
Quantified Differential Dynamic Logic
for Distributed Hybrid Systems?

André Platzer

Carnegie Mellon University, Computer Science Department, Pittsburgh, PA, USA
aplatzer@cs.cmu.edu

Abstract. We address a fundamental mismatch between the combina-
tions of dynamics that occur in complex physical systems and the limited
kinds of dynamics supported in analysis. Modern applications combine
communication, computation, and control. They may even form dynamic
networks, where neither structure nor dimension stay the same while the
system follows mixed discrete and continuous dynamics.
We provide the logical foundations for closing this analytic gap. We de-
velop a system model for distributed hybrid systems that combines quan-
tified differential equations with quantified assignments and dynamic
dimensionality-changes. We introduce a dynamic logic for verifying dis-
tributed hybrid systems and present a proof calculus for it. We prove that
this calculus is a sound and complete axiomatization of the behavior of
distributed hybrid systems relative to quantified differential equations. In
our calculus we have proven collision freedom in distributed car control
even when new cars may appear dynamically on the road.

1 Introduction

Many safety-critical computers are embedded in cyber-physical systems like cars
[1] or aircraft [2]. How do we know that their designs will work as intended?
Ensuring correct functioning of cyber-physical systems is among the most chal-
lenging and most important problems in computer science, mathematics, and
engineering. But the ability to analyze and understand global system behavior
is the key to designing smart and reliable control.

Today, there is a fundamental mismatch between the actual combinations of
dynamics that occur in applications and the restricted kinds of dynamics sup-
ported in analysis. Safety-critical systems in automotive, aviation, railway, and
power grids combine communication, computation, and control. Combining com-
putation and control leads to hybrid systems [3], whose behavior involves both
discrete and continuous dynamics originating, e.g., from discrete control de-
cisions and differential equations of movement. Combining communication and
computation leads to distributed systems [4], whose dynamics are discrete transi-
tions of system parts that communicate with each other. They may form dynamic

? This material is based upon work supported by the National Science Foundation un-
der Grant Nos. CNS-0926181 and CNS-0931985, by the NASA grant NNG-05GF84H,
and by the ONR award N00014-10-1-0188.

A. Dawar and H. Veith (Eds.): CSL 2010, LNCS 6247, pp. 469–483, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

470 André Platzer

distributed systems, where the structure of the system is not fixed but evolves
over time and agents may appear or disappear during the system evolution.

 (4) (4) (3) (3) (2) (2) (1) (1)

 () ()

Fig. 1. Distributed car control.

Combinations of all three
aspects (communication, com-
putation, and control) are used
in sophisticated applications,
e.g., cooperative distributed
car control [1]. Neither struc-
ture nor dimension stay the
same, because new cars can ap-
pear on the street or leave it;
see Fig. 1. These systems are
(dynamic) distributed hybrid systems. They cannot be considered just as a dis-
tributed system (because, e.g., the continuous evolution of positions and veloc-
ities matters for collision freedom in car control) nor just as a hybrid system
(because the evolving system structure and appearance of new agents can make
an otherwise collision-free system unsafe). It is generally impossible to split the
analysis of distributed hybrid systems soundly into an analysis of a distributed
system (without continuous movement) and an analysis of a hybrid system (with-
out structural changes or appearance), because all kinds of dynamics interact.
Just like hybrid systems that generally cannot be analyzed from a purely discrete
or a purely continuous perspective [3, 5].

Distributed hybrid systems have been considered to varying degrees in mod-
eling languages [6–9]. In order to build these systems, however, scientists and
engineers also need analytic tools to understand and predict their behavior. But
formal verification and proof techniques do not yet support the required combi-
nation of dynamical effects—which is not surprising given the numerous sources
of undecidability for distributed hybrid systems verification.

In this paper, we provide the logical foundations to close this fundamental
analytic gap. We develop quantified hybrid programs (QHPs) as a model for dis-
tributed hybrid systems, which combine dynamical effects from multiple sources:
discrete transitions, continuous evolution, dimension changes, and structural dy-
namics. In order to account for changes in the dimension and for co-evolution
of an unbounded and evolving number of participants, we generalize the no-
tion of states from assignments for primitive system variables to full first-order
structures. Function term x(i) may denote the position of car i of type C, f(i)
could be the car registered by communication as the car following car i, and the
term d(i, f(i)) could denote the minimum safety distance negotiated between
car i and its follower. The values of all these terms may evolve for all i as time
progresses according to interacting laws of discrete and continuous dynamics.
They are also affected by changing the system dimension as new cars appear,
disappear, or by reconfiguring the system structure dynamically. The defining
characteristic of QHPs is that they allow quantified hybrid dynamics in which
variables like i that occur in function arguments of the system dynamics are
quantified over, such that the system co-evolves, e.g., for all cars i of type C.

Quantified Differential Dynamic Logic for Distributed Hybrid Systems 471

There is a crucial difference between a primitive system variable x and a first-
order function term x(i), where i is quantified over. Hybrid dynamics of primitive
system variables can model, say, 5 cars (putting scalability issues aside), but
not n cars and not systems with a varying number of cars. With first-order
function symbols x(i) and hybrid dynamics quantifying over all cars i, a QHP
can represent any number of cars at once and even (dis)appearance of cars.

Verification of distributed hybrid systems is challenging, because they have
three independent sources of undecidability: discrete dynamics, continuous dy-
namics, and structural/dimensional dynamics. As an analysis tool for distributed
hybrid systems, we introduce a specification and verification logic for QHPs that
we call quantified differential dynamic logic (QdL). QdL provides dynamic logic
[10] modal operators [α] and 〈α〉 that refer to the states reachable by QHP α
and can be placed in front of any formula. Formula [α]φ expresses that all states
reachable by system α satisfy formula φ, while 〈α〉φ expresses that there is at
least one reachable state satisfying φ. These modalities can express necessary
or possible properties of the transition behavior of α. With its ability to verify
(dynamic) distributed hybrid systems and quantified dynamics, QdL is a major
extension of prior work for static hybrid systems [5, 11] or programs [12, 13].

Our primary contributions are:

– We introduce a system model and semantics that succinctly captures the log-
ical quintessence of (dynamic) distributed hybrid systems with joint discrete,
continuous, structural, and dimension-changing dynamics.

– We introduce a specification/verification logic for distributed hybrid systems.
– We present a proof calculus for this logic, which, to the best of our knowledge,

is the first verification approach that can handle distributed hybrid systems
with their hybrid dynamics and unbounded (and evolving) dimensions.

– We prove that this compositional calculus is a sound and complete axioma-
tization relative to differential equations.

– We have used our proof calculus to verify collision freedom in a distributed
car control system, where new cars may appear dynamically on the road.

This work constitutes the logical foundation for analysis of distributed hybrid
systems. Since distributed hybrid control is the key to control numerous ad-
vanced systems, analytic approaches have significant potential for applications.

Our verification approach for distributed hybrid systems is a fundamental
extension compared to previous approaches. In much the same way as first-order
logic increases the expressive power over propositional logic (quantifiers and
function symbols are required to express properties of unbounded structures),
QdL increases the expressive power over its predecessors (because first-order
functions and quantifiers in the dynamics of QHPs are required to characterize
systems with unbounded and changing dimensions).

2 Related Work

Multi-party distributed control has been suggested for car control [1] and air
traffic control [2]. Due to limits in verification technology, no formal analysis of

472 André Platzer

the distributed hybrid dynamics has been possible for these systems yet. Analysis
results include discrete message handling [1] or collision avoidance for two partic-
ipants [2]. In distributed car control and air traffic control systems, appearance
of new participants is a major unsolved challenge for formal verification.

The importance of understanding dynamic / reconfigurable distributed hy-
brid systems was recognized in modeling languages SHIFT [6] and R-Charon [8].
They focused on simulation / compilation [6] or the development of a semantics
[8], so that no verification is possible yet. For stochastic simulation see [9], where
soundness has not been proven, because ensuring coverage is difficult.

For distributed hybrid systems, even giving a formal semantics is very chal-
lenging [14, 7, 8, 15]! Zhou et al. [14] gave a semantics for a hybrid version of CSP
in the Extended Duration Calculus. Rounds [7] gave a semantics in a rich set
theory for a spatial logic for a hybrid version of the π-calculus. In the hybrid
π-calculus, processes interact with a continuously changing environment, but
cannot themselves evolve continuously, which would be crucial to capture the
physical movement of traffic agents. From the semantics alone, no verification is
possible in these approaches, except perhaps by manual semantic reasoning.

Other process-algebraic approaches, like χ [15], have been developed for mod-
eling and simulation. Verification is still limited to small fragments that can be
translated directly to other verification tools like PHAVer or UPPAAL, which
have fixed dimensions and restricted dynamics (no distributed hybrid systems).

Our approach is completely different. It is based on first-order structures and
dynamic logic. We focus on developing a logic that supports distributed hybrid
dynamics and is amenable to automated theorem proving in the logic itself.

Our previous work and other verification approaches for static hybrid sys-
tems cannot verify distributed hybrid systems. Distributed hybrid systems may
have an unbounded and changing number of components/participants, which
cannot be represented with any fixed number of dimensions of the state space.
In distributed car control, for instance, there is no prior limit on the number of
cars on the street. Even when there is a limit, explicit replication of the system,
say, 100 times, does not yield a scalable verification approach.

Approaches for distributed systems [4] do not cover hybrid systems, because
the addition of differential equations to distributed systems is even more chal-
lenging than the addition of differential equations to discrete dynamics.

3 Syntax of QdL

As a formal logic for specifying and verifying correctness properties of distributed
hybrid systems, we introduce quantified differential dynamic logic (QdL). QdL
combines dynamic logic for reasoning about system runs [10] with many-sorted
first-order logic for reasoning about all (∀i :C φ) or some (∃i :C φ) objects of
a sort C, e.g., the sort of all cars. The most important defining characteristic
of QdL is that its system model of quantified hybrid programs (QHP) supports
quantified operations that affect all objects of a sort C at once. If C is the sort
of cars, QHP ∀i :C a(i) := a(i) + 1 increases the respective accelerations a(i) of

Quantified Differential Dynamic Logic for Distributed Hybrid Systems 473

all cars i at once. QHP ∀i :C v(i)′ = a(i) represents a continuous evolution of
the respective velocities v(i) of all cars at once according to their acceleration.
Quantified assignments and quantified differential equation systems are crucial
for representing distributed hybrid systems where an unbounded number of ob-
jects co-evolve simultaneously. Note that we use the same quantifier notation
∀i :C for quantified operations in programs and for logical formulas.

We model the appearance of new participants in the distributed hybrid sys-
tem, e.g., new cars entering the road, by a program n := newC. It creates a
new object of type C, thereby extending the range of subsequent quantified as-
signments or differential equations ranging over created objects of type C. With
quantifiers and function terms, new can be handled in a modular way (Section 5).

3.1 Quantified Differential Dynamic Logic

Sorts QdL supports a (finite) number of object sorts, e.g., the sort of all cars. For
continuous quantities of distributed hybrid systems like positions or velocities,
we add the sort R for real numbers. See previous work [12] for subtyping of sorts.

Terms QdL terms are built from a set of (sorted) function/variable symbols
as in many-sorted first-order logic. Unlike in first-order logic, the interpretation
of function symbols can change by running QHPs. Even objects may appear
or disappear while running QHPs. We use function symbol

∃
(·) to distinguish

between objects i that actually exist and those that have not been created yet,
depending on the value of

∃

(i), which may change its interpretation. We use
0, 1,+,−, · with the usual notation and fixed semantics for real arithmetic. For
n ≥ 0 we abbreviate f(s1, . . . , sn) by f(s) using vectorial notation and we use
s = t for element-wise equality.

Formulas The formulas of QdL are defined as in first-order dynamic logic plus
many-sorted first-order logic by the following grammar (φ, ψ are formulas, θ1, θ2
are terms of the same sort, i is a variable of sort C, and α is a QHP):

φ, ψ ::= θ1 = θ2 | θ1 ≥ θ2 | ¬φ | φ ∧ ψ | ∀i :C φ | ∃i :C φ | [α]φ | 〈α〉φ

We use standard abbreviations to define ≤, >,<,∨,→. Sorts C 6= R have no
ordering and only θ1 = θ2 is allowed. For sort R, we abbreviate ∀x :R φ by ∀xφ.
In the following, all formulas and terms have to be well-typed. QdL formula [α]φ
expresses that all states reachable by QHP α satisfy formula φ. Likewise, 〈α〉φ
expresses that there is at least one state reachable by α for which φ holds.

For short notation, we allow conditional terms of the form ifφ then θ1 else θ2 fi

(where θ1 and θ2 have the same sort). This term evaluates to θ1 if the formula
φ is true and to θ2 otherwise. We consider formulas with conditional terms as
abbreviations, e.g., ψ(ifφ then θ1 else θ2 fi) for (φ→ ψ(θ1)) ∧ (¬φ→ ψ(θ2)).

474 André Platzer

Example A major challenge in distributed car control systems [1] is that they
do not follow fixed, static setups. Instead, new situations can arise dynamically
that change structure and dimension of the system whenever new cars appear on
the road from on-ramps or leave it; see Fig. 1. As a running example, we model
a distributed car control system DCCS . First, we consider QdL properties.

If i is a term of type C (for cars), let x(i) denote the position of car i, v(i)
its current velocity, and a(i) its current acceleration. A state is collision-free if
all cars are at different positions, i.e., ∀i6=j :C x(i)6=x(j). The following QdL
formula expresses that the system DCCS controls cars collision-free:

(∀i, j :C M(i, j)) → [DCCS] ∀i6=j :C x(i)6=x(j) (1)

It says that DCCS controlled cars are always in a collision-free state (postcon-
dition), provided that DCCS starts in a state satisfying M(i, j) for all cars i, j
(precondition). Formula M(i, j) characterizes a simple compatibility condition:
for different cars i 6= j, the car that is further down the road (i.e., with greater
position) neither moves slower nor accelerates slower than the other car, i.e.:

M(i, j) ≡ i 6= j →
(
(x(i) < x(j) ∧ v(i) ≤ v(j) ∧ a(i) ≤ a(j))

∨ (x(i) > x(j) ∧ v(i) ≥ v(j) ∧ a(i) ≥ a(j))
)

(2)

3.2 Quantified Hybrid Programs

As a system model for distributed hybrid systems, we introduce quantified hybrid
programs (QHP). These are regular programs from dynamic logic [10] to which
we add quantified assignments and quantified differential equation systems for
distributed hybrid dynamics. From these, QHPs are built like a Kleene algebra
with tests [16]. QHPs are defined by the following grammar (α, β are QHPs, θ a
term, i a variable of sort C, f is a function symbol, s is a vector of terms with
sorts compatible to f , and χ is a formula of first-order logic):

α, β ::= ∀i :C f(s) := θ | ∀i :C f(s)′ = θ&χ | ?χ | α ∪ β | α;β | α∗

Quantified State Change The effect of quantified assignment ∀i :C f(s) := θ
is an instantaneous discrete jump assigning θ to f(s) simultaneously for all ob-
jects i of sort C. The effect of quantified differential equation ∀i :C f(s)′ = θ&χ
is a continuous evolution where, for all objects i of sort C, all differential equa-
tions f(s)′ = θ hold and formula χ holds throughout the evolution (the state
remains in the region described by χ). The dynamics of QHPs changes the in-
terpretation of terms over time: f(s)′ is intended to denote the derivative of the
interpretation of the term f(s) over time during continuous evolution, not the
derivative of f(s) by its argument s. For f(s)′ to be defined, we assume f is an
R-valued function symbol. For simplicity, we assume that f does not occur in s.
In most quantified assignments/differential equations s is just i. Time itself is
implicit. If a clock variable t is needed in a QHP, it can be axiomatized by t′ = 1,
which is equivalent to ∀i :C t′ = 1 where i does not occur in t. For such vacuous
quantification (i does not occur anywhere), we may omit ∀i :C from assignments
and differential equations. Similarly, we may omit vectors s of length 0.

Quantified Differential Dynamic Logic for Distributed Hybrid Systems 475

Regular Programs The effect of test ?χ is a skip (i.e., no change) if formula χ is
true in the current state and abort (blocking the system run by a failed assertion),
otherwise. Nondeterministic choice α ∪ β is for alternatives in the behavior of
the distributed hybrid system. In the sequential composition α;β, QHP β starts
after α finishes (β never starts if α continues indefinitely). Nondeterministic
repetition α∗ repeats α an arbitrary number of times, possibly zero times.

QHPs (with their semantics and our proof rules) can be extended to systems
of quantified differential equations, simultaneous assignments to multiple func-
tions f, g, or statements with multiple quantifiers (∀i :C ∀j :D . . .). To simplify
notation, we do not focus on these cases, which are vectorial extensions [5, 12].

Example Continuous movement of position x(i) of car i with acceleration a(i)
is expressed by differential equation x(i)′′ = a(i), which corresponds to the first-
order differential equation system x(i)′ = v(i), v(i)′ = a(i) with velocity v(i).
Simultaneous movement of all cars with their respective accelerations a(i) is
expressed by the QHP ∀i :C (x(i)′′ = a(i)) where quantifier ∀i :C ranges over
all cars, such that all cars co-evolve at the same time.

In addition to continuous dynamics, cars have discrete control. In the follow-
ing QHP, discrete and continuous dynamics interact (repeatedly by the ∗):(
∀i :C (a(i) := if ∀j :C far(i, j) then a else −b fi); ∀i :C (x(i)′′ = a(i))

)∗
First, all cars i control their acceleration a(i). Each car i chooses maximum ac-
celeration a ≥ 0 for a(i) if its distance to all other cars j is far enough (some
condition far(i, j)). Otherwise, i chooses full braking −b < 0. After all accel-
erations have been set, all cars move continuously along ∀i :C (x(i)′′ = a(i)).
Accelerations may change repeatedly, because the repetition operator ∗ can re-
peat the QHP when the continuous evolution stops at any time.

4 Semantics of QdL

The QdL semantics is a constant domain Kripke semantics [17] with first-order
structures as states that associate total functions of appropriate type with func-
tion symbols. In constant domain, all states share the same domain for quanti-
fiers. In particular, we choose to represent object creation not by changing the
domain of states, but by changing the interpretation of the createdness flag

∃

(i)
of the object denoted by i. With

∃

(i), object creation is definable (Section 5).

States A state σ associates an infinite set σ(C) of objects with each sort C, and
it associates a function σ(f) of appropriate type with each function symbol f ,
including

∃

(·). For simplicity, σ also associates a value σ(i) of appropriate type
with each variable i. The domain of R and the interpretation of 0, 1,+,−, · is
that of real arithmetic. We assume constant domain for each sort C: all states
σ, τ share the same infinite domains σ(C) = τ(C). Sorts C 6= D are disjoint:
σ(C) ∩ σ(D) = ∅. The set of all states is denoted by S. The state σei agrees
with σ except for the interpretation of variable i, which is changed to e.

476 André Platzer

Formulas We use σ[[θ]] to denote the value of term θ at state σ. Especially,
σei [[θ]] denotes the value of θ in state σei , i.e., in state σ with i interpreted as e.
Further, ρ(α) denotes the state transition relation of QHP α as defined below.
The interpretation σ |= φ of QdL formula φ with respect to state σ is defined as:

1. σ |= (θ1 = θ2) iff σ[[θ1]] = σ[[θ2]]; accordingly for ≥.
2. σ |= φ ∧ ψ iff σ |= φ and σ |= ψ; accordingly for ¬.
3. σ |= ∀i :C φ iff σei |= φ for all objects e ∈ σ(C).
4. σ |= ∃i :C φ iff σei |= φ for some object e ∈ σ(C).
5. σ |= [α]φ iff τ |= φ for all states τ with (σ, τ) ∈ ρ(α).
6. σ |= 〈α〉φ iff τ |= φ for some τ with (σ, τ) ∈ ρ(α).

Programs The transition relation, ρ(α) ⊆ S × S, of QHP α specifies which
state τ ∈ S is reachable from σ ∈ S by running QHP α. It is defined inductively:

1. (σ, τ) ∈ ρ(∀i :C f(s) := θ) iff state τ is identical to σ except that at each posi-
tion o of f : if σei [[s]] = o for some object e ∈ σ(C), then τ(f)

(
σei [[s]]

)
= σei [[θ]].

If there are multiple objects e giving the same position σei [[s]] = o, then all
of the resulting states τ are reachable.

2. (σ, τ) ∈ ρ(∀i :C f(s)′ = θ&χ) iff, there is a function ϕ:[0, r]→ S for some
r ≥ 0 with ϕ(0) = σ and ϕ(r) = τ satisfying the following conditions. At
each time t ∈ [0, r], state ϕ(t) is identical to σ, except that at each position
o of f : if σei [[s]] = o for some object e ∈ σ(C), then, at each time ζ ∈ [0, r]:

– The differential equations hold and derivatives exist (trivial for r = 0):

d (ϕ(t)
e
i [[f(s)]])

dt
(ζ) = (ϕ(ζ)

e
i [[θ]])

– The evolution domain is respected: ϕ(ζ)
e
i |= χ.

If there are multiple objects e giving the same position σei [[s]] = o, then all
of the resulting states τ are reachable.

3. ρ(?χ) = {(σ, σ) : σ |= χ}
4. ρ(α ∪ β) = ρ(α) ∪ ρ(β)
5. ρ(α;β) = {(σ, τ) : (σ, z) ∈ ρ(α) and (z, τ) ∈ ρ(β) for a state z}
6. (σ, τ) ∈ ρ(α∗) iff there is an n ∈ N with n ≥ 0 and there are states σ =
σ0, . . . , σn = τ such that (σi, σi+1) ∈ ρ(α) for all 0 ≤ i < n.

The semantics is explicit change: nothing changes unless an assignment or
differential equation specifies how. In cases 1–2, only f changes and only at posi-
tions of the form σei [[s]] for some interpretation e ∈ σ(C) of i. If there are multiple
such e that affect the same position o, any of those changes can take effect by a
nondeterministic choice. QHP ∀i :C x := a(i) may change x to any a(i). Hence,
[∀i :C x := a(i)]φ(x) ≡ ∀i :C φ(a(i)) and 〈∀i :C x := a(i)〉φ(x) ≡ ∃i :C φ(a(i)).
Similarly, x can evolve along ∀i :C x′ = a(i) with any of the slopes a(i). But
evolutions cannot start with slope a(c) and then switch to a different slope a(d)
later. Any choice for i is possible but i remains unchanged during each evolution.

Quantified Differential Dynamic Logic for Distributed Hybrid Systems 477

We call a quantified assignment ∀i :C f(s) := θ or a quantified differential
equation ∀i :C f(s)′ = θ&χ injective iff there is at most one e satisfying cases 1–
2. We call quantified assignments and quantified differential equations schematic
iff s is i (thus injective) and the only arguments to function symbols in θ are
i. Schematic quantified differential equations like ∀i :C f(i)′ = a(i) &χ are very
common, because distributed hybrid systems often have a family of similar dif-
ferential equations replicated for multiple participants i. Their synchronization
typically comes from discrete communication on top of their continuous dynam-
ics, less often from complicated, physically coupled differential equations.

5 Actual Existence and Object Creation

Actual Existence For the QdL semantics, we chose constant domain semantics,
i.e., all states share the same domains. Thus quantifiers range over all possible
objects (possibilist quantification) not just over active existing objects (actualist
quantification in varying domains) [17]. In order to distinguish between actual
objects that exist in a state, because they have already been created and can
now actively take part in its evolution, versus possible objects that still passively
await creation, we use function symbol

∃

(·). Symbol

∃

(·) is similar to existence
predicates in first-order modal logic [17], but its value can be assigned to in
QHPs.

Object Creation For term i of type C 6= R,
∃

(i) = 1 represents that the object
denoted by i has been created and actually exists. We use

∃
(i) = 0 to represent

that i has not been created. Object creation amounts to changing the interpre-
tation of

∃

(i). For an object denoted by i that has not been created (

∃

(i) = 0),
object creation corresponds to the state change caused by assignment

∃

(i) := 1.
With quantified assignments and function symbols, object creation is definable:

n := newC ≡ (∀j :C n := j); ?(

∃

(n) = 0);

∃

(n) := 1

It assigns an arbitrary j of type C to n that did not exist before (

∃

(n) = 0) and
adjusts existence (

∃

(n) := 1). Disappearance of object i corresponds to

∃

(i) := 0.
Our choice avoids semantic subtleties of varying domains about the meaning of
free variables denoting non-existent objects as in free logics [17]. Denotation is
standard. Terms may just denote objects that have not been activated yet. This
is useful to initialize new objects (e.g., x(n) := 8) before activation (

∃

(n) := 1).

Actualist Quantifiers We define abbreviations for actualist quantifiers in for-
mulas / quantified assignments / quantified differential equations that range only
over previously created objects, similar to relativization in modal logic [17]:

∀i :C! φ ≡ ∀i :C (

∃

(i) = 1→ φ)

∃i :C! φ ≡ ∃i :C (

∃

(i) = 1 ∧ φ)

∀i :C! f(s) := θ ≡ ∀i :C f(s) := (if

∃

(i) = 1 then θ else f(s) fi)

∀i :C! f(s)′ = θ ≡ ∀i :C f(s)′ = (if

∃

(i) = 1 then θ else 0 fi) ≡ ∀i :C f(s)′ =

∃

(i)θ

478 André Platzer

The last 2 cases define quantified state change for actually existing objects using
conditional terms that choose effect θ if

∃

(i) = 1 and choose no effect (retaining
the old value f(s) or evolving with slope 0) if

∃

(i) = 0. Notation C! signifies that
the quantifier domain is restricted to actually existing objects of type C.

We generally assume that QHPs involve only quantified assignments / differ-
ential equations that are restricted to created objects, because real systems only
affect objects that are physically present, not those that will be created later. We
still treat actualist quantification over C! as a defined notion, in order to simplify
the semantics and proof calculus by separating object creation from quantified
state change rules in a modular way. If only finitely many objects have been
created in the initial state (say 0), then it is easy to see that only finitely many
new objects will be created with finitely many such QHP transitions, because
each quantified state change for C! only ranges over a finite domain then. We
thus assume

∃

(·) to have (unbounded but) finite support, i.e., each state only has
a finite number of positions i at which

∃

(i) = 1. This makes sense in practice,
because there is a varying but still finite numbers of participants (e.g., cars).

Example In order to restrict the dynamics and properties in the car control ex-
amples of Section 3 to created and physically present cars, we simply replace each
occurrence of ∀i :C with ∀i :C! . A challenging feature of distributed car con-
trol, however, is that new cars may appear dynamically from on-ramps (Fig. 1)
changing the set of active objects. To model this, we consider the following QHP:

DCCS ≡ (n := newC; (?∀i :C! M(i, n)); ∀i :C! (x(i)′′ = a(i)))
∗

(3)

It creates a new car n at an arbitrary position x(n) satisfying compatibility
condition M(i, n) with respect to all other created cars i. Hence DCCS allows
new cars to appear, but not drop right out of the sky in front of a fast car or run
at Mach 8 only 10ft away. When cars appear into the horizon from on-ramps,
this condition captures that a car is only allowed to join the lane (“appear” into
the model world) if it cannot cause a crash with other existing cars (Fig. 1).
Unboundedly many cars may appear during the operation of DCCS and change
the system dimension arbitrarily, because of the repetition operator ∗.

DCCS is simple but shows how properties of distributed hybrid systems can
be expressed in QdL. Structural dynamics corresponds to assignments to func-
tion terms. Say, f(i) is the car registered by communication as the car following
car i. Then a term d(i, f(i)), which denotes the minimum safety distance nego-
tiated between car i and its follower, is a crucial part of the system dynamics.
Restructuring the system in response to lane change corresponds to assigning a
new value to f(i), which impacts the value of d(i, f(i)) in the system dynamics.

6 Proof Calculus

In Fig. 2, we present a proof calculus for QdL formulas. We use the sequent no-
tation informally for a systematic proof structure. With finite sets of formulas

Quantified Differential Dynamic Logic for Distributed Hybrid Systems 479

for the antecedent Γ and succedent ∆, sequent Γ→∆ is an abbreviation for the
formula

∧
φ∈Γ φ →

∨
ψ∈∆ ψ. The calculus uses standard proof rules for proposi-

tional logic with cut rule (not shown). The proof rules are used backwards from
the conclusion (goal below horizontal bar) to the premisses (subgoals above bar).

In the calculus, we use substitutions that take effect within formulas and
programs (defined as usual). Only admissible substitutions are applicable, which
is crucial for soundness. An application of a substitution σ is admissible if no
replaced term θ occurs in the scope of a quantifier or modality binding a symbol
in θ or in its replacement σθ. A modality binds a symbol f iff it contains an
assignment to f (like ∀i :C f(s) := θ) or a differential equation containing a f(s)′

(like ∀i :C f(s)′ = θ). The substitutions in Fig. 2 that insert a term θ into φ(θ)
also have to be admissible for the proof rules to be applicable.

Regular Rules The next proof rules axiomatize sequential composition ([;],〈;〉),
nondeterministic choice ([∪],〈∪〉), and test ([?],〈?〉) of regular programs as in
dynamic logic [10]. Like other rules in Fig. 2, these rules do not contain sequent
symbol→, i.e., they can be applied to any subformula. These rules represent
(directed) equivalences: conclusion and premiss are equivalent.

Quantified Differential Equations Rules [′],〈′〉 handle continuous evolutions
for quantified differential equations with first-order definable solutions. Given
a solution for the quantified differential equation system with symbolic initial
values f(s), continuous evolution along differential equations can be replaced
with a quantified assignment ∀i :C S(t) corresponding to the solution (footnote 1
in Fig. 2), and an additional quantifier for evolution time t. In [′], postcondition
φ needs to hold for all evolution durations t. In 〈′〉, it needs to hold after some
duration t. The constraint on χ restricts the continuous evolution to remain in
the evolution domain region χ at all intermediate times t̃ ≤ t.

For schematic cases like ∀i :C f(i)′ = a(i), first-order definable solutions can
be obtained by adding argument i to first-order definable solutions of the de-
parametrized version f ′ = a. We only present proof rules for first-order definable
solutions of quantified differential equations here. See [11] for other proof rules.

Quantified Assignments Rules [:=],〈:=〉 handle quantified assignments (both
are equivalent for the injective case, i.e., a match for at most one i). Their effect
depends on whether the quantified assignment ∀i :C f(s) := θ matches f(u), i.e.,
there is a choice for i such that f(u) is affected by the assignment, because u is of
the form s for some i. If it matches, the premiss uses the term θ assigned to f(s)
instead of f(u), either for all possible i :C that match f(u) in case of [:=], or
for some of those i :C in case of 〈:=〉. Otherwise, the occurrence of f in φ(f(u))
will be left unchanged. Rules [:=],〈:=〉 make a case distinction on matching
by if-then-else. In all cases, the original quantified assignment ∀i :C f(s) := θ,
which we abbreviate by A, will be applied to u in the premiss, because the value
of argument u may also be affected by A, recursively. Rule skip characterizes

480 André Platzer

([;])
[α][β]φ

[α;β]φ

(〈;〉)
〈α〉〈β〉φ
〈α;β〉φ

([∪])
[α]φ ∧ [β]φ

[α ∪ β]φ

(〈∪〉)
〈α〉φ ∨ 〈β〉φ
〈α ∪ β〉φ

([?])
χ→ ψ

[?χ]ψ

(〈?〉)
χ ∧ ψ
〈?χ〉ψ

([′])
∀t≥0

(
(∀0≤t̃≤t [∀i :C S(t̃)]χ)→ [∀i :C S(t)]φ

)
[∀i :C f(s)′ = θ&χ]φ

1

(〈′〉)
∃t≥0

(
(∀0≤t̃≤t 〈∀i :C S(t̃)〉χ) ∧ 〈∀i :C S(t)〉φ

)
〈∀i :C f(s)′ = θ&χ〉φ

1

([:=])
if ∃i :C s = [A]u then∀i :C (s = [A]u→ φ(θ)) elseφ(f([A]u)) fi

φ([∀i :C f(s) := θ]f(u))
2

(〈:=〉)
if ∃i :C s = 〈A〉u then∃i :C (s = 〈A〉u ∧ φ(θ)) elseφ(f(〈A〉u)) fi

φ(〈∀i :C f(s) := θ〉f(u))
2

(skip)
Υ([∀i :C f(s) := θ]u)

[∀i :C f(s) := θ]Υ(u)
3

(ex)
true

∃n :C

∃

(n) = 0

([:∗])
∀j :C φ(θ)

[∀j :C n := θ]φ(n)
(〈:∗〉)

∃j :C φ(θ)

〈∀j :C n := θ〉φ(n)

(∃r)
Γ→φ(θ), ∃xφ(x),∆

Γ→∃xφ(x),∆
4

(∀l)
Γ, φ(θ),∀xφ(x)→∆
Γ,∀xφ(x)→∆

4

(∀r)
Γ→φ(f(X1, . . , Xn)),∆

Γ→∀xφ(x),∆
5

(∃l)
Γ, φ(f(X1, . . , Xn))→∆

Γ,∃xφ(x)→∆
5

(i∀)
QE(∀X,Y (if s = t thenΦ(X)→Ψ(X) elseΦ(X)→Ψ(Y) fi))

Φ(f(s))→Ψ(f(t))
6

(i∃)
QE(∃X

∧
i(Φi→Ψi))

Φ1→Ψ1 . . . Φn→Ψn

7

([]gen)
φ→ψ

Γ, [α]φ→[α]ψ,∆
(〈〉gen)

φ→ψ
Γ, 〈α〉φ→〈α〉ψ,∆ (ind)

φ→[α]φ

Γ, φ→[α∗]φ,∆

(con)
v > 0 ∧ ϕ(v)→ 〈α〉ϕ(v − 1)

Γ,∃v ϕ(v)→〈α∗〉∃v≤0ϕ(v),∆
8

1 t, t̃ are new variables, ∀i :C S(t) is the quantified assignment ∀i :C f(s) := ys(t) with
solutions ys(t) of the (injective) differential equations and f(s) as initial values.

2 Occurrence f(u) in φ(f(u)) is not in scope of a modality (admissible substitution)
and we abbreviate assignment ∀i :C f(s) := θ by A, which is assumed to be injective.

3 f 6= Υ and the quantified assignment ∀i :C f(s) := θ is injective. The same rule
applies for 〈∀i :C f(s) := θ〉 instead of [∀i :C f(s) := θ].

4 θ is an arbitrary term, often a new logical variable.
5 f is a new (Skolem) function and X1, . . , Xn are all free logical variables of ∀xφ(x).
6 X,Y are new variables of sort R. QE needs to be applicable in the premiss.
7 Among all open branches, the free (existential) logical variable X of sort R only

occurs in the branches Φi→Ψi. QE needs to be defined for the formula in the premiss,
especially, no Skolem dependencies on X occur.

8 logical variable v does not occur in α.

Fig. 2. Rule schemata of the proof calculus for quantified differential dynamic logic.

Quantified Differential Dynamic Logic for Distributed Hybrid Systems 481

that quantified assignments to f have no effect on all other operators Υ 6= f
(including other function symbols, ∧, if then else fi), so that only argument u is
affected by prefixing A but Υ remains unchanged.

Rules [:=],〈:=〉,skip also apply for assignments without quantifiers, which
correspond to vacuous quantification ∀i :C where i does not occur anywhere.
Rules [:∗],〈:∗〉 reduce nondeterministic assignments to universal or existential
quantification. For nondeterministic differential equations, see [11].

Object Creation Given our definition of newC as a QHP from Section 5, object
creation can be proven by the other proof rules in Fig. 2. In addition, axiom ex
expresses that, for sort C 6= R, there always is a new object n that has not been
created yet (

∃

(n) = 0), because domains are infinite.

Quantifiers For quantifiers, we cannot just use standard rules [18], because
these are for uninterpreted first-order logic and work by instantiating quanti-
fiers, eagerly as in ground tableaux or lazily by unification as in free variable
tableaux [18]. QdL is based on first-order logic interpreted over the reals [19]. A
formula like ∃a :R ∀x :R (x2 + a > 0) cannot be proven by instantiating quan-
tifiers but is still valid for reals. Unfortunately, the decision procedure for real
arithmetic, quantifier elimination (QE) in the theory of real-closed fields [19],
cannot be applied to formulas with modalities either, because these are quan-
tified reachability statements. Even in discrete dynamic logic, quantifiers plus
modalities make validity Π1

1 -complete [10]. Also QE cannot handle sorts C 6= R.
Instead, our QdL proof rules combine quantifier handling of many-sorted

logic based on instantiation with theory reasoning by QE for the theory of reals.
Figure 2 shows rules for quantifiers that combine with decision procedures for
real-closed fields. Classical instantiation is sound for sort R, just incomplete.

Rules ∃r and ∀l instantiate with arbitrary terms θ, including a new free
variable X, where ∃r and ∀l become the usual γ-rules [18, 17]. Rules ∀r and
∃l correspond to the δ-rule [18]. As in our previous work [5], rules i∀ and i∃
reintroduce and eliminate quantifiers over R once QE is applicable, as the re-
maining constraints are first-order in the respective variables. Unlike in previous
work, however, functions and different argument vectors can occur in QdL. If
the argument vectors s and t in i∀ have the same value, the same variable X
can be reintroduced for f(s) and f(t), otherwise different variables X 6= Y have
to be used. Rule i∃ merges all proof branches containing (existential) variable
X, because X has to satisfy all branches simultaneously. It thus has multiple
conclusions. See [5] for merging and for lifting QE to the presence of function
symbols, including formulas that result from the base theory by substitution.

Global Rules The rules in the last block depend on the truth of their pre-
misses in all states reachable by α, thus the context Γ,∆ cannot be used in the
premiss. Rules []gen,〈〉gen are Gödel generalization rules and ind is an induc-
tion schema for loops with inductive invariant φ [10]. Similarly, con generalizes
Harel’s convergence rule [10] to the hybrid case with decreasing variant ϕ [5].

482 André Platzer

7 Soundness and Completeness

The verification problem for distributed hybrid systems has three independent
sources of undecidability. Thus, no verification technique can be effective. Hence,
QdL cannot be effectively axiomatizable. Both its discrete and its continuous
fragments alone are subject to Gödel’s incompleteness theorem [5]. The fragment
with only structural and dimension-changing dynamics is not effective either, be-
cause it can encode two-counter machines. The standard way to show adequacy
of proof calculi for problems that are not effective is to prove completeness rel-
ative to an oracle for handling a fragment of the logic. Unlike in Cook/Harel
relative completeness for discrete programs [10], however, QdL cannot be com-
plete relative to the fragment of the data logic (R), because real arithmetic is
decidable. Instead, we prove that our QdL calculus is a complete axiomatization
relative to an oracle for the fragment of QdL that has only quantified differential
equations in modalities. We replace rules [′],〈′〉 with an oracle and show that the
QdL calculus would be complete if only we had complete replacements for [′],〈′〉.
The calculus completely lifts any approximation of this oracle to the full QdL!

Theorem 1 (Axiomatization). The calculus in Fig. 2 is a sound and complete
axiomatization of QdL relative to quantified differential equations; see [20].

This shows that properties of distributed hybrid systems can be proven to ex-
actly the same extent to which properties of quantified differential equations
can be proven. Proof-theoretically, the QdL calculus completely lifts verification
techniques for quantified continuous dynamics to distributed hybrid dynamics.

8 Distributed Car Control Verification

With the QdL calculus and the compatibility condition M(i, j) from eqn. (2),
we can easily prove collision freedom in the distributed car control system (3):

(∀i, j :C! M(i, j))→
[(n := newC; ?∀i :C! M(i, n);∀i :C! (x(i)′′ = a(i)))

∗
] ∀i6=j :C! x(i)6=x(j)

See [20] for a formal QdL proof of this QdL formula, which proves collision
freedom despite dynamic appearance of new cars, following the pattern of (1).

9 Conclusions

We have introduced a system model and semantics for dynamic distributed hy-
brid systems together with a compositional verification logic and proof calculus.
We believe this is the first formal verification approach for distributed hybrid
dynamics, where structure and dimension of the system can evolve jointly with
the discrete and continuous dynamics. We have proven our calculus to be a
sound and complete axiomatization relative to quantified differential equations.

Quantified Differential Dynamic Logic for Distributed Hybrid Systems 483

Our calculus proves collision avoidance in distributed car control with dynamic
appearance of new cars on the road, which is out of scope for other approaches.

Future work includes modular concurrency in distributed hybrid systems,
which is already challenging in discrete programs.
Acknowledgments I want to thank Frank Pfenning for his helpful comments.

References

1. Hsu, A., Eskafi, F., Sachs, S., Varaiya, P.: Design of platoon maneuver protocols
for IVHS. PATH Research Report UCB-ITS-PRR-91-6, UC Berkeley (1991)

2. Dowek, G., Muñoz, C., Carreño, V.A.: Provably safe coordinated strategy for
distributed conflict resolution. In: AIAA Proceedings, AIAA-2005-6047. (2005)

3. Henzinger, T.A.: The theory of hybrid automata. In: LICS, IEEE (1996) 278–292
4. Attie, P.C., Lynch, N.A.: Dynamic input/output automata: A formal model for

dynamic systems. In Larsen, K.G., Nielsen, M., eds.: CONCUR. Volume 2154 of
LNCS., Springer (2001) 137–151

5. Platzer, A.: Differential dynamic logic for hybrid systems. J Autom Reas 41(2)
(2008) 143–189

6. Deshpande, A., Göllü, A., Varaiya, P.: SHIFT: A formalism and a programming
language for dynamic networks of hybrid automata. In: Hybrid Systems. Volume
1273 of LNCS., Springer (1996) 113–133

7. Rounds, W.C.: A spatial logic for the hybrid π-calculus. In Alur, R., Pappas, G.J.,
eds.: HSCC. Volume 2993 of LNCS., Springer (2004) 508–522

8. Kratz, F., Sokolsky, O., Pappas, G.J., Lee, I.: R-Charon, a modeling language for
reconfigurable hybrid systems. [21] 392–406

9. Meseguer, J., Sharykin, R.: Specification and analysis of distributed object-based
stochastic hybrid systems. [21] 460–475

10. Harel, D., Kozen, D., Tiuryn, J.: Dynamic logic. MIT Press, Cambridge (2000)
11. Platzer, A.: Differential-algebraic dynamic logic for differential-algebraic programs.

J. Log. Comput. 20(1) (2010) 309–352 DOI 10.1093/logcom/exn070.
12. Beckert, B., Platzer, A.: Dynamic logic with non-rigid functions: A basis for object-

oriented program verification. In Furbach, U., Shankar, N., eds.: IJCAR. Volume
4130 of LNCS., Springer (2006) 266–280

13. Rümmer, P.: Sequential, parallel, and quantified updates of first-order structures.
In Hermann, M., Voronkov, A., eds.: LPAR. Volume 4246 of LNCS., Springer
(2006) 422–436

14. Chaochen, Z., Ji, W., Ravn, A.P.: A formal description of hybrid systems. In Alur,
R., Henzinger, T.A., Sontag, E.D., eds.: Hybrid Systems. Volume 1066 of LNCS.,
Springer (1995) 511–530

15. van Beek, D.A., Man, K.L., Reniers, M.A., Rooda, J.E., Schiffelers, R.R.H.: Syntax
and consistent equation semantics of hybrid Chi. J. Log. Algebr. Program. 68(1-2)
(2006) 129–210

16. Kozen, D.: Kleene algebra with tests. ACM TOPLAS 19(3) (1997) 427–443
17. Fitting, M., Mendelsohn, R.L.: First-Order Modal Logic. Kluwer (1999)
18. Fitting, M.: First-Order Logic and Automated Theorem Proving. Springer (1996)
19. Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier

elimination. J. Symb. Comput. 12(3) (1991) 299–328
20. Platzer, A.: Quantified differential dynamic logic for distributed hybrid systems.

Technical Report CMU-CS-10-126, SCS, Carnegie Mellon University (2010)
21. Hespanha, J.P., Tiwari, A., eds.: HSCC. Volume 3927 of LNCS., Springer (2006)

