Safe Reinforcement Learning via Formal Methods

Nathan Fulton and André Platzer

Carnegie Mellon University

Safe Reinforcement Learning via Formal Methods

Nathan Fulton and André Platzer

Carnegie Mellon University

Safety-Critical Systems

"How can we provide people with cyber-physical systems they can bet their lives on?" - Jeannette Wing

Autonomous Safety-Critical Systems

How can we provide people with **autonomous** cyber-physical systems they can bet their lives on?

Reinforcement Learning

φ

Reinforcement Learning

pos < stopSign

Reinforcement Learning

Approach: prove that control software achieves a specification with respect to a model of the physical system.

Approach: prove that control software achieves a specification with respect to a model of the physical system.

Reinforcement Learning

Benefits:

- Strong safety guarantees
- Automated analysis

Reinforcement Learning

Benefits:

- Strong safety guarantees
- Automated analysis

Drawbacks:

 Control policies are typically non-deterministic: answers "what is safe", not "what is useful"

Reinforcement Learning

Benefits:

- Strong safety guarantees
- Automated analysis

Drawbacks:

- Control policies are typically non-deterministic: answers "what is safe", not "what is useful"
- Assumes accurate model

Benefits:

- Strong safety guarantees
- Automated analysis

Drawbacks:

- Control policies are typically non-deterministic: answers "what is safe", not "what is useful"
- Assumes accurate model.

Reinforcement Learning

Benefits:

- Strong safety guarantees
- Automated analysis

Drawbacks:

- Control policies are typically non-deterministic: answers "what is safe", not "what is useful"
- Assumes accurate model.

Reinforcement Learning

Benefits:

- No need for complete model
- Optimal (effective) policies

Benefits:

- Strong safety guarantees
- Automated analysis

Drawbacks:

- Control policies are typically non-deterministic: answers "what is safe", not "what is useful"
- Assumes accurate model.

Reinforcement Learning

Benefits:

- No need for complete model
- Optimal (effective) policies

Drawbacks:

- No strong safety guarantees
- Proofs are obtained and checked by hand
- Formal proofs = decades-long proof development

Reinforcement Learning

- Control policies are typically non-deterministic: answers "what is safe", not "what is useful"
- Assumes accurate model

- No strong safety guarantees
- Proofs are obtained and checked by hand
- Formal proofs = decades-long proof development

Reinforcement Learning

Bene Goal: Provably correct reinforcement learning

- 1. Learn Safety
 - 2. Learn a Safe Policy
 - 3. Justify claims of safety

Draw

- Control policies are typically non-deterministic: answers "what is safe", not "what is useful"
- Assumes accurate model

- No strong safety guarantees
- Proofs are obtained and checked by hand
- Formal proofs = decades-long proof development

Accurate, analyzable models often exist!

formal verification gives strong safety guarantees

Accurate, analyzable models often exist! formal verification gives strong safety guarantees

Computer-checked proofs of safety specification.

Accurate, analyzable models often exist! formal verification gives strong safety guarantees

- Computer-checked proofs of safety specification
- Formal proofs mapping model to runtime monitors

Model-Based Verification Isn't Enough **Perfect**, analyzable models don't exist!

Model-Based Verification Isn't Enough

Perfect, analyzable models don't exist!

```
How to implement?
  { ?safeAccel;accel
                      U brake U ?safeTurn; turn};
  {pos' = vel, vel' = acc}
}*
     nly accurate sometimes
```

Model-Based Verification Isn't Enough

Perfect, analyzable models don't exist!

```
How to implement?
   { ?safeAccel;accel | U brake | U ?safeTurn; turn};
   \{dx'=w*y, dy'=-w*x, ...\}
}*
     nly accurate sometimes
```

Our Contribution

Justified Speculative Control is an approach toward provably safe reinforcement learning that:

1. learns to resolve non-determinism without sacrificing formal safety results

Our Contribution

Justified Speculative Control is an approach toward provably safe reinforcement learning that:

- 1. learns to resolve non-determinism without sacrificing formal safety results
- 2. allows and directs speculation whenever model mismatches occur


```
(init→[{{accel Ubrake}; ODEs}*](safe)) ↔ φ
```



```
(init→[{{accel Ubrake}; ODEs}*](safe)) ↔ φ
```

Main Theorem: If the ODEs are accurate, then our formal proofs transfer from the non-deterministic model to the learned (deterministic) policy

```
(init→[{{accel Ubrake};0DEs}*](safe)) ↔ φ
```

Main Theorem: If the ODEs are accurate, then our formal proofs transfer from the non-deterministic model to the learned (deterministic) policy via the model monitor.

```
(init→[{{accel∪brake};0DEs}*](safe)) ↔ φ
```

What about the physical model?

Use a theorem prover to prove: (init→ [{{accel∪brake};0DEs}*](safe)) ↔ φ

Model is accurate. {brake, accel, turn} Observe & compute reward

Model is accurate. {brake, accel, turn} Observe & compute reward

What About the Physical Model? Model is accurate.

What About the Physical Model? Model is accurate. {brake, accel, turn} Model is inaccurate Observe & compute Obstacle! reward -10

Speculation is Justified

Leveraging Verification Results to Learn Better

Use a real-valued version of the model monitor as a reward signal

Justified Speculative Control provides the best of logic and learning:

Formally model the control system (control + physics)

- Formally model the control system (control + physics)
- Learn how to resolve non-determinism in models.

- Formally model the control system (control + physics)
- Learn how to resolve non-determinism in models.
- Leverage theorem proving to transfer proofs to learned policies.

- Formally model the control system (control + physics)
- Learn how to resolve non-determinism in models.
- Leverage theorem proving to transfer proofs to learned policies.
- Unsafe **speculation** is **justified** when model deviates from reality

- Formally model the control system (control + physics)
- Learn how to resolve non-determinism in models
- Leverage theorem proving to transfer proofs to learned policies
- Unsafe speculation is justified when model deviates from reality, but verification results can still be helpful!

- Formally model the control system (control + physics)
- Learn how to resolve non-determinism in models
- Leverage theorem proving to transfer proofs to learned policies
- Unsafe speculation is justified when model deviates from reality, but verification results can still be helpful!

Justified Speculative Control

Learn over a constrained action space

Justified Speculative Control

Safe Reinforcement Learning?

Policy deviates from model:

Policy deviates from model:

Policy deviates from model:

Safe Reinforcement Learning?

Policy deviates from model:

Physical Models are Approximations

Policy deviates from model:

- 1. Policy is deterministic, verification result is set-valued.
- 2. Environment may not be accurately modeled.

Safety resolving non-determinism

?safeAccel: accel U brake ≠ unverified
Policy

"Accurate modulo determinism"

```
init → [{ {accel U brake}; t:=0; continuousMotion }*](safe)
```


"Accurate modulo determinism"

Learn over a constrained action space

"Accurate modulo determinism"

Learn over a constrained action space

Theorem: If the physical model is accurate then verification results are preserved during learning and by learned policies.

init → [{ {accel U brake}; t:=0; continuousMotion }*](safe)

Theorem: If the physical model is accurate then verification results are preserved during learning and by learned policies.

Sandboxing Reinforcement Learning

Theorem: If the physical model is accurate then verification results are preserved during learning and by learned policies.

Sandboxing Safe Reinforcement Learning

Theorem 1 (JSCGeneric Explores Safely in Modeled Environments). *Assume a valid safety specification*

$$\models init \rightarrow [\{ctrl; plant\}^*] safe$$

i.e., any repetition of $\{ctrl; plant\}$ starting from a state in init will end in a state described by safe. Then $u_i(s_i) \models$ safe for all u_i, s_i satisfying the learning process for

$$(init, (S, A, R, E), choose, update, done, CM, MM)$$

(safe)

ation

where CM and MM are the controller and model monitor for Theorem init $\rightarrow [\{ctrl; plant\}^*]$ safe.

results are preserved by learned policies.

Model is accurate. -10

reward

Model is accurate.

What About the Physical Model? Model is correct.

What About the Physical Model? Model is correct. {brake, accel, turn} Model is inaccurate Observe & compute Obstacle! reward -10

Learn over a constrained action space

Learn over a constrained action space

Some Questions:

- 1. How do we **know** when we're in unmodeled state space?
- 2. What do we **do** when we *are* in modeled state space?

Learn over a constrained action space

Some Questions:

- 1. How do we **know** when we're in unmodeled state space?
- 2. What do we **do** when we *are* in modeled state space?

Learn over a constrained action space

Theorem: Verification results are preserved outside of red region. But:

- □ What do we do when we are in modeled state space?

Leveraging Formal Methods during Learning

Leader

Leveraging Formal Methods during Learning

Leader

Perturbation	"Don't hit the leader"	"Get back to modeled state space"
5%	3	2
25%	18	16
50%	41	24

Conclusion

KeYmaera X + Justified Speculative Control:

 Transfer **formal** verification results for **non-deterministic** control policies to policies obtained via a generic reinforcement learning algorithm.

Conclusion

KeYmaera X + Justified Speculative Control:

- Transfer **formal** verification results for **non-deterministic** control policies to policies obtained via a generic reinforcement learning algorithm.
- 2. Leverages insights obtained during verification to direct future learning.

Model-Based Verification

Reinforcement Learning

```
ctrl
pos < stopSign
init → [{
    {?safeAccel; accel
        brake};
    t:=0; {pos'=vel,vel'=acc}
}*](pos < stopSign)</pre>
```