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Autonomous Safety-Critical Systems

How can we provide people with autonomous cyber-physical 
systems they can bet their lives on?
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Observe

Act

Benefits: 

● No need for complete model
● Optimal (effective) policies

Drawbacks:

● No strong safety guarantees
● Proofs are obtained and 

checked by hand
● Formal proofs = decades-long 

proof development

Goal: Provably correct reinforcement learning
1. Learn Safety
2. Learn a Safe Policy
3. Justify claims of safety
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Model-Based Verification
Accurate, analyzable models often exist!

formal verification gives strong safety guarantees

= ● Computer-checked proofs 
of safety specification

● Formal proofs mapping 
model to runtime monitors
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Model-Based Verification Isn’t Enough
Perfect, analyzable models don’t exist!

{

{ ?safeAccel;accel ∪ brake ∪ ?safeTurn; turn};

{dx’=w*y, dy’=-w*x, ...}

}*

How to implement?

Only accurate sometimes
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Our Contribution
Justified Speculative Control is an approach 
toward provably safe reinforcement learning that:

1. learns to resolve non-determinism without 
sacrificing formal safety results

2. allows and directs speculation whenever 
model mismatches occur
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(safe?) 
Policy

Learning to Safely Resolve Non-determinism

⇨

Observe & compute 
reward

φ

Main Theorem: If the ODEs are accurate, then 
our formal proofs transfer from the 
non-deterministic model to the learned 
(deterministic) policy via the model monitor.

Use a theorem prover to prove:

(init→[{{accel∪brake};ODEs}*](safe)) ↔ φ



What about the physical model?
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reward

φ

Use a theorem prover to prove: (init→
[{{accel∪brake};ODEs}*](safe)) ↔ φ

{pos’=vel,vel’=acc}  ≠
(safe?) 
Policy
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Speculation is Justified

Observe & 
compute 
reward

{brake, accel, turn} Expected
(safe)

Reality
(crash!)



Leveraging Verification Results to Learn Better

Observe & 
compute 
reward

{brake, accel, turn}

Use a real-valued 
version of the 
model monitor as a 
reward signal
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Physical Models are Approximations

Policy deviates from model:
1. Policy is deterministic, verification result is 

set-valued.
2. Environment may not be accurately modeled.

⇨

Observe & 
compute reward

unverified 
Policy

{accel,brake,turn}

≠ pos’=vel, vel’=acc



Safety resolving non-determinism

unverified 
Policy

?safeAccel; accel ∪ brake ≠
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Sandboxing Safe Reinforcement Learning

Theorem: If the physical model is accurate then verification 
results are preserved by learned policies.

⇨

Observe & compute reward

Policy

Constrained 
Actions

init → [{ {accel ∪ brake}; t:=0; continuousMotion }*](safe)
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Justified Speculative Control

Theorem: Verification results are preserved outside of red 
region. But:
☒ How do we know when we’re in unmodeled state space?
☐ What do we do when we are in modeled state space?

Learn over a 
constrained action 
space

Learn
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What do we do in unmodeled state-space?

...to here

Get from here...
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Leveraging Formal Methods during Learning 

Perturbation “Don’t hit the leader” “Get back to modeled state 
space”

5% 3 2

25% 18 16

50% 41 24

LeaderOwn Car
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Conclusion
KeYmaera X  + Justified Speculative Control:

1. Transfer formal verification results for 
non-deterministic control policies to policies obtained 
via a generic reinforcement learning algorithm.

2. Leverages insights obtained during verification to direct 
future learning.   

≠ 



init → [{ 

   {?safeAccel; accel 

    ∪ brake}; 

   t:=0; {pos’=vel,vel’=acc}

}*](pos < stopSign)
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