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Safety-Critical Systems

"How can we provide people with cyber-physical systems they
can bet their lives on?" - Jeannette Wing



Autonomous Safety-Critical Systems

How can we provide people with autonomous cyber-physical
systems they can bet their lives on?



Model-Based Verification ~ Reinforcement Learning




Model-Based Verification ~ Reinforcement Learning

5
S

pos < stopSign



Model-Based Verification ~ Reinforcement Learning

/é,
SIS
pos < stopSign a



Model-Based Verification ~ Reinforcement Learning

O
pos < stopSign

Approach: prove that
control software achieves
a specification with
respect to a model of the
physical system.



ModeI-Bsed Verification ~ Reinforcement Learning
. .

y

pos < stopSign n

Approach: prove that
control software achieves
a specification with
respect to a model of the
physical system.




Model-Based Verification ~ Reinforcement Learning
7
¢

Benefits:

e Strong safety guarantees
e Automated analysis



Model-Based Verification
- =
Benefits:

e Strong safety guarantees
e Automated analysis

Drawbacks:

e Control policies are typically
non-deterministic: answers
“what is safe”, not “what is
useful”

Reinforcement Learning



Model-Based Verification
- =
Benefits:

e Strong safety guarantees
e Automated analysis

Drawbacks:

e Control policies are typically
non-deterministic: answers
“what is safe”, not “what is
useful”

e Assumes accurate model

Reinforcement Learning



Reinforcement Learning
- E Act

—

- (D~
Benefits: 0

9 Observe

e Strong safety guarantees
e Automated analysis

Drawbacks:

e Control policies are typically
non-deterministic: answers
“what is safe”, not “what is
useful”

e Assumes accurate model.



Reinforcement Learning

Observe
Benefits: Benefits:
e Strong safety guarantees e No need for complete model
e Automated analysis e Optimal (effective) policies
Drawbacks:

e Control policies are typically
non-deterministic: answers
“what is safe”, not “what is
useful”

e Assumes accurate model.



- —[]
Benefits:

e Strong safety guarantees
e Automated analysis

Drawbacks:

e Control policies are typically
non-deterministic: answers
“what is safe”, not “what is
useful”

e Assumes accurate model.

Reinforcement Learning

. ¢ @
Observe
Benefits:

e No need for complete model
e Optimal (effective) policies

Drawbacks:

e No strong safety guarantees

e Proofs are obtained and
checked by hand

e Formal proofs = decades-long
proof development
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Provably correct reinforcement learning
. Learn Safety

. Learn a Safe Policy
. Justify claims of safety

e Control policies are typically
non-deterministic: answers
“what is safe”, not “what is
useful”

e Assumes accurate model
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Accurate, analyzable models often exist!

formal verification gives strong safety guarantees

{ ?safeAccelge 2safeTurn; turn};
{pos’ = vel,

}*]pos < stopSign
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Accurate, analyzable models often exist!

formal verification gives strong safety guarantees

e Computer-checked proofs
of safety specification

e Formal proofs mapping
model to runtime monitors
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Perfect, analyzab

{ ?safeAccel;accel | U| brake| U

cation Isn't Enough

e models don’t exist!

How to implement?

IO\

{dx’=w*y, dy’=-w*x, ...}

J

\
* 1

Only accurate sometimes

}s
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Our Contribution

Justified Speculative Control is an approach
toward provably safe reinforcement learning that:

1. learns to resolve non-determinism without
sacrificing formal safety results

2. allows and directs speculation whenever
model mismatches occur
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Learning to Safely Resolve Non-determinism

Main Theorem: If the ODEs are accurate, then
our formal proofs transfer from the
non-deterministic model to the learned
(deterministic) policy via the model monitor.




What about the physical model?
A T

{pos’=vel,vel’=acc} #

-

Observe & compute
reward

brake




What About the Physical Model

oy e e R \
A F \\.___. — .l.f;,.,.__./ R bt
L1117\ \ N\
[ 1]/ A \ , \ \ |
i1 _- R o o ..r /.__ LA s LI T SR T
| £ B | L]
_ | _ i fld Y s R _ h _
A b v\ Bl 0 R | ' _ I
i | L& ) TR | | | | ]
| ;_ b _.. __._ \ 5 - = l..-.\.. # ______. \.. x_ | g | J
SRNNSN  Jaaas
\ LI . d@| -~ Fo o g
W T L e i S S R S
Y , e, Rt o o
Vol gy w -, e e » £
\ . . - ; ¥
b w ..,f/ g 4 gt i i ......_\\x.x FoF
*, ™ " — a2 # -~ 4 7
T N JES N W R S
W : L . T L - . ol &
N e L
/fz R . -— reber. e b .\..f. .\.\
“ . . o e ......x.x e
L L 1 1 1
=] 1 =] [Ts] =]
— i ==
1

{brake, accel, turn}

Observe &
compute

reward

0

Te]



What About the Physical Model

oy e e R \
F ” Fd \\____. I .!Ir;.__./ % L i1
NP S iy f,f e y
[ 4 _.. { _.u g ‘x S /x b i Y .__ .._ L
h_ __ __ N / m. / 2 .....-. \-..ll ar !/.__ z.. .._y J. ¥ * _._ 1
[0 ] T | | ' | | |
[ |
| R ) | 1]
4 # (I 1 e \_ .__ N T _ ry
k i _.. .... 'l ] __. I I | H
| SRR o e [ 1 1]
1 | LoyR s e x t___. / [ [ __ __
By b Lo L .../ L ey [ F [ J
TERRES o i o b
Nk R S 2 e
. k % * Rty y ¥, :
% Wow b % L A rrrur[ e ..l\\ ~ .\ ......__. ....... / ._....
ooy », - - - Fof
s ,,,f“, . 4.,.;...4 — - x\\\x» ¥ # t
£y ...... - o T - - a e ra 4
® >, ..f.. - i - -~ v Sl ......-.\ ._.....
, ..f// ...I '3 - e ’ - ..rx.... .._.. o
LY, *, e - i & y
», ", -, - e e F ;k.\ - .\
™, b T, e T L
L L 1 1 1
=] =) = =) =)
= i =
1

{brake, accel, turn}

Observe &
compute

reward

0

Te]



What About the Physical Model

{brake, accel, turn}
D -

[}

Observe & et
compute
reward

10k




What About the Physical Model

{brake, accel, turn}
D -

Observe &
compute
reward

(]
T

[ ]

10k

Model is
inaccurate



What About the Physical Model

Model is
inaccurate

10} . S i -
u PRI e e e S e
'y , - - iy o LY
i E g - — - [ . - "u__ N
brake, accel, t NG T e W, S Wy O
y y urn J_.-’ "__, .-/ M z_.-"' ‘----'-_-_--"L "--.___‘ b \‘\\ 3 W,
d - - -
! F _.-". r o — e '--.“ \
L

Observe & 7| .
compute M T )

Y # b
b il % % o P o - # i
NN e, S L Ay 4
A e il _f"z . 4
%, o T - i A
- et S -~ i -
) Vi ey o > Obstacle!
T T gl . H
" . T, il S e - Pl
T " g g ]
-— e - -
- -

reward Gl RS




What About the Physical Model

{brake, accel, turn}
>

Observe & et

compute
reward

10k

o
i i
—
—— ——

-

P T

g

: / Expected

|~ Reality




Speculation is Justified
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Leveraging Verification Results to Learn Better
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Justified Speculative Control provides the best of logic and learning:

Formally model the control system (control + physics)

Learn how to resolve non-determinism in models

Leverage theorem proving to transfer proofs to learned policies
Unsafe speculation is justified when model deviates from reality,
but verification results can still be helpful!
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Physical Models are Approximations

D

Policy deviates from model:

1. Policy is deterministic, verification result is
set-valued.

2. Environment may not be accurately modeled.

# pos’=vel, vel’=acc
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results are preserved during learning and by learned
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SeRepokRe Safe Reinforcement Learning

Theorem 1 (JSCGeneric Explores Safely in Modeled Envi-
ronments). Assume a valid safety specification

D
S -
a = init — [{ctrl; plant}~|safe (3)

i.e., any repetition of {ctrl; plant} starting from a state in init @
will end in a state described by safe. Then u;(s;) |= safe for "
all u;, s; satisfying the learning process for

(init, (S, A, R, E), choose, update, done, CM, MM)

where CM and MM are the controller and model monitor for
init — [{ctrl; plant}*]safe.
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Justified Speculative Control

Learn over a 77—\
constrained action v Learn

Theorem: Verification results are preserved outside of red
region. But:

How do we know when we're in unmodeled state space?
What do we do when we are in modeled state space?
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What do we do in unmodeled State-space?
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What do we do in unmodeled state-space?

Get from here...
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What do we do in unmodeled State-space?

Get from here...

...to here
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Leveraging Formal Methods durlng Learning

SN

Own Car Leader
Perturbation “Don’t hit the leader” “Get back to modeled state
space
5% 3 2
25% 18 16

50% 41 24
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Conclusion

KeYmaera X + Justified Speculative Control:

1. Transfer formal verification results for
non-deterministic control policies to policies obtained
via a generic reinforcement learning algorithm.

2. Leverages insights obtained during verification to direct

future learning. ~
. " a




Model-Based Verification Reinforcement Learning
B
init - [{
{?safeAccel; accel
U brake};
t:=0; {pos’=vel,vel’=acc}

}*](pos < stopSign)



