachability analysis)
conveying a sense of the importance of verification for CPS;
however, verification does not play an active role in the prac-
tical components of these courses. There are also plans for
a CPS undergraduate course with real-time emphasis [3].

3. FOUNDATIONS OF
CYBER-PHYSICAL SYSTEMS

The course Foundations of Cyber-Physical Systems (FCPS)
is a newly developed2 undergraduate course at CMU that
has been offered first in Fall 2013. It starts without as-
suming prior knowledge in logic but with just enough prior
exposure to differential equations that students have a min-
imal intuition for them. Students are also expected to have
succeeded in a first course in computer science and have
some background experience with mathematical proofs. The
course has been offered as an elective at CMU and attracted
students in their junior or senior year with a wide range of

2 The development of the undergraduate course has been
based on the experience with two prior instances of a cor-
responding course for PhD students that the second author
offered at CMU in 2009 and 2011.

majors, including computer science, electrical engineering,
robotics, mathematics, and network systems.

The first half of the course has been offered twice as a one
week research school: first at ENS Lyon for first and sec-
ond year master’s students in computer science, and then at
University of Minho for PhD students in computer science.

Learning Objectives.
Detailed learning objectives for the course design have

been reported at a workshop [12] before the course was of-
fered, and categorized with the goals of modeling/control,
computational thinking, and CPS skills. To sum up, the
most important learning objectives are that students:

• Understand the core principles behind CPS.
• Develop models and controls.
• Identify safety specifications and critical properties.
• Understand abstraction and system architectures.
• Learn how to design by invariant.
• Reason rigorously about CPS models.
• Verify CPS models of appropriate scale.
• Understand the semantics of a CPS model.
• Develop an intuition for operational effects.

Educational Benefits.
CPS topics provide a number of intrinsic advantages that

are beneficial for broader education:

1. Motivation. Given the significance of CPSs in a wide
range of practical applications and how much we trust
them with our lives, it is spectacularly easy to moti-
vate students, to get them excited about CPS, and to
fascinate them with the alluring subtle challenges that
CPSs provide. This is especially so since CPSs quickly
reach the limits of what is easy and obvious to under-
stand. It is straightforward to spark the student’s in-
terest with deceptively simple-looking dynamical sys-
tems that exhibit surprisingly subtle behavior. This
true motivation by the students has served them well
for the perseverance required in mastering the most
challenging aspects of the course.

2. Mathematical. CPSs provide a framework within
which vast mathematical skills can be acquired and
used right away. They provide a scientific playground
in which mathematical theories can be explored more
playfully and always with a concrete motivating criti-
cal problem in mind, rather than in isolation.

3. Logical. The stringent correctness requirements on
a CPS’s functionality make CPS an ideal vehicle to
convey how logic and reasoning help in making real
systems safer for everybody. In its current instances,
the course has also attracted a sizable student body
with no prior affinity to formal methods, not just those
with a prior background. A background quiz in the
first week of class revealed that most students did not
have a good grasp of basic logic when starting the
course. The level of mastery of logic has improved
significantly during the CPS course as demonstrated,
e.g., by the students’ performance on nontrivial proof
calculus questions on the final exam.

An indication that students are aware of these benefits
and appreciate them can be found in course evaluations:



“This course maxed out my cool-new-stuff-learned-
per-hour meter. [...] Addicting labs and assign-
ments. [...] It was very neat to see so many
concepts (both new to me and previously encoun-
tered) from so many different fields of study come
together to build this subject.”

Educational Challenges.
The most challenging aspects of CPS education have been

identified [12] with a consensus among CPS experts [5]:

1. Mathematical. The high demand for mathematical
sophistication cutting across numerous areas of math-
ematics, which are traditionally less seamlessly inte-
grated than they have to be for CPS;

2. Diverse. The diversity of backgrounds from people
interested in CPS, which reflects the large number of
disciplines which CPS builds upon and is related to;

3. Intellectual. The intellectual challenges of under-
standing and identifying the complex interactions that
different aspects of a CPS design have on its behavior;

4. Impact. The difficulties with making CPS designs
safe, which is still a grand challenge in research, but
whose current solutions must transition into widespread
practice regardless, as system designs need to be safe
today and not just patched after a problem has already
caused harm to people.

The FCPS course addresses these challenges as follows.
Challenge 1, which is dual to Benefit 2, is addressed by in-
troducing the mathematical background gradually alongside
the practical application challenges throughout the course,
with a focus on the most important guiding principles and
intuitions. Advantages have been identified in other courses
when students study the theoretical background in the con-
text of actual applications [2], which CPSs naturally provide.

Challenge 2 is mitigated by the interdisciplinary nature of
the course, which ensures that all students are more familiar
with some background area, but more challenged by another.
Some students have had prior exposure to logic, while most
did not. The level of prior exposure to differential equations
also varied more widely depending on the background.

Challenge 3 is simplified by the principles underlying the
course design. Continuous dynamics, discrete dynamics,
temporal effects, and adversarial dynamics are introduced
in succession in the course, for example, but integrate easily
into a single common concept for understanding CPSs [10].
It is significantly easier to first understand these dynamical
aspects separately and then understand how they interact,
which is in line with results from learning theory [2].

Challenge 4 is addressed as follows. The course design
follows the realization that it is difficult, maybe impossible,
to fully comprehend the subtleties and intricacies of CPS
designs without the help of a technique that tells right and
wrong designs apart. CPS designs can be flawed for very
subtle reasons. Without sufficient rigor in their analysis it
can be impossible to spot the flaws, and even more challeng-
ing to say for sure whether and why a design is no longer
faulty. Analytic results about CPSs, even in cases where
they only exist for parts of their operating conditions, help
the CPS expert gain confidence in their design.

4. COURSE APPROACH
The CPS programming language that the course uses comes

from differential dynamic logic (dL) [10, 11], a specification
and verification logic for hybrid systems. This logic and its
programming language are used in the course for expressing
CPS models and their desired correctness properties, and
for proving them using the proof calculus of dL. This calcu-
lus has separate simple proof rules for each of the operators,
which makes it possible to understand CPSs one aspect at a
time, rather than having to understand everything at once.

The following simple example shows how CPS programs
combine differential equations and discrete programs. This
program models the behavior of a bouncing ball:

{
{x’=v , v’=−g , x ≥ 0} ;
i f ( x = 0) {

v := −c∗v ;
}

}∗

The differential equation system models how the ball is
falling according to gravity. Its height x changes with veloc-
ity v, which, in turn, changes according to gravity g. The
additional evolution domain constraint x≥0 represents the
fact that the ball always stays above ground. The subse-
quent conditional statement tests if the ball is on the ground
(x=0) and then changes v to −c∗v by an assignment. This
models a bounce by changing the direction the ball is mov-
ing and decreasing the ball’s energy according to a damp-
ing factor c. The continuous and discrete operations of the
bouncing ball repeat, as indicated by the repetition ∗ at
the end. One simple property to prove about the bouncing
ball in dL is that x never exceeds its initial height. But it
takes a surprising amount of thought to identify all the sub-
tle assumptions that are required to even make this true.
For example, the ball should not initially be thrown up-
wards, so its initial velocity must be ≤0. But it must not be
thrown down too hard either, for then it would bounce back
up higher than before, like a dribbled basket ball. These
requirements, among others, quickly become evident when
students attempt to prove that the ball does not exceed its
initial height. Variations of the bouncing ball example are
ideal subjects for the first lectures, because everyone can re-
late intuitively but they still convey quickly how subtle the
interaction of discrete change and physics can become.

Even this simple system model already requires quite some
thought to get right. Logical reasoning, thus, needs to go
hand-in-hand with the system design and provides helpful
assurance that the system design does not have subtle bugs.

In order to give the students the opportunity to tackle
more interesting and more challenging system designs, this
course does not limit specification & verification in differ-
ential dynamic logic to pen-and-paper proofs on the theory
assignments. Rather, students interact with the implemen-
tation of dL in the theorem prover KeYmaera.

Course Format and Material.
The course features chalkboard lectures in which students

are encouraged to contribute to the active development of
all important concepts. Detailed lecture notes are released
for later reference and independent study by the students.
Lectures and concepts are listed in Appendix A. The lec-
tures are complemented by recitations with a direct involve-



ment of the students and a focus on the practical aspects of
KeYmaera as well as the study of examples.

Students continually practice and actively internalize the
material on biweekly written theory assignments and bi-
weekly modeling and verification labs of increasing concep-
tual complexity. They show mastery of the material in a
midterm and final exam and in a capstone project and term
paper at the end of the course. This allows students to learn
skills individually and subsequently intensify their combined
use in increasingly complex real-world applications [2].

The course material is augmented with short YouTube tu-
torial videos explaining how to prove properties in KeYmaera.
Interacting with a prover can challenge students in ways that
stretch their abilities and give them a deeper understanding
of complicated CPSs. In our experience, students often do
not realize the significance of all details in tutorials until they
experience that their proof is stuck without it. This is the
analogue of the well-studied phenomenon that active prob-
lem solving has a longer retention rate than topics merely
stated in lecture [2]. The videos enable the students to re-
watch user instruction as their understanding of CPS veri-
fication challenges matures over the course of the semester.
The students responded positively to the video tutorials in
the course evaluations.

The Role of Theorem Proving in CPS Education.
Using a theorem prover such as KeYmaera in an under-

graduate CPS course has advantages and disadvantages:

• More realistic models. A theorem prover makes
it possible for the students to work on system de-
signs whose complexity vastly exceeds their capability
of proving properties manually and, in fact, probably
exceeds the capability and diligence of most people.
This effect is partially due to the branching factor and
depth of the proof and partially due to the overwhelm-
ing complexities of the resulting arithmetic. In the lab
assignments, the students managed to verify extremely
challenging robot control systems that, until recently,
have been unsolved challenges in CPS verification [9].
• More rigorous proofs. Theorem provers do not ac-

cidentally let the user get away with hand-waving or
subtly flawed arguments in support of a system design
but require rigorous correctness proofs.
• Guidance in conducting proofs. The use of KeYmaera

has the beneficial effect of offering students more guid-
ance in how to conduct a proof. Rather than the blank
page syndrome where students do not know how to
begin a proof, KeYmaera helps students make some
progress by offering applicable proof rules and struc-
turing the proof for them.
• Learning curve. All verification tools have nontrivial

learning curves and KeYmaera is no exception. Tools
such as KeYmaera do, however, also guide the user
in their understanding of the material by making it
possible to learn how to prove a CPS by playing with
the proof rules that the prover offers. For this effect to
work, it is critical that KeYmaera only offers applicable
proof rules, although an even more narrow focus on the
most important proof rules might benefit the novice.
• Automation surprise and loss of control. Com-

pared to manual proofs, the automation in KeYmaera
bears a higher risk of making the user lose control over
what the proof is doing and how it works. It has hap-

pened that some students got carried away in the prov-
ing excitement in KeYmaera without paying attention
to the overall proof structure. Occasionally students
will try to take a shortcut around fully understanding
the property and proof that they are working on and
attempt random clicking. Once control of the proof
has been lost, some students realized too late that a
case distinction (that KeYmaera’s default proof strate-
gies may follow automatically) had the adverse effect
of branching into a huge number of cases. The right
approach would then have been to scrutinize whether
an assumption or invariant has been misplaced and
exercise branching control techniques.

The permanent improvements that KeYmaera is under-
going, including those inspired by the experience with the
FCPS course, will alleviate some of the concerns with the
learning curve of verification tools. Even without that, though,
we experience that the benefits of using KeYmaera in CPS
education by far outweigh the downsides. Students across
the board seem to have appreciated the opportunity for han-
dling challenging applications. Moreover, students have ap-
preciated the level of correctness that can be achieved for
these complicated systems through formalization and proofs.

5. LAB DESIGN
The complexity of the model, control, physics, and veri-

fication in the labs increase simultaneously over the course
of the semester. Each of the designed labs builds upon and
concretizes the concepts the students learn in the lectures
and in the theoretical assignments, a method which the stu-
dents appreciated in their evaluations:

“The structure of [the FCPS course] is good:
theory, then the intuition, then example.”
“I think actually finishing proofs of the labs was
really helpful. It was a great feeling to see it
work, and required a few tricks and a solid un-
derstanding of proof rules and proof strategies.”

In each lab, the students must design a controller for a
single robot that can interact with an unknown environ-
ment. The students are also required to design an appropri-
ate model for the continuous behavior that their controlled
robot would exhibit given the discrete control inputs. They
must decide on an appropriate model for the robot’s en-
vironment, including using nondeterminism to capture un-
known behaviors in the environment. And finally, the stu-
dents must formalize a safety property as a logical formula
and prove that their controller never violates it.

The labs are all related and build on each other, with the
ultimate goal that the students design and prove safety for a
robot that can avoid moving obstacles (inspired by [9]). We
give a brief description of these labs in Fig. 1, but believe
this is only one example of a series of labs that could teach
the same foundational elements of CPS and verification.

5.1 Beta Submissions
In order to ensure that students are on the right track,

they submit a betabot3 one week before the final deadline
for each of the labs. Similar to a beta release of a software
application, this betabot is not guaranteed to be error-free,
as the students have not yet produced a proof of correctness

3In the CMU full semester offering of the course only.



Lab 1: Charging Station

Lab 1. Students design a robot
to stop on a charging station.
If the robot overshoots, it hits
the wall - a safety violation; if
it stops short, it is inefficient.

Lab 2: Follow the Leader

Lab 2. Now their robot must
follow a leader along a straight
line. The leader may accelerate
or brake at any time. By design-
ing both event-driven and time-
triggered solutions, they learn
the difference between continu-
ous and discrete sensing.

Lab 3: Racetrack

Lab 3. Students make the huge
conceptual leap from straight-
line dynamics to dynamics on a
curve. Robots must drive on a
circular track and are required to
stop before reaching a stationary
obstacle on the track.

Labs 4&5: Static and
Dynamic Obstacles

Labs 4 & 5. Students de-
sign robots that can roam freely
in two dimensions, starting by
avoiding static obstacles in Lab
4, and then extending their solu-
tion to safely avoid dynamic ob-
stacles in Lab 5.

Figure 1: Visual representation of one example scenario for
each lab assignment. For each lab, students design a con-
troller and physical model, then give a proof that the safety
specifications are satisfied for all such environments.

for it. This gives the instructors a chance to return notes
and generate a simulation (often of an unsafe behavior) of
the betabot submissions.

It is impossible to prove safety for a system which is not
in fact safe. And in CPS, it’s especially challenging to write
a controller that is correct due to the many lasting physical
consequences of a single, seemingly simple, control choice.
By giving this quick feedback to alert students to possible
problem areas in their programs without giving them solu-
tions outright, we remind them that difficulties in proving a
property may be because the property is actually false. From
the course evaluations, many students found the double sub-
mission policy to be helpful for solving the challenging labs:

“[Beta] tests before labs are crucial! I would have
failed the labs otherwise.”

Other students, however, have also indicated that, if some-
thing needs to be cut from the course, it should be the sim-
ulations. This is a positive sign that students realize that
simulations, although pretty, do not lead to the same level of
understanding of a CPS or give the required level of safety
guarantees that a proof does.

5.2 Star Lab: Students get creative
In the Star Lab3, students submit a whitepaper proposing

what system they would like to verify along with a prelim-
inary model and partial proof for feedback. Surprisingly,
students had a good grasp of the type and difficulty level
of problems that would be appropriate for proving, and
what specifications they might be able to verify about them.
While some students wished they could have verified more
challenging systems or more properties in the end, all stu-
dents had a good prior grasp of which verification tasks they

Figure 2: Attrition at CMU by assignments submitted (x-
axis) broken down by student’s background area.

would be able to tackle and which extensions they would
pursue if possible. Most students achieved in their final
project submissions what they originally proposed to accom-
plish. Moreover many students delivered on the challenging
extensions that they listed as stretch goals in their proposals.
They also successfully identified the right level of abstraction
for the models, which is a nontrivial but ubiquitous challenge
in CPS. The students implemented a fascinating multitude
of different verification projects for Star Lab (Appendix B).

6. ANALYSIS
In addition to collecting early feedback evaluations and

final course evaluations, we also analyze the correctness of
lab submissions, as well as some data on attrition.

We include in Fig. 2 complete attrition data for the course
at CMU. We take the low rate of attrition after the submis-
sion of the first written assignment (Theory 1) as an in-
dicator that the course was successful and its topics were
considered as significant by the students.

We measured the correctness of the beta submissions and
of the final submissions (submitted one week later) for the
first lab to see how well the CMU students’ understanding
of the material improved. Between these two submissions,
the students were given written feedback, a simulation of
the beta submission (often an example of unsafe behavior),
and the students interacted with the theorem prover. A
completed proof of correctness was due with the final sub-
mission of the lab.

Recall that in lab 1 the students were required to control
acceleration and deceleration of a robot so that it would stop
exactly on a charging station, but without overshooting and
running into the wall behind (see Fig. 1). In Fig. 3 the sub-
mitted solutions plotted farther right are more aggressive in
accelerating toward their goal. However, those that over-
shoot the charging station are plotted with a red X, and
those that brake to a stop before they reach the station are
plotted with a yellow triangle.

Comparing Fig. 3a with Fig. 3b, we can see the vast im-
provement that students made between their betabot sub-
mission and their final submission. This indicates the strong
influence of written feedback, simulations, and requiring stu-
dents to formally prove safety properties.

Surprisingly, the single-shot submissions from ENS Lyon
and University of Minho (in Fig. 3c and 3d) are similar in
correctness to the final submissions from CMU, despite not
benefiting from getting feedback or a simulation from a beta
submission. This demonstrates the power and impact that
proofs of a CPS have on its ultimate correctness, as inter-
acting with KeYmaera was the only method the students at



(a) CMU Lab 1 - Beta (b) CMU Lab 1 - Final (c) ENS Lyon Lab 1 (d) University of Minho Lab1

Figure 3: Illustrations of correctness of lab 1 submissions. Submissions plotted farther right are more aggressive in accelerating
quickly to their goal. Fig. 3b also shows students’ progress between the beta and final submissions, indicated by arrows.

ENS Lyon and University of Minho had for ensuring safety.
Similar observations hold for our analysis of the submis-

sions to lab 2 (Appendix C).

7. CONCLUSIONS AND FUTURE WORK
The Foundations of Cyber-Physical Systems course is one

of a kind. It is truly challenging and demanding, but for
a higher value that students appreciate: making CPSs safe
to entrust our lives. The course provides a framework for
exciting expeditions into science at work in real applications.

In anonymous course evaluations, the students have widely
expressed enthusiasm about how well the successive lab de-
signs and lecture notes contributed to their learning. We
take this as an indication that the course design strikes a
good balance of challenge versus feasibility while capturing
student motivation. Performance indicators in exams and
final projects have clearly demonstrated successful and very
impressive learning achievements by the students.

At the same time, the distribution of grades has been bi-
modal, indicating that a smoother introduction and more
but smaller challenges might improve student learning. The
experience with the use of the theorem prover KeYmaera in
this course also highlights the importance of conceptual and
technical advances in managing and understanding proof
context and proof metastrategies.

Student evaluations expressed appreciation for how the
lectures led the students to develop proof rules and conjec-
tures and scrutinize all their required conditions and con-
straints, as opposed to just stating the final sound proof
rule without critical reflection. We take this as an indication
that the course setup has been successful at communicating
the most fundamental aspect of them all: that it is more
important to understand why something works (and why it
could not work any other way) rather than just remember-
ing how it works. This is also a positive indicator that the
students have learned to critically reflect on whether they
truly understand CPS and logic-related material.

Our overall takeaway message from the positive student
feedback is that the advantages of the exciting and highly
motivating topics that CPSs provide by far outweigh the
risks and glitches, even in the first instance of the course.
The benefits of using KeYmaera in an educational setting far
outweighed the costs of technical challenges for both instruc-
tors and students. As both KeYmaera and course curricula
evolve and improve, this tradeoff will balance ever more in
favor of using logic and theorem provers in course curricula,
particularly for topics as notoriously challenging as CPS.

The industrial significance of such additions to curricula
are reflected in their desire to be involved in the course. The
next instance of the course features a competition to which

expert judges from at least 8 companies and organizations
have already signed up to come to give feedback on the fi-
nal project presentations of the students in the CPS V&V
Grand Prix and to award prizes. While hard to measure, it
would be interesting to get anecdotal evidence for how such
a competition influences student motivation.

FCPS has been offered in quite different forms at three
universities. By way of its development in gradual layers, the
FCPS course has a modular design that allows for different
ways of slicing the material for different needs (Appendix A).
It would be interesting to get a broader experience with
different configurations of the FCPS course at other places.
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APPENDIX
A. MODULAR LECTURE SEQUENCE

The succession of the most important lectures of the course
is shown in Table 1 along with their primary educational
concepts. The latter optional topics span more than one
lecture but are condensed here for the sake of presentation.
The dependencies of the labs on the lectures are indicated
in the first column of Table 1, which allows for the modular
selection of material and adaptation to different needs. This
allows for other offerings of the course to change the dura-
tion or to adapt to audiences with different backgrounds.

Table 1: Modular lecture sequence

Lab Lecture Primary Purpose

1

CPS introduction applications, criticality
Differential equations & domains continuous models
Choice & control discrete & hybrid system models
Safety & contracts CPS specifications

2
Dynamical systems & dynamic axioms CPS verification & proof of dynamics
Truth & proof sequent proofs
Control loops & invariants loop unrolling & invariants

2a Events & responses event-driven control
2b Reactions & delays time-triggered control

3+
Differential equations & invariants invariant functions
Differential equations & proofs induction for differential equations

op-
tion-
al

Ghosts & differential ghosts auxiliary variables in proofs
Differential & temporal logic temporal behavior of CPS
Virtual substitution & real arithmetic proving real arithmetic
Hybrid systems & games adversarial dynamics in CPS

B. LIST OF SELF-DEFINED STAR LABS
The students at CMU in Fall 2013 implemented a fas-

cinating multitude of different self-defined CPS verification
projects for Star Lab:
Robot Projects

• Safe Ball Passing in RoboCup
• Modeling Wall-E and Eve: Verified robot dance chore-

ography
• Robots on Treadmills

Car Projects

• Verified Centralized Automated Traffic Control for Cars

Air and Space Projects

• Verified Lunar Lander
• Verified Landing on an Aircraft Carrier
• Verified Hovercrafts and Helicopters Game

HVAC Projects

• Verified Space Heater
• Thermostat Modeling and Verification
• Modeling a Flow-modulated Radiator Heating System
• Modeling, Analysis and Verification of a Temperature

Control System

Chemical/Biological/Circuit Projects

• Design and Safety of Insulin Pumps: Proving safety
properties of a proposed controller
• Modeling Chemical Reactions as Hybrid Systems
• Fox and Duck Game
• Verified Electrical Circuits

These achievements of a wide range of verified CPSs are
all the more remarkable as the students had only two weeks
of class for the final project, due to delays in developing the
assignments for the first instance of the course.



C. INVARIANT ANALYSIS
In cyber-physical systems, an invariant is a formula that

is always satisfied by the system. An invariant is inductive if
it is a strong enough formula that no additional assumptions
besides the inductive invariant need to be added in order for
the inductive invariant to hold always (also called a loop
invariant, similar in concept to an induction hypothesis).

Inductive invariants are arguably the most crucial and
challenging part of the core operating principles of a cyber-
physical system. Designing an invariant for a CPS requires
a deep understanding of how the system should behave now
and at all times in the future. An invariant also needs to
remain true for all possible future behavior of the environ-
ment, and, thus, requires considerable foresight. Moreover,
the invariant must relate the system behavior to the desired
safety property. And finally, the invariant must be strong
enough that it is inductive, but not so strong that it restricts
systems to be overly conservative. When a student balances
all of these factors and designs a good inductive invariant,
it demonstrates that the student has a solid grasp on the
intricacies of the system.

C.1 Car Following Labs
Recall that in lab 2 the students were required to fol-

low a leader robot along a straight line (see Fig. 1). Stu-
dents at CMU were required to provide both event-driven
and time-triggered solutions. In the later offerings of the
course at ENS Lyon and University of Minho, we split these
two problems into separate labs. In this section, we present
and analyze student submissions from CMU, ENS Lyon, and
University of Minho for both the event-driven and the time-
triggered components of the lab.

If a student chooses an invariant that is too weak so that
it allows too much behavior, then even unsafe systems may
be able to satisfy such an invariant. In these cases, it is not
possible to prove that the invariant is inductive, and there-
fore students will not be able to prove safety for any systems
(safe or unsafe) using these invariants. This corresponds to
the red regions with the yellow triangles on the right side of
the subfigures in Fig. 4.

With the optimal invariant, the students can prove safety
for any controller that is actually safe without imposing any
restrictions on the system behavior that are not necessary
for its safety. Note that an optimal invariant is guaranteed
to exist in dL [11] for every system, but may not be first-
order. It is first-order for all labs in this course.

Moving farther to the left, if a student chooses an invari-
ant that is a bit too restrictive, he/she may only be able
to verify system controllers that are unnecessarily conserva-
tive. This means that there may be several safe controllers
which are more efficient (e.g. a robot controller that can fol-
low the leader more closely) and, even though they are still
safe, the student has no hope to prove safety using this in-
variant. This corresponds to the green area to the left of
the optimal invariant choice in Fig. 4. The farther left, the
more restrictive the inductive invariant. For example, the
most restrictive invariant that a student submitted (at the
far left in Fig. 5c) requires that the velocity of the follow car
start and remain zero. While this technically can guarantee
safety, it is far too restrictive.

For the expert reader, the invariant formulas are plotted
with respect to the partial order induced by implication,
with stronger formulas plotted farther left. The few invari-

ants which were incomparable under that partial order were
ordered at the discretion of the authors, who plotted invari-
ants that indicated a better understanding of the system
dynamics closer to the optimal invariant.

C.2 Analysis of Event-Driven Submissions
Comparing Fig. 4a with Figs. 4b - 4d, where students had

the benefit of interacting with a theorem prover, suggests
that interacting with proofs enhances students’ understand-
ing of CPS. This conclusion reinforces our observations in
Section 6.

The submissions in Fig. 4c and Fig. 4d benefitted only
from interacting with a theorem prover, while the CMU stu-
dents were exposed to simulations, feedback, and theorem
prover interactions between the beta submission (Fig. 4a)
and the final submission (Fig. 4b). The data indicates that
students who only had the interaction with KeYmaera did
not come up with worse designs than those that also received
feedback and simulations on a beta submission. While it
may be tempting to conclude that the concrete examples
that simulations depict actually hurt students’ ability to de-
sign general inductive invariants, the authors are inclined
to attribute this difference primarily to a lack of previous
experience with challenging inductive proofs amongst the
(more junior) students in the CMU course. This did not
play a role in the analysis of the controller submissions for
lab1, as that lab did not yet need inductive invariants. The
CMU students worked individually, while the students in
ENS Lyon and University of Minho were allowed to work in
pairs. Additionally, as the CMU offering was the first of the
three courses, the ENS Lyon and University of Minho stu-
dents benefitted from updates to the lab writeup and lessons
learned on how to teach related concepts, which affected lab
2 much more than lab 1.

C.3 Analysis of Time-Triggered Submissions
While both tasks are challenging, we assign the time-

triggered lab second, since it requires students to design con-
trollers that plan ahead for scenarios that the controller will
not be able to react to instantaneously. The loop invariant
for both systems, however, must capture some future be-
havior of the cars, or else it will not be strong enough to be
invariant. In fact, the set of possible loop invariants would
be the same for both labs, except that we make the event-
triggered lab slightly easier by guaranteeing that the lead car
maintains a constant velocity. This means that the optimal
loop invariant for the event-triggered lab is not inductive for
the time-triggered lab. We notice that CMU students, who
were presented both labs in the same assignment, tended to
reuse the same invariant for both (particularly noticeable in
the Beta submission, shown in Figs. 4a and 5a). However,
ENS Lyon and University of Minho students, who were pre-
sented each lab separately, were more likely to use different
invariants for each.

When students are first required to add a time delay to
the controller of their system, they are sometimes inclined
to add the delay everywhere, including erroneously adding
it into the loop invariant. We use an orange hour glass icon
to identify students who made this common mistake in the
time-triggered lab in Fig. 5.



(a) CMU Lab 2a - Beta

(b) CMU Lab 2a - Final

(c) ENS Lyon Lab 2

(d) University of Minho Lab 2

Figure 4: Illustrations of invariants for lab 2 (event-driven)
submissions. Invariants plotted farther right allow con-
trollers to exhibit a wider range of behavior. Invariants far-
ther left restrict the system behavior more. Farther right is
therefore generally better, until the invariants become too
weak to be inductive. Fig. 4b also shows students’ progress
between the beta and final submissions, indicated by arrows.

(a) CMU Lab 2b - Beta

(b) CMU Lab 2b - Final

(c) ENS Lyon Lab 3

(d) University of Minho Lab 3

Figure 5: Illustrations of invariants for lab 2 (time-triggered)
submissions. Invariants plotted farther right allow con-
trollers to exhibit a wider range of behavior. Invariants far-
ther left restrict the system behavior more. Farther right is
therefore generally better, until the invariants become too
weak to be inductive. Fig. 5b also shows students’ progress
between the beta and final submissions, indicated by arrows.
The orange hour glass shape denotes an invariant that de-
pends unnecessarily on the time delay. This error is common
for beginners and is specific to time-triggered invariants.


	Introduction
	CPS Education Overview
	Foundations of Cyber-Physical Systems
	Course Approach
	Lab Design
	Beta Submissions
	Star Lab: Students get creative

	Analysis
	Conclusions and Future Work
	References
	Modular Lecture Sequence
	List of Self-defined Star Labs
	Invariant Analysis
	Car Following Labs
	Analysis of Event-Driven Submissions
	Analysis of Time-Triggered Submissions


