
Safe Reinforcement Learning via Formal Methods
Nathan Fulton and André Platzer

Carnegie Mellon University

Safe Reinforcement Learning via Formal Methods
Nathan Fulton and André Platzer

Carnegie Mellon University

Safety-Critical Systems

"How can we provide people with cyber-physical systems they
can bet their lives on?" - Jeannette Wing

Autonomous Safety-Critical Systems

How can we provide people with autonomous cyber-physical
systems they can bet their lives on?

Model-Based Verification

φ

Reinforcement Learning

Model-Based Verification

pos < stopSign

Reinforcement Learning

Model-Based Verification

pos < stopSign

Reinforcement Learning

ctrl

Approach: prove that
control software achieves
a specification with
respect to a model of the
physical system.

Model-Based Verification

pos < stopSign

Reinforcement Learning

ctrl

Approach: prove that
control software achieves
a specification with
respect to a model of the
physical system.

Model-Based Verification

pos < stopSign

Reinforcement Learning

ctrl

Benefits:

● Strong safety guarantees
● Automated analysis

Model-Based Verification

φ

Reinforcement Learning

Benefits:

● Strong safety guarantees
● Automated analysis

Drawbacks:

● Control policies are typically
non-deterministic: answers
“what is safe”, not “what is
useful”

Model-Based Verification

φ

Reinforcement Learning

Benefits:

● Strong safety guarantees
● Automated analysis

Drawbacks:

● Control policies are typically
non-deterministic: answers
“what is safe”, not “what is
useful”

● Assumes accurate model

Model-Based Verification

φ

Reinforcement Learning

Benefits:

● Strong safety guarantees
● Automated analysis

Drawbacks:

● Control policies are typically
non-deterministic: answers
“what is safe”, not “what is
useful”

● Assumes accurate model.

Model-Based Verification

φ

Reinforcement Learning

Observe

Act

Benefits:

● Strong safety guarantees
● Automated analysis

Drawbacks:

● Control policies are typically
non-deterministic: answers
“what is safe”, not “what is
useful”

● Assumes accurate model.

Model-Based Verification

φ

Reinforcement Learning

Observe

Act

Benefits:

● No need for complete model
● Optimal (effective) policies

Benefits:

● Strong safety guarantees
● Automated analysis

Drawbacks:

● Control policies are typically
non-deterministic: answers
“what is safe”, not “what is
useful”

● Assumes accurate model.

Model-Based Verification

φ

Reinforcement Learning

Observe

Act

Benefits:

● No need for complete model
● Optimal (effective) policies

Drawbacks:

● No strong safety guarantees
● Proofs are obtained and

checked by hand
● Formal proofs = decades-long

proof development

Benefits:

● Strong safety guarantees
● Aomputational aids (ATP)

Drawbacks:

● Control policies are typically
non-deterministic: answers
“what is safe”, not “what is
useful”

● Assumes accurate model

Model-Based Verification

φ

Reinforcement Learning

Observe

Act

Benefits:

● No need for complete model
● Optimal (effective) policies

Drawbacks:

● No strong safety guarantees
● Proofs are obtained and

checked by hand
● Formal proofs = decades-long

proof development

Goal: Provably correct reinforcement learning

Benefits:

● Strong safety guarantees
● Aomputational aids (ATP)

Drawbacks:

● Control policies are typically
non-deterministic: answers
“what is safe”, not “what is
useful”

● Assumes accurate model

Model-Based Verification

φ

Reinforcement Learning

Observe

Act

Benefits:

● No need for complete model
● Optimal (effective) policies

Drawbacks:

● No strong safety guarantees
● Proofs are obtained and

checked by hand
● Formal proofs = decades-long

proof development

Goal: Provably correct reinforcement learning
1. Learn Safety
2. Learn a Safe Policy
3. Justify claims of safety

Model-Based Verification
Accurate, analyzable models often exist!

{

{?safeAccel;accel∪ brake ∪ ?safeTurn; turn};

{pos’ = vel, vel’ = acc}

}*

Model-Based Verification
Accurate, analyzable models often exist!

{

{?safeAccel;accel∪ brake ∪ ?safeTurn; turn};

{pos’ = vel, vel’ = acc}

}* discrete controlContinuous motion

Model-Based Verification
Accurate, analyzable models often exist!

{

{?safeAccel;accel∪ brake ∪ ?safeTurn; turn};

{pos’ = vel, vel’ = acc}

}* discrete, non-deterministic
control

Continuous motion

Model-Based Verification
Accurate, analyzable models often exist!

init → [{

{ ?safeAccel;accel ∪ brake ∪ ?safeTurn; turn};

{pos’ = vel, vel’ = acc}

}*]pos < stopSign

Model-Based Verification
Accurate, analyzable models often exist!

formal verification gives strong safety guarantees
init → [{

{ ?safeAccel;accel ∪ brake ∪ ?safeTurn; turn};

{pos’ = vel, vel’ = acc}

}*]pos < stopSign

Model-Based Verification
Accurate, analyzable models often exist!

formal verification gives strong safety guarantees

= ● Computer-checked proofs
of safety specification.

Model-Based Verification
Accurate, analyzable models often exist!

formal verification gives strong safety guarantees

= ● Computer-checked proofs
of safety specification

● Formal proofs mapping
model to runtime monitors

Model-Based Verification Isn’t Enough
Perfect, analyzable models don’t exist!

Model-Based Verification Isn’t Enough
Perfect, analyzable models don’t exist!

{

{ ?safeAccel;accel ∪ brake ∪ ?safeTurn; turn};

{pos’ = vel, vel’ = acc}

}*

How to implement?

Only accurate sometimes

Model-Based Verification Isn’t Enough
Perfect, analyzable models don’t exist!

{

{ ?safeAccel;accel ∪ brake ∪ ?safeTurn; turn};

{dx’=w*y, dy’=-w*x, ...}

}*

How to implement?

Only accurate sometimes

Our Contribution
Justified Speculative Control is an approach
toward provably safe reinforcement learning that:

1. learns to resolve non-determinism without
sacrificing formal safety results

Our Contribution
Justified Speculative Control is an approach
toward provably safe reinforcement learning that:

1. learns to resolve non-determinism without
sacrificing formal safety results

2. allows and directs speculation whenever
model mismatches occur

Learning to Resolve Non-determinism

Observe &
compute
reward

Act

Learning to Resolve Non-determinism

Observe &
compute
reward

accel ∪ brake U turn

Learning to Resolve Non-determinism

Observe &
compute
reward

{accel,brake,turn}

Learning to Resolve Non-determinism

⇨

Observe &
compute
reward

Policy

{accel,brake,turn}

Learning to Resolve Non-determinism

⇨

Observe &
compute
reward

(safe?)
Policy

{accel,brake,turn}

Learning to Safely Resolve Non-determinism

⇨

Observe & compute
reward

(safe?)
Policy

Safety Monitor

Learning to Safely Resolve Non-determinism

⇨

Observe & compute
reward

(safe?)
Policy

Safety Monitor

≠ “Trust Me”

Learning to Safely Resolve Non-determinism

⇨

Observe & compute
reward

(safe?)
Policy

φ

Use a theorem prover to prove:

(init→[{{accel∪brake};ODEs}*](safe)) ↔ φ

Learning to Safely Resolve Non-determinism

⇨

Observe & compute
reward

(safe?)
Policy

φ

Use a theorem prover to prove:

(init→[{{accel∪brake};ODEs}*](safe)) ↔ φ

(safe?)
Policy

Learning to Safely Resolve Non-determinism

⇨

Observe & compute
reward

φ

Main Theorem: If the ODEs are accurate, then
our formal proofs transfer from the
non-deterministic model to the learned
(deterministic) policy

Use a theorem prover to prove:

(init→[{{accel∪brake};ODEs}*](safe)) ↔ φ

(safe?)
Policy

Learning to Safely Resolve Non-determinism

⇨

Observe & compute
reward

φ

Main Theorem: If the ODEs are accurate, then
our formal proofs transfer from the
non-deterministic model to the learned
(deterministic) policy via the model monitor.

Use a theorem prover to prove:

(init→[{{accel∪brake};ODEs}*](safe)) ↔ φ

What about the physical model?

⇨

Observe & compute
reward

φ

Use a theorem prover to prove: (init→
[{{accel∪brake};ODEs}*](safe)) ↔ φ

{pos’=vel,vel’=acc} ≠
(safe?)
Policy

What About the Physical Model?

Observe &
compute
reward

{brake, accel, turn}

What About the Physical Model?

Observe &
compute
reward

{brake, accel, turn}

Model is accurate.

What About the Physical Model?

Observe &
compute
reward

{brake, accel, turn}

Model is accurate.

What About the Physical Model?

Observe &
compute
reward

{brake, accel, turn}

Model is accurate.

Model is
inaccurate

What About the Physical Model?

Observe &
compute
reward

{brake, accel, turn}

Model is accurate.

Model is
inaccurate

Obstacle!

What About the Physical Model?

Observe &
compute
reward

{brake, accel, turn} Expected

Reality

Speculation is Justified

Observe &
compute
reward

{brake, accel, turn} Expected
(safe)

Reality
(crash!)

Leveraging Verification Results to Learn Better

Observe &
compute
reward

{brake, accel, turn}

Use a real-valued
version of the
model monitor as a
reward signal

Conclusion
Justified Speculative Control provides the best of logic and learning:

⇨
Policy

φ

Conclusion
Justified Speculative Control provides the best of logic and learning:

● Formally model the control system (control + physics)

⇨
Policy

φ

Conclusion
Justified Speculative Control provides the best of logic and learning:

● Formally model the control system (control + physics)
● Learn how to resolve non-determinism in models.

⇨
Policy

φ

Conclusion
Justified Speculative Control provides the best of logic and learning:

● Formally model the control system (control + physics)
● Learn how to resolve non-determinism in models.
● Leverage theorem proving to transfer proofs to learned policies.

⇨
Policy

φ

Conclusion
Justified Speculative Control provides the best of logic and learning:

● Formally model the control system (control + physics)
● Learn how to resolve non-determinism in models.
● Leverage theorem proving to transfer proofs to learned policies.
● Unsafe speculation is justified when model deviates from reality

⇨
Policy

φ

Conclusion
Justified Speculative Control provides the best of logic and learning:

● Formally model the control system (control + physics)
● Learn how to resolve non-determinism in models
● Leverage theorem proving to transfer proofs to learned policies
● Unsafe speculation is justified when model deviates from reality,

but verification results can still be helpful!

⇨
Policy

φ

Conclusion
Justified Speculative Control provides the best of logic and learning:

● Formally model the control system (control + physics)
● Learn how to resolve non-determinism in models
● Leverage theorem proving to transfer proofs to learned policies
● Unsafe speculation is justified when model deviates from reality,

but verification results can still be helpful!

⇨
Policy

φ

Justified Speculative Control

≈

Learn over a constrained
action space

≠

Justified Speculative Control

≈

Learn over a constrained
action space

≠

Safe Reinforcement Learning?

⇨

Observe &
compute reward

unverified
Policy

Policy deviates from model:
1. Policy is deterministic, verification result is

set-valued.

{accel,brake,turn}

Some Actions Aren’t Always Safe

⇨

Observe &
compute reward

unverified
Policy

Policy deviates from model:
1. Policy is deterministic, verification result is

set-valued.

{accel,brake,turn} ≠ ?safeAccel; accel ∪ brake

Some Actions Aren’t Always Safe

⇨

Observe &
compute reward

unverified
Policy

Policy deviates from model:
1. Policy is deterministic, verification result is

set-valued.

{accel,brake,turn} ≠ ?safeAccel; accel ∪ brake

Safe Reinforcement Learning?

⇨ unverified
Policy

Policy deviates from model:
1. Policy is deterministic, verification result is

set-valued.

Observe &
compute reward

?safeAccel; accel ∪ brake ≠

Physical Models are Approximations

Policy deviates from model:
1. Policy is deterministic, verification result is

set-valued.
2. Environment may not be accurately modeled.

⇨

Observe &
compute reward

unverified
Policy

{accel,brake,turn}

≠ pos’=vel, vel’=acc

Safety resolving non-determinism

unverified
Policy

?safeAccel; accel ∪ brake ≠

Sandboxing Reinforcement Learning

≈

“Accurate modulo determinism”

init → [{ {accel ∪ brake}; t:=0; continuousMotion }*](safe)

Sandboxing Reinforcement Learning

≈

Learn over a constrained
action space

“Accurate modulo determinism”

Sandboxing Reinforcement Learning

≈

Learn over a constrained
action space

“Accurate modulo determinism”

Sandboxing Reinforcement Learning

Theorem: If the physical model is accurate then verification
results are preserved during learning and by learned policies.

⇨ Policy

Constrained
Actions

Observe & compute reward

Sandboxing Reinforcement Learning

Theorem: If the physical model is accurate then verification
results are preserved during learning and by learned policies.

⇨

Observe & compute reward

Policy

Constrained
Actions

init → [{ {accel ∪ brake}; t:=0; continuousMotion }*](safe)

Sandboxing Reinforcement Learning

Theorem: If the physical model is accurate then verification
results are preserved during learning and by learned
policies.

⇨

Observe & compute reward

Policy

Constrained
Actions

init → [{ {accel ∪ brake}; t:=0; continuousMotion }*](safe)

Sandboxing Safe Reinforcement Learning

Theorem: If the physical model is accurate then verification
results are preserved by learned policies.

⇨

Observe & compute reward

Policy

Constrained
Actions

init → [{ {accel ∪ brake}; t:=0; continuousMotion }*](safe)

What About the Physical Model?

Observe &
compute
reward

{brake, accel, turn}

What About the Physical Model?

Observe &
compute
reward

{brake, accel, turn}

Model is accurate.

What About the Physical Model?

Observe &
compute
reward

{brake, accel, turn}

Model is accurate.

What About the Physical Model?

Observe &
compute
reward

{brake, accel, turn}

Model is correct.

Model is
inaccurate

What About the Physical Model?

Observe &
compute
reward

{brake, accel, turn}

Model is correct.

Model is
inaccurate

Obstacle!

What About the Physical Model?

Observe &
compute
reward

{brake, accel, turn} Expected

Reality

What About the Physical Model?

Observe &
compute
reward

{brake, accel, turn} Expected
(safe)

Reality
(crash!)

Justified Speculative Control

≈

Learn over a constrained
action space

≠

Justified Speculative Control

≈

Learn over a constrained
action space

≠

Justified Speculative Control

Some Questions:
1. How do we know when we’re in unmodeled state space?
2. What do we do when we are in modeled state space?

Learn over a
constrained action
space

Learn

Justified Speculative Control

Some Questions:
1. How do we know when we’re in unmodeled state space?
2. What do we do when we are in modeled state space?

Learn over a
constrained action
space

Learn

Justified Speculative Control

Theorem: Verification results are preserved outside of red
region. But:
☒ How do we know when we’re in unmodeled state space?
☐ What do we do when we are in modeled state space?

Learn over a
constrained action
space

Learn

What do we do in unmodeled state-space?

What do we do in unmodeled state-space?

What do we do in unmodeled state-space?

What do we do in unmodeled state-space?

Get from here...

What do we do in unmodeled state-space?

...to here

Get from here...

Leveraging Formal Methods during Learning

LeaderOwn Car

Leveraging Formal Methods during Learning

Perturbation “Don’t hit the leader” “Get back to modeled state
space”

5% 3 2

25% 18 16

50% 41 24

LeaderOwn Car

Conclusion
KeYmaera X + Justified Speculative Control:

1. Transfer formal verification results for
non-deterministic control policies to policies obtained
via a generic reinforcement learning algorithm.

Conclusion
KeYmaera X + Justified Speculative Control:

1. Transfer formal verification results for
non-deterministic control policies to policies obtained
via a generic reinforcement learning algorithm.

2. Leverages insights obtained during verification to direct
future learning.

≠

init → [{

 {?safeAccel; accel

 ∪ brake};

 t:=0; {pos’=vel,vel’=acc}

}*](pos < stopSign)

Model-Based Verification

pos < stopSign

Reinforcement Learning

ctrl

