
A First Complete Algorithm for
Real Quantifier Elimination in Isabelle/HOL
Katherine Kosaian

Carnegie Mellon University
Pittsburgh, PA, USA
kcordwel@cs.cmu.edu

Yong Kiam Tan
Carnegie Mellon University

Pittsburgh, PA, USA
yongkiat@alumni.cmu.edu

André Platzer
Karlsruhe Institute of Technology

Karlsruhe, Germany
platzer@kit.edu

Abstract
We formalize a multivariate quantifier elimination (QE) algo-
rithm in the theorem prover Isabelle/HOL. Our algorithm is
complete, in that it is able to reduce any quantified formula
in the first-order logic of real arithmetic to a logically equiv-
alent quantifier-free formula. The algorithm we formalize is
a hybrid mixture of Tarski’s original QE algorithm and the
Ben-Or, Kozen, and Reif algorithm, and it is the first complete
multivariate QE algorithm formalized in Isabelle/HOL.

CCS Concepts: • Theory of computation→ Logic and
verification.

Keywords: quantifier elimination, theorem proving, real
arithmetic, multivariate polynomials

ACM Reference Format:
Katherine Kosaian, Yong Kiam Tan, and André Platzer. 2023. A
First Complete Algorithm for Real Quantifier Elimination in Is-
abelle/HOL. In Proceedings of the 12th ACM SIGPLAN International
Conference on Certified Programs and Proofs (CPP ’23), January 16–
17, 2023, Boston, MA, USA. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3573105.3575672

1 Introduction
Real arithmetic problems appear in many application do-
mains, including safety-critical application domains, such as
the verification of cyber-physical systems (CPS). Very often,
these problems involve ∃ and ∀ quantifiers, which pose the-
oretical and practical computational challenges [14, 35, 41].
The best known way of handling arbitrary quantified state-
ments is with quantifier elimination (QE), which transforms
quantified statements into logically equivalent quantifier-
free formulas, which are then evaluated. Alfred Tarski [40]
proved that the theory of real-closed fields is decidable, by

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
CPP ’23, January 16–17, 2023, Boston, MA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0026-2/23/01.
https://doi.org/10.1145/3573105.3575672

establishing that algorithms to perform quantifier elimina-
tion on formulas in the first-order logic of real arithmetic
exist; in practice, these algorithms tend to be complicated.
Given the safety-critical nature of real arithmetic ques-

tions [34], it is not surprising that considerable attention has
been given to formally verifying algorithms for real QE [8,
12, 17, 19, 25, 27, 29–32, 35, 37]. However, while considerable
progress has been made on verifying univariate QE methods
(methods for QE problems that only involve one variable,
and so have at most one quantifier) [12, 17, 25, 30, 31], and
while a variety of works have focused on verifying special-
purpose QE methods (that is, methods which target some
fragment of multivariate QE problems) [19, 32, 35, 37], only
limited progress has been made on verifying complete mul-
tivariate QE algorithms (i.e., algorithms that are capable of
resolving any real QE problem). Multivariate QE algorithms
are significantly more challenging. Multivariate polynomials
are unlike univariate polynomials, because they may have
infinitely many roots, their leading coefficients are them-
selves polynomials and may have zeros, polynomial division
is not always unique, and ideal computations use Gröbner
bases instead of Euclidian division. Additionally, whereas
univariate QE problems only involve a single quantifier and
always reduce to True or False, multivariate QE problems can
involve nested (alternating) quantifiers and free variables.

To our knowledge, the main published progress on verify-
ing complete multivariate QE algorithms in theorem provers
is threefold: first, Mahboubi [27] implemented (but did not yet
verify) the fastest-known QE algorithm, cylindrical algebraic
decomposition (CAD) [9] in Coq; second, McLaughlin and
Harrison developed a proof-producing (but not verified) pro-
cedure based on the Cohen-Hörmander algorithm in HOL
Light [29]; finally, Cohen and Mahboubi verified Tarski’s
original QE algorithm in Coq [6, 8]. Unfortunately, both
Tarski’s original QE algorithm and the Cohen-Hörmander
algorithm have non-elementary complexity (i.e. the complex-
ity is not bounded by any tower of powers of two). While

1

https://orcid.org/0000-0002-9336-6006
https://orcid.org/0000-0001-7033-2463
https://orcid.org/0000-0001-7238-5710
https://doi.org/10.1145/3573105.3575672
https://doi.org/10.1145/3573105.3575672

CPP ’23, January 16–17, 2023, Boston, MA, USA Katherine Kosaian, Yong Kiam Tan, and André Platzer.

McLaughlin and Harrison’s procedure can solve simple mi-
crobenchmarks, they acknowledge considerable experimen-
tal limitations [29].1 Similarly, Cohen andMahboubi consider
their work to be primarily a theoretical contribution [8].
The dearth of efficient formally-verified support for QE

is in part a consequence of the intricacy of QE algorithms.
There is arguably a tradeoff [37] between the computational
efficiency of an algorithm and the tractability of verification.
Most notably, the CAD algorithm is efficient but complex and
tremendously difficult to verify; only the significantly sim-
pler univariate case has been fully verified (independently,
in Isabelle/HOL [25] and PVS [30]). Further, in order for
CAD to realize its full potential for efficiency, many further
insights [3, 10, 16, 28] beyond the original development [9]
are needed, and improving CAD and algorithms for real QE
at large is an active area of research.
The lack of efficient verified QE methods is also a con-

sequence of the challenge posed by verification. Working
within the formal setting of a theorem prover adds both a
considerable layer of rigor but also intricacy, which is why
even small progress needs significant effort. For example,
Mahboubi [27] discusses the many challenges involved in
implementing CAD in Coq—a significantly more arduous
and involved task than implementing CAD in an unverified
computer algebra system (which also took decades [4, 39]).
In our work, we target a potential sweet spot within the

tradeoff between complexity and verification amenability
[37] by verifying a completemultivariate QE algorithm loosely
based on the Ben-Or, Kozen, and Reif (BKR) algorithm [2] (but
presently with less efficiency). The BKR algorithm shares
some theoretical similarity to Tarski’s original QE algorithm
(in that it uses a matrix equation to store sign information
for polynomials), but it includes an additional reduction step
for greater efficiency. Although the multivariate complexity
analysis in the paper describing BKR was flawed [5], ren-
dering its stated bounds inaccurate, this was nevertheless
an influential algorithm which was later extended into a
number of improved and/or generalized variants with highly
compelling parallel complexity bounds, including ones by
Renegar [36], Canny [5], and Cucker et al. [13]. As prior
work [21] has drawn a strong distinction between compu-
tational complexity and practical efficiency (with particular
attention to Renegar [36]), these complexity bounds will
not necessarily translate into immediate practical efficiency.
However, a followup work [20] argued for the potential of
algorithms with strong theoretical complexity bounds to re-
alize efficiency on fragments of real arithmetic, and these
algorithms remain influential.
Our prior work [12] verified the univariate case of BKR

in Isabelle/HOL; we argue there that BKR is likely more
1This is not only due to the complexity of the Cohen-Hörmander algorithm,
but also because proof-producing algorithms are not verified once and for
all but, instead, have to produce a new proof of correctness per question,
which incurs significant overhead compared to fully verified ones [29, 35].

amenable to formalization than CAD, and potentially comple-
mentary to CAD. We now extend this development [11, 12]
into a multivariate QE algorithm. Our multivariate algorithm
is something of a hybrid: it is a mixture of Tarski’s original
QE algorithm [40] and BKR [2], with insights from Rene-
gar [36]. It currently does not exploit all of the reduction
from BKR, which limits its efficiency. Thus, like Cohen and
Mahboubi [8], we view our contribution as being primarily
theoretical from the perspective of efficiency. However, we
also view our algorithm as being a significant stepping stone
towards the BKR algorithm and, eventually, its variants. In
particular, it would be of considerable interest to verify a
method that more closely realizes the parallel complexity
bounds of Renegar [36]. Such a method will naturally take
time to develop, and will likely only be realized in stages.
Contributions. (1) Our work is the first complete multi-

variate QE algorithm formalized in Isabelle/HOL. (2) To our
knowledge, it is the first formalized multivariate QE algo-
rithm to include insights from BKR, and it is a first step
towards a less complex verified algorithm (e.g. in the style of
Renegar [36]), which could ideally complement an eventual
formalized algorithm based on CAD. (3) Because much of
the source material is either sparsely written (e.g. [2]) or
highly mathematical (e.g. [1, 36]), it was not a priori obvi-
ous what the formalized algorithm should look like (this
formalization barrier is discussed in Sec. 3.1). The rigorous
nature of verification forced us to clearly identify the essen-
tial building blocks of the algorithm: In our formalization,
all definitions are mathematically precise and verifiable, and
all their correctness properties are identified and proved.

The formalization is approximately 8500 lines of code and
is available on the Archive of Formal Proofs (AFP) [23]. It in-
cludes various advances to Isabelle/HOL’s existing libraries,
particularly the library for multivariate polynomials, which
could help pave the way for future multivariate QE algo-
rithms in Isabelle/HOL.

2 Quantifier Elimination
Our QE algorithm works by eliminating one quantifier at a
time. Hence, if we have polynomials in 𝑛 + 1 variables, we
can consider them as univariate polynomials in a variable
of interest with coefficient polynomials in 𝑛 variables. For
example, if 𝑥 is our variable of interest, then we can treat
3𝑥𝑦𝑧2 + 6𝑥2𝑤𝑣 + 5𝑥𝑦 + 1 as the following polynomial in 𝑥 :
(6𝑤𝑣)𝑥2+(3𝑦𝑧2+5𝑦)𝑥+1. For clarity, andWLOG, we assume
throughout this section that our variable of interest is 𝑥 .
The key component of both multivariate and univariate

BKR is a sign-determination algorithm which is concerned
with finding all consistent sign assignments to a set of poly-
nomials {𝑞1, . . . , 𝑞𝑘 }. A sign assignment is a mapping that
assigns each polynomial to a sign, i.e. positive, zero, or nega-
tive (represented by 1, 0, and −1). A sign assignment is called
consistent if it is actually realized at some real point.

2

A First Complete Algorithm for Real Quantifier Elimination in Isabelle/HOL CPP ’23, January 16–17, 2023, Boston, MA, USA

Assuming: y2 > 0
Signs to (y2x, x2 + y2):

(-, +), (0, +), (+, +)

Assuming: y2 = 0
Signs to (y2x, x2 + y2):

(0, +), (0, 0)

Assuming: y2 < 0
Signs to (y2x, x2 + y2):

(+, +), (-, -), (0, -) , (-, 0),
(+, 0), (-, +), (+, -)

(0, -) when x is 0
(-, 0) when x = +y; (0, -) when x = -y
(-, +) when x is large and posi8ve
(+, -) when x is small and posi8ve
(+, +) when x is large and nega8ve
(-, -) when x is small and nega8ve

(-, -) to (-, 0) to (-, -) to (0, -), to (+, -) to (0, +) to
(+, +)

Output: ∃y. (y2 > 0)

Input:
∃y.∀x. (xy2 > 0 ∨ y2 + x2 > 0)

Polynomials of interest:
xy2, y2 + x2

Treat as univariate in x:
y2x, x2 + y2

Figure 1. A visual overview of the QE algorithm.

At the heart of the sign-determination algorithm that we
formalize is a matrix equation that is capable of storing sign
information for a set of polynomials in variables 𝑥,𝑦1, . . . , 𝑦𝑛 ,
under a set of assumptions on polynomials in 𝑦1, . . . , 𝑦𝑛 . Our
overall quantifier elimination algorithm takes a formula and
identifies the polynomials that occur in the formula. It then
generates a number of matrix equations, each of which cap-
tures some sign information for the polynomials, subject to
some list of assumptions. Collectively, it is important that the
generated matrix equations have exhaustive assumptions—
in the sense that for every possible set of assumptions, there
is at least one corresponding matrix equation. We call sets
of assumptions branches. Branches are refined throughout
the construction with additional assumptions until each mul-
tivariate matrix equation has assumptions that generate a
unique matrix equation. Initial branches, which are not fully
refined, may still have multiple associated matrix equations.

WLOG, we assume that we are eliminating a ∀ quantifier
(because ∃ quantifiers can be transformed into ∀ quantifiers
with appropriate negations). We do some initial branching
(this is needed to guide the computations of the matrix equa-
tions), and for each branch, we check whether all of the
associated matrix equations describe a sign assignment on
our polynomials that satisfies the original formula. We filter
our initial branches to pick out the ones that satisfy this
property. Finally, we return a disjunction of all assumptions
of the initial branches in this filtered list.

Fig. 1 visualizes how this QE algorithm works on an exam-
ple. We begin with formula ∃𝑦.∀𝑥 .(𝑥𝑦2 > 0 ∨ 𝑦2 + 𝑥2 > 0),
where our focus is on eliminating the ∀𝑥 quantifier. We first
identify the polynomials of interest in this formula and view
them as univariate polynomials in 𝑥 (with coefficients that
are polynomials in 𝑦): these are 𝑦2𝑥 and 𝑥2 + 𝑦2. Next, we
determine all consistent sign assignments to these polyno-
mials of interest given all possible2 sign assumptions on 𝑦2,
2Here, we differ from the BKR algorithm, which would branch on all consis-
tent sign assumptions on 𝑦2. That is, we consider a branch where 𝑦2 < 0,

where 𝑦2 is significant because it is the leading coefficient
of 𝑦2𝑥 (technically our algorithm will do some additional
and unnecessary branching, but for the clarity of this ex-
ample we focus on the branch on 𝑦2; see Sec. 2.1 for a more
in-depth discussion of the branching). Internally, our algo-
rithm performs sign determination using matrix equation
constructions (but this is not pictured in the figure). We then
pick out the sign assignments that solve our original QE
problem—that is, we are looking for one of our polynomials
of interest,𝑦2𝑥 or 𝑥2+𝑦2, to be positive. Signs that satisfy this
condition are pictured in green. Then, we filter our branches
to find the ones where every sign assignment satisfies the
original QE problem. This happens only in the branch where
𝑦2 is assumed to be positive. This means that 𝑦2 > 0 is logi-
cally equivalent to ∀𝑥 .(𝑦2𝑥 > 0∨ 𝑥2 +𝑦2 > 0), which means
that ∃𝑦.∀𝑥 .(𝑥𝑦2 > 0 ∨ 𝑦2 + 𝑥2 > 0) is logically equivalent to
∃𝑦.(𝑦2 > 0), whose quantifier ∃𝑦 can be eliminated further.

If our original QE question was instead ∃𝑦.∀𝑥 .(𝑥𝑦2 ≥ 0∨
𝑥2 + 𝑦2 > 0), then both the branch with assumption 𝑦2 > 0
and the branch with assumption 𝑦2 = 0 would satisfy our
QE problem. This means that the disjunction 𝑦2 > 0∨𝑦2 = 0
is logically equivalent to ∀𝑥 .(𝑦2𝑥 ≥ 0 ∨ 𝑥2 + 𝑦2 > 0), and so
our output in this case would be ∃𝑦.(𝑦2 > 0 ∨ 𝑦2 = 0).

Here it is important to note that there are many logically
equivalent outputs to any given QE problem. For example, if
our original QE question were ∀𝑥 .((𝑥𝑦2 = 0 ∧ 𝑥2 + 𝑦2 = 0) ∨
(𝑥𝑦2 = 0 ∧ 𝑥2 + 𝑦2 < 0)), then two possible correct outputs
that are logically equivalent are 𝑦2 = 0, and 𝑦2 < 0 ∨ 𝑦2 = 0.
Here, 𝑦2 = 0 is the simplest output. While the output of our
QE algorithm is always logically correct, it is not guaranteed
to be in the simplest form. In particular, assumptions for
branches that are inconsistent will often be included in the
final disjunction, which has no impact on logical correctness,
only formula complexity.
We now turn to more detailed descriptions of the sign

determination procedure, the multivariate matrix equation,
and the full quantifier elimination procedure.

2.1 Sign Determination
Finding sign information for polynomials 𝑞1, . . . 𝑞𝑘 in vari-
ables 𝑥,𝑦1, . . . , 𝑦𝑛 is, on the surface, a continuous problem—
the most obvious way to determine the sign information
would be to evaluate (𝑞1, . . . , 𝑞𝑘) on R𝑘 , which is clearly not
computationally viable. To account for this, BKR and Renegar
reduce the sign-determination problem to a problem with
the following format: find sign information for 𝑞1, . . . , 𝑞𝑘 at
the roots of some cleverly chosen polynomial 𝑝 . This problem
is clearly computationally viable for univariate polynomi-
als, because polynomials in one variable only have finitely
many roots. It is a (non-obvious) key insight that it is also
computationally viable for multivariate polynomials [2, 36].

because this is a possible (but inconsistent) sign assumption: even though
𝑦2 is never negative, our algorithm does not discern this when branching.

3

CPP ’23, January 16–17, 2023, Boston, MA, USA Katherine Kosaian, Yong Kiam Tan, and André Platzer.

Intuitively, the output of the univariate algorithm only de-
pends on the signs of the real polynomial coefficients and not
on the actual values of those coefficients. Thus, the algorithm
lifts to the multivariate case by making sign assumptions on
(multivariate) polynomial coefficients in variables 𝑦1, . . . , 𝑦𝑛 .

In our multivariate setting, 𝑝 = (∏𝑞𝑖) · 𝜕
𝜕𝑥
(∏𝑞𝑖) is chosen

for 𝑝 . To see what makes this particular polynomial useful,
consider some valuation 𝜈 on 𝑦1, . . . , 𝑦𝑛 (i.e., some assign-
ment of 𝑦1, . . . , 𝑦𝑛 to real values). Let 𝜈 (𝑓) denote the evalua-
tion of polynomial 𝑓 in valuation 𝜈 ; note that 𝜈 (𝑓) is univari-
ate in 𝑥 . Now, the roots of 𝜈 (𝑝) = (∏𝜈 (𝑞𝑖)) · 𝜕

𝜕𝑥
(∏𝜈 (𝑞𝑖)) =

(∏𝜈 (𝑞𝑖)) · 𝑑
𝑑𝑥

(∏𝜈 (𝑞𝑖)) contain all of the roots of the 𝜈 (𝑞𝑖)’s
(since each 𝜈 (𝑞𝑖) divides 𝜈 (𝑝)), as well as sample points from
intervals between the roots (by Rolle’s theorem [12]). Be-
cause these intervals are sign-invariant—that is, no 𝜈 (𝑞𝑖)
changes sign in any of these intervals, since no 𝜈 (𝑞𝑖) can
change sign without passing through a root—sign informa-
tion at a single point within any of these intervals is repre-
sentative of sign information for the entire interval. So, we
see that the only intervals which the roots of 𝜈 (𝑝) do not
adequately cover are the extreme intervals—the leftmost and
rightmost, which lie beyond any of the roots of 𝜈 (𝑝)—for
which sign information can be computed with a limit calcu-
lation on the 𝜈 (𝑞𝑖)’s.3 So, this polynomial 𝑝 allows a natural
lifting from the univariate QE algorithm to the multivari-
ate case, but the correctness justification needs an extensive
covering of the influence of all possibilities for valuation 𝜈 .

This is visualized in Fig. 2. Here, we have polynomials 𝑞1 =
𝑦2𝑥 +1 and 𝑞2 = 𝑦𝑥 +1, so 𝑝 = (𝑦2𝑥 +1) (𝑦𝑥 +1) (2𝑥𝑦3+𝑦2+𝑦).
For the purposes of illustration, we consider two sample
valuations: in 𝜈1, we set 𝑦 = 2, and in 𝜈2, we set 𝑦 = −1. As
depicted, in both valuations, to find sign information for 𝑞1
and 𝑞2, it suffices to find sign information for 𝑞1 and 𝑞2 at
the roots of 𝑝 and the limit points.

We formalize this procedure for sign determination in the
sign_determination function. The first input to this func-
tion is a list of polynomials qs of type rmpoly, where rmpoly

is our abbreviation for real mpoly poly. Here, poly is Is-
abelle/HOL’s type for univariate polynomials, mpoly is the
type for multivariate polynomials, and real is the type for
real numbers, so an rmpoly is a univariate polynomial whose
coefficients are real multivariate polynomials. Say initially
we have polynomials in variables 𝑥,𝑦1, . . . , 𝑦𝑛 ; then type
rmpoly arises when we treat those polynomials as being uni-
variate in 𝑥 with coefficients in𝑦1, . . . , 𝑦𝑛 . Unlike in computer
algebra, these polynomials are not restricted to have any par-
ticular representation; rather, they are elements of the free
term algebra. The next input to sign_determination is a list

3In the formalization of the univariate case [12], the polynomial 𝑝 was
chosen so as to directly sample from these intervals by using the Cauchy
root bound, a mathematical quantity that bounds the roots of a set of
univariate polynomials. This followed BKR’s original work [2]. However,
since the Cauchy root bound is for univariate polynomials only, we must
work instead with limit computations as Renegar does [36].

Polynomials: q1 = y2x + 1, q2 = yx + 1
Variable of interest: x

Compute:
p = (y2x + 1)(yx + 1)* (''(((y2x + 1)(yx + 1)))

= (y2x + 1)(yx + 1)(2xy3 + y2 + y)

Example valua8on, !1: y = 2
q1, q2 in !1 : 4x + 1, 2x + 1
p in !1 : (4x + 1)(2x + 1)(16x + 6)

Example valuation, !2: y = -1
q1, q2 in !2 : x + 1, -x + 1
p in !2 : (x + 1)(-x + 1)(-2x)

1−1

Lim at ∞Lim at −∞− "3 8

− "1 4− "1 2

Lim at ∞Lim at −∞

Roots of p only
Roots of q’s and of p
Limits

Legend

0

Figure 2. An example of sign determination.

of initial assumptions of type (real mpoly × rat) list,
which we abbreviate as assumps. Here, rat is Isabelle/HOL’s
type for rational numbers, and so each assumption in the
list pairs a real multivariate polynomial with an associated
rational number that indicates a sign condition on the poly-
nomial (0, 1, or -1). This type is useful in specifying any
known sign information on polynomials in 𝑦1, . . . , 𝑦𝑛 . The
output of sign_determination is a list of pairs of assumptions
and associated sign assignments to qs. Each sign assignment
has type rat list.4 The assumptions have type assumps (for
the same reason as before), and as each assumption may
have multiple associated sign assignments, each assump-
tion is paired with a list of associated sign assignments, as
demonstrated by the assumps × (rat list list) type. The
output, of type (assumps × (rat list list)) list, contains
an exhaustive set of assumptions (in order to capture all
consistent sign assignments for the 𝑞𝑖 ’s).
fun sign_determination:: "rmpoly list ⇒ assumps ⇒
(assumps × rat list list) list"

where "sign_determination qs assumps =
(let branches =

lc_assump_generation_list qs assumps in
concat (map (𝜆branch. let

poly_p_branch = poly_p_in_branch branch;
(pos_limit_branch, neg_limit_branch) =

limit_points_on_branch branch;
mat_eq_signs_on_branch = extract_signs

(calculate_data_assumps_M poly_p_branch
(snd branch) (fst branch)) in

map (𝜆(a, signs).
(a, pos_limit_branch#neg_limit_branch#signs))
mat_eq_signs_on_branch) branches))"

Here, the lc_assump_generation_list function generates
an exhaustive list of possible branches, branches, that con-
tain assumptions on the signs of the leading coefficients of
the input polynomials qs. An important subtlety is that the
4Technically, we could use int list for sign assignments, since each
member of the sign assignment list is 1, 0, or −1, but as noted elsewhere
[12], it is easier to work with rat list in thematrix equation construction.

4

A First Complete Algorithm for Real Quantifier Elimination in Isabelle/HOL CPP ’23, January 16–17, 2023, Boston, MA, USA

leading coefficient of the polynomial 𝑞𝑖 may be different in
different branches. For example, the leading coefficient of
(𝑦+1)𝑥2+𝑦𝑥 +2 is𝑦+1 in a branch where𝑦+1 is assumed to
be nonzero,𝑦 in a branch where𝑦+1 is zero and𝑦 is assumed
to be nonzero, and 2 in a branch where both 𝑦 + 1 and 𝑦 are
assumed to be zero. To best account for this subtlety, each
element of branches contains both the generated assump-
tions (which determine the branch) and a list of polynomials
which contains a simplified version of the qs: to be precise,
𝑞𝑖 = 𝑐1𝑥

𝑑1 + · · · + 𝑐𝑚𝑥𝑑𝑚 simplifies to 𝑐 𝑗𝑥𝑑 𝑗 + · · · + 𝑐𝑚𝑥𝑑𝑚 iff
𝑐1, . . . , 𝑐 𝑗−1 are all assumed to be zero and 𝑐 𝑗 is assumed to
be nonzero. For example, given a list of input polynomials
[(𝑦+1)𝑥2+𝑦𝑥+2, 𝑦2+(𝑦+1)𝑥5], an element of branches could
be: ([(𝑦+1, 0), (𝑦, 1), (𝑦2, 1)], [𝑦𝑥 +2, 𝑦2+ (𝑦+1)𝑥5]). The list
of assumptions [(𝑦+1, 0), (𝑦, 1), (𝑦2, 1)] specifies that, in this
branch,𝑦+1 is assumed to be 0 and𝑦 and𝑦2 are assumed to be
positive. Under these assumptions, (𝑦+1)𝑥2+𝑦𝑥+2 simplifies
to 𝑦𝑥 + 2 and 𝑦2 + (𝑦 + 1)𝑥5 simplifies to 𝑦2 + (𝑦 + 1)𝑥5 (as the
purpose of the simplification is to determine the leading coef-
ficient, it is not mission critical to fully simplify𝑦2+ (𝑦+1)𝑥5
to 𝑦2, and our code is not optimized to do so).
Currently, lc_assump_generation_list naively generates

branches by branching on all possible sign assignments to the
leading coefficients, rather than on all consistent ones as BKR
would. Thus, branches with inconsistent assumptions can be
generated: for example, the branch ([(𝑦+1, 0), (𝑦, 1), (𝑦2,−1)],
[𝑦𝑥 + 2, 𝑦2 + (𝑦 + 1)𝑥5]) could be generated by the func-
tion lc_assump_generation despite its inconsistent assump-
tions (𝑦2 is assumed to be negative). Additionally, although
lc_assump_generation_list takes an input list of assump-
tions, assumps, as an argument, it does not enforce consis-
tency of the output branches with assumps; however, before
splitting on the sign of a polynomial 𝑓 , it will check whether
assumps already contains sign information for 𝑓 .
Branching on the signs of the leading coefficients of the

qs provides important information for two reasons: First,
because these signs are relevant for the matrix equation
computation (Sec. 2.2); and second, because knowing the
sign of the first non-zero leading coefficient for every 𝑞𝑖
allows us to easily compute the signs at the limit points.5

The sign_determination functionmaps over branches, and
for each computes the polynomial 𝑝 = (∏𝑞𝑖) · 𝜕

𝜕𝑥
(∏𝑞𝑖),

stored in poly_p_branch (cross reference Fig. 2). Although it
would suffice to compute 𝑝 beforehand, and then simplify it
appropriately on each branch given the associated assump-
tions (for example, in a branch where𝑦 = 0, 𝑞1 = 𝑦2𝑥 +1, and
𝑞2 = 𝑦𝑥+1, the polynomial 𝑝 = (𝑦2𝑥+1) (𝑦𝑥+1) (2𝑥𝑦3+𝑦2+𝑦)
simplifies to 𝑝 = 0), it is more direct to compute 𝑝 in each
branch.6 That is, given 𝑞1 = 𝑦2𝑥 + 1, and 𝑞2 = 𝑦𝑥 + 1, if

5The sign of 𝑞𝑖 at∞ equals the sign of its leading coefficient, whereas the
sign of𝑞𝑖 at −∞ is the sign of its leading coefficient multiplied by (−1)deg𝑞𝑖 ,
where deg𝑞𝑖 is the degree of 𝑞𝑖 .
6Our polynomials do not have any fixed representation, and equality check-
ing is a potentially costly operation. Further, even if two polynomials are

in a given branch we know that 𝑦 = 0, we also know that
the leading coefficient of 𝑞1 is 1 and the leading coefficient
of 𝑞2 is 1, which means that 𝑞1 = 1 and 𝑞2 = 1, and so
𝑝 = (1 · 1) · (𝜕

𝜕𝑥
(1 · 1)) = 0.

Next, for each branch, sign_determination performs a cal-
culation (formalized in our limit_points_on_branch func-
tion) to find the signs of qs at∞ and −∞. These are stored
in pos_limit_branch and neg_limit_branch, respectively.
Then, it makes a call to our calculate_data_assumps_M

function (discussed in Sec. 2.2) to calculate a list of matrix
equations for each branch, each of which stores sign infor-
mation under some assumptions (assumptions in our for-
malization only accumulate, so the output assumptions con-
tain the original branch’s assumptions). It pulls out the as-
sumptions and sign conditions from the matrix equations
with the extract_signs function, which returns a list of type
(assumps × rat list list) list. This list is stored in
mat_eq_signs_on_branch.
Finally, the positive and negative limit sign conditions

pos_limit_branch and neg_limit_branch are preprended to
each list of sign conditions calculated with the matrix equa-
tions (the # operator in Isabelle/HOL prepends an element
to a list), and the resulting list of assumptions and associated
sign conditions is returned.

It is now time to discuss the matrix equation.

2.2 The Multivariate Matrix Equation
The multivariate matrix equation, like the univariate matrix
equation, is concerned with finding sign information for a
set of polynomials 𝑞1, . . . , 𝑞𝑛 at the roots of an auxiliary poly-
nomial 𝑝 . One advantage of formalizing a multivariate QE
algorithm based on BKR and Tarski is that the construction
of the multivariate matrix equation is very similar to the
construction of the univariate matrix equation.

Thus, to understand the multivariate matrix equation, we
first need to consider the construction of the univariate ma-
trix equation. At its core, the univariate matrix equation
relies on computing Tarski queries, so we start there.

2.2.1 Computing Multivariate Tarski Queries. Tarski
queries are defined as follows:

Definition 2.1. [12] Given univariate polynomials 𝑝, 𝑞 with
𝑝 ≠ 0, the Tarski query 𝑁 (𝑝, 𝑞) is:

𝑁 (𝑝, 𝑞) = #{𝑥 ∈ R | 𝑝 (𝑥) = 0, 𝑞(𝑥) > 0} −
#{𝑥 ∈ R | 𝑝 (𝑥) = 0, 𝑞(𝑥) < 0}.

These Tarski queries can be computed from the Euclidean
remainder sequence that starts with 𝑝 and 𝑝′𝑞:

Proposition 2.2. (Sturm-Tarski Theorem) Let 𝑝 ≠ 0 and 𝑞 be
real univariate polynomials. Let 𝑝1 = 𝑝 , 𝑝2 = 𝑝′𝑞, 𝑝3, . . . , 𝑝𝑘

not identically equivalent, they may be so under a branch’s assumptions
(for example, 𝑦2 + 𝑦 + 1 is equivalent to 𝑦2 if 𝑦 + 1 is assumed to be 0).

5

CPP ’23, January 16–17, 2023, Boston, MA, USA Katherine Kosaian, Yong Kiam Tan, and André Platzer.

be the Euclidean remainder sequence of 𝑝 and 𝑝′𝑞, where

𝑝𝑖 = 𝑐𝑖𝑝𝑖+1 − 𝑝𝑖+2,

for 𝑐𝑖 ∈ R[𝑥] and where deg(𝑝𝑖+2) < deg(𝑝𝑖+1). Let 𝑎𝑖 be
the leading coefficient of 𝑝𝑖 and let 𝑑𝑖 := deg(𝑝𝑖). Let 𝑆+ (𝑝, 𝑞)
denote the number of sign changes in the sequence 𝑎1, . . . , 𝑎𝑘 ,
and let 𝑆− (𝑝, 𝑞) denote the number of sign changes in the
sequence (−1)𝑑1𝑎1 . . . , (−1)𝑑𝑘𝑎𝑘 . Then 𝑁 (𝑝, 𝑞) = 𝑆− (𝑝, 𝑞) −
𝑆+ (𝑝, 𝑞).

This result is from the literature [36, Prop. 8.1] (with an
unnecessary assumption removed that is not included in
other references [1] or in Isabelle’s existing formalization
[24] of the Sturm-Tarski theorem). Critically, in the Sturm-
Tarski theorem, it is not the values of 𝑎1, . . . , 𝑎𝑘 that matter;
rather, it is the signs that matter; this is what enables the
multivariate generalization [2].
Consider polynomials 𝑝 ≠ 0 and 𝑞 in 𝑥 with polynomial

coefficients in 𝑦1, . . . , 𝑦𝑛 (i.e., 𝑝, 𝑞 ∈ R[𝑦1, . . . , 𝑦𝑛] [𝑥]). Then,
we can form Euclidean remainder sequences of 𝑝 and 𝑝′𝑞
with respect to 𝑥 . The Euclidean remainder sequence is no
longer unique—instead, there are multiple sequences, each
depending on the signs of the coefficients of 𝑝 and 𝑞 (as
coefficients that are polynomials can have different signs at
different points). Once we fix a sequence and find the leading
coefficients, we need to consider (by branching) all possible
sign assignments to those coefficients,7 and output a list of
Tarski queries and the assumptions they are subject to.

For example, if we take polynomials 𝑝 = 𝑦2𝑥 + 1 and
𝑞 = 𝑦𝑥 + 1, then if 𝑦2 = 0, then 𝑦 = 0 so 𝑝 = 𝑞 = 1, and the
Euclidean remainder sequence is just 1, and 𝑁 (𝑝, 𝑞) = 0.8
However, if 𝑦 ≠ 0, then our Euclidean remainder sequence is
𝑦2𝑥 +1, 𝑦3𝑥 +𝑦2,−(1−𝑦), where we have calculated𝑦2𝑥 +1 =
1
𝑦
· (𝑦3𝑥 + 𝑦2) + (1 − 𝑦), using assumption 𝑦 ≠ 0 for 1

𝑦
.

Now, continuing the computation of 𝑁 (𝑦2𝑥 +1, 𝑦𝑥 +1), we
find that the leading coefficients of our Euclidean remainder
sequence (assuming 𝑦 ≠ 0) are 𝑦2, 𝑦3, and −(1 −𝑦). Next, we
consider the possible sign assignments to𝑦2, 𝑦3, and −(1−𝑦).
For example, (+, +,−) is one such sign assignment. So, we
have Tarski query 𝑁 (𝑝, 𝑞) = 𝑆− (𝑝, 𝑞) −𝑆+ (𝑝, 𝑞) = 0− 1 = −1
under the assumptions that: 𝑦 ≠ 0, 𝑦2 > 0, 𝑦3 > 0, and
−(1 − 𝑦) < 0. Our output for 𝑁 (𝑦2𝑥 + 1, 𝑦𝑥 + 1) would be a
list of all the Tarski queries under all possible assumptions.
This computation is visualized in Fig. 3 (where, for purposes
of space, only two output branches are shown explicitly).

Note that Euclidean remainder sequences for multivariate
polynomials sometimes contain fractions. While we could
have chosen to work with Euclidean remainder sequences in
7Full BKR would consider all consistent sign assignments instead. This
makes the algorithm highly recursive, which adds a considerable layer of
difficulty to its verification.
8Technically, our formalization would do more branching than this for two
reasons: First, it will branch on 𝑦2 = 0, 𝑦2 > 0, and (unnecessarily) 𝑦2 < 0;
and second, because it will not determine that 𝑦2 = 0 implies 𝑦 = 0—and so
it will not know that 𝑞 = 1 whenever 𝑦2 = 0.

Assuming: y = 0
Remainder sequence:

1

Input:
y2x + 1, yx + 1

Assuming: y ≠ 0
Remainder sequence:
y2x + 1, y3x + y2, -(1 - y)

y^2, y^3, -(1-y)

Leading coefficients:
a1 = y2, a2 = y3, a3 = -(1-y)

Degrees:
d1 = 1, d2 = 1, d3 = 0

S-(p, q) = 0, S+(p, q) = 0
N(p, q) = 0

Output: A list of Tarski queries and their assumptions,
considering all possible sign assignments

Assuming: (a1: +, a2: +, a3: +)
S-(p, q) = 1, S+(p, q) = 0

N(p, q) = 1

Assuming: (a1: +, a2: +, a3: -)
S-(p, q) = 0, S+(p, q) = 1

N(p, q) = -1

. . .

Figure 3.Computing Tarski queries for 𝑝 = 𝑦2𝑥+1,𝑞 = 𝑦𝑥+1.

a fraction field, this would require complicated type switch-
ing in the formalization. Instead, we use pseudo-remainder
sequences for multivariate polynomials. Pseudo-remainder
sequences are essentially Euclidean remainder sequences for
polynomials, but normalized so as not to contain fractions
(ours are additionally normalized so as not to affect the result
of the Sturm-Tarski computation [25]). We develop pseudo-
remainder sequences for multivariate polynomials of type
rmpoly (currently, our formalization naively branches on the
signs of the leading coefficients of the relevant polynomi-
als). Here, we benefit from prior work: The Sturm-Tarski
theorem was formalized in Isabelle/HOL by Wenda Li [24];
Li and Paulson later extended this to bivariate polynomials
[26] using pseudo-remainder sequences, and Li, Passmore,
and Paulson also developed univariate Tarski queries with
pseudo-remainder sequences [25].

Remark. For self-containedness, we briefly describe pseudo-
remainder sequences. Polynomial pseudo-quotients (pquo)
and pseudo-remainders (prem) satisfy this property [15, 25]:

(lead_coeff 𝑞) (1+deg 𝑝−deg 𝑞)𝑝 = pquo(𝑝, 𝑞) · 𝑞 + prem(𝑝, 𝑞),

where deg prem(𝑝, 𝑞) < deg 𝑞 or 𝑞 = 0. For example, when
considering polynomials 𝑝 = 𝑦𝑥2 + 1 and 𝑞 = 𝑦3𝑥 + 1 as
univariate polynomials in 𝑥 , then pquo(𝑝, 𝑞) = 𝑦4𝑥 − 𝑦 and
prem(𝑝, 𝑞) = 𝑦6 + 𝑦, as (𝑦3)2𝑝 = (𝑦4𝑥 − 𝑦)𝑞 + (𝑦6 + 𝑦) and
deg(𝑦6 +𝑦) = 0 < deg 𝑞 = 1. Notice how there are no fractions
in pquo or prem, unlike the fractions in the usual Euclidean
remainder sequence (assuming 𝑦 ≠ 0 for well-definedness).

6

A First Complete Algorithm for Real Quantifier Elimination in Isabelle/HOL CPP ’23, January 16–17, 2023, Boston, MA, USA

We use signed pseudo-remainder sequences, where 𝑝1 = 𝑝 ,
𝑝2 = 𝑝′𝑞, and 𝑝3, . . . , 𝑝𝑘 satisfy the following equation for a
special choice of coefficients 𝑠𝑖 , explained below:

𝑝𝑖+2 = 𝑠𝑖 · prem(𝑝𝑖 , 𝑝𝑖+1)
This sequence is normalized so that, in any valuation, the
number of sign changes in the evaluated pseudo-remainder
sequence is the same as in the Euclidean remainder sequence
for the evaluated polynomials, so that the result of the Sturm-
Tarski computation is unaffected by the normalization. For
this, we follow the style of [25] and normalize as follows: if
(1 + deg 𝑝𝑖 − deg 𝑝𝑖+1) is even, we multiply prem(𝑝𝑖 , 𝑝𝑖+1) by
𝑠𝑖 = −1; else, by 𝑠𝑖 = −lead_coeff 𝑝𝑖+1. To understand this intu-
itively, note that the pseudo-remainder prem(𝑝, 𝑞) effectively
normalizes by (lead_coeff 𝑞) (1+deg 𝑝−deg 𝑞) . Then, note that re-
mainder sequences in the Sturm-Tarski theorem always negate
prem (cross-reference Proposition 2.2). So, if (1+deg 𝑝 −deg 𝑞)
is even, we have not changed the sign of prem and we need
only negate it. However, if (1 + deg 𝑝 − deg 𝑞) is odd, we have
potentially changed the sign of prem—depending on the sign of
(lead_coeff 𝑞)—so we not only negate prem but also multiply
it by (lead_coeff 𝑞).

Since QE is concerned with sign information for multiple
polynomials simultaneously, it is useful to generalize the
notion of Tarski queries to sets of polynomials [12] as follows:

Definition 2.3. Given a polynomial 𝑝 and a list of polyno-
mials 𝑞1, . . . , 𝑞𝑛 , let 𝐼 and 𝐽 be subsets of {1, . . . , 𝑛}. Then, the
Tarski query 𝑁 (𝐼 , 𝐽) with respect to 𝑝 is

𝑁 (𝐼 , 𝐽) = 𝑁 (𝑝2 +
(
Σ𝑖∈𝐼𝑞

2
𝑖

)
,Π 𝑗∈ 𝐽 𝑞 𝑗) =

#{𝑥 ∈ R | 𝑝 (𝑥) = 0,∀𝑖 ∈ 𝐼 . 𝑞𝑖 (𝑥) = 0,Π 𝑗∈ 𝐽 𝑞 𝑗 (𝑥) > 0} −
#{𝑥 ∈ R | 𝑝 (𝑥) = 0,∀𝑖 ∈ 𝐼 . 𝑞𝑖 (𝑥) = 0,Π 𝑗∈ 𝐽 𝑞 𝑗 (𝑥) < 0}.

The matrix equation determines the signs of 𝑞1, . . . , 𝑞𝑛 at
the zeros of 𝑝 by computing 𝑁 (𝐼 , 𝐽) for a representative set
of combinations of subsets 𝐼 , 𝐽 of 𝑞1, . . . , 𝑞𝑛 (see Sec. 2.2.2).

There are two key lemmas that we prove about multivari-
ate Tarski queries. The first is a soundness lemma showing
that the resulting multivariate Tarski queries agree, on every
point satisfying the associated assumptions, with what the
univariate Tarski query would have been:
lemma multiv_tarski_query_correct:

assumes inset: "(assumps, tarski_query) ∈
set (construct_NofI_M p acc I J)"

assumes val: "
∧
f n. (f,n) ∈ set assumps =⇒

satisfies_evaluation val f n"
shows "tarski_query = construct_NofI_R

(eval_mpoly_poly val p)
(eval_mpoly_poly_list val I)
(eval_mpoly_poly_list val J)"

Here, the construct_NofI_M function constructs a list of mul-
tivariate Tarski queries and the assumptions they are subject
to. As input, it takes a polynomial p, an initial set of assump-
tions acc, and two lists of polynomials I and J. Both p and

all of the polynomials in I and J have type rmpoly, i.e. they
are univariate polynomials in 𝑥 with polynomial coefficients
in some variables 𝑦1, . . . , 𝑦𝑛 . The inset assumption assumes
that we have some particular Tarski query tarski_query that
is subject to the assumptions assumps, which are assumptions
on polynomials in 𝑦1, . . . , 𝑦𝑛 . Now, the construct_NofI_R

function is the function to compute univariate Tarski queries
from our prior work [12], so the conclusion of the lemma is
that tarski_query is exactly the (unique) univariate Tarski
query that would be computed from evaluating p and all of
the polynomials in I, J on val (using the eval_mpoly_poly

and eval_mpoly_poly_list functions), where val is any as-
signment of real values to 𝑦1, . . . 𝑦𝑛 where the assumptions
assumps are realized.

The second key lemma is a completeness result:
lemma multiv_tarski_queries_complete:

assumes "
∧
f n. (f,n) ∈ set init_assumps =⇒

satisfies_evaluation val f n"
shows "∃ (assumps, tq) ∈

set (construct_NofI_M p init_assumps I J).
(∀(p,n)∈set assumps. satisfies_evaluation val p n)"

Here, this shows that if initial assumptions init_assumps

are satisfied by valuation val, then there is some resulting
assumptions and Tarski query pair (assumps, tq) where all
final assumptions assumps are satisfied by val.

Together, these two lemmas give a strong result: the sound-
ness lemma shows that the multivariate results coincide
with univariate results in all projections meeting the final
assumptions, and the completeness lemma shows that for
any projection meeting the initial assumptions, there is some
corresponding Tarski query whose associated (final) assump-
tions are met by the projection. Or, on a more intuitive level,
the completeness lemma shows that our function to compute
multivariate Tarski queries generates useful output when-
ever it is given useful input, and the soundness lemma shows
that useful output has the desired mathematical meaning.

2.2.2 Using Multivariate Tarski Queries. The matrix
equation connects a vector of information about possible sign
assignments for a set of multivariate polynomials—i.e., sign
assignments that are not necessarily consistent—on the LHS,
to a vector of multivariate Tarski queries on the RHS.

The univariatematrix equation is defined as follows, where
we closely follow the definition of the univariate matrix equa-
tion in our earlier work [12], but adapted to our purposes:9

Definition 2.4. Fix univariate polynomials of interest 𝑝 and
𝑞1, . . . , 𝑞𝑘 . Let Σ̃ = {�̃�1, . . . , �̃�𝑚} be a set of possible sign as-
signments to 𝑞1, . . . , 𝑞𝑘 , and assume Σ̃ contains all consistent

9The univariate BKR paper [12] follows the matrix equation developed in
Ben-Or, Kozen, and Reif’s original paper [2], where 𝑝 is assumed to be
coprime with each 𝑞𝑖 . Because this assumption no longer makes sense for
multivariate polynomials, we use the matrix equation developed by Renegar
[36]. While our prior work [12] formalized both styles of matrix equation
[11], only the former was discussed at length in the paper.

7

CPP ’23, January 16–17, 2023, Boston, MA, USA Katherine Kosaian, Yong Kiam Tan, and André Platzer.

sign assignments to 𝑞1, . . . , 𝑞𝑘 at the roots of 𝑝 . Let 𝑆 be a set
of pairs of subsets (𝐼1, 𝐽1), . . . , (𝐼𝑙 , 𝐽𝑙) where for all 1 ≤ 𝑖 ≤ 𝑙 ,
𝐼𝑖 ⊆ {1, . . . , 𝑘} and 𝐽𝑖 ⊆ {1, . . . , 𝑘}. Then the matrix equa-
tion for Σ̃ and 𝑆 is the relationship 𝑀 · 𝑤 = 𝑣 between the
following three entities:

• 𝑀 , the 𝑙-by-𝑚 matrix with entries

𝑀𝑖, 𝑗 =
(
Πℓ∈𝐼𝑖 (1 − (�̃� 𝑗 (𝑞ℓ))2)

)
·
(
Πℓ∈ 𝐽𝑖 �̃� 𝑗 (𝑞ℓ)

)
∈ {−1, 0, 1}

for (𝐼𝑖 , 𝐽𝑖) ∈ 𝑆 and �̃� 𝑗 ∈ Σ̃,
• 𝑤 , the length𝑚 vector whose entries count the num-
ber of roots of 𝑝 where 𝑞1, . . . , 𝑞𝑘 has sign assign-
ment �̃� , i.e., 𝑤𝑖 = #{𝑥 ∈ R | 𝑝 (𝑥) = 0, sgn(𝑞ℓ (𝑥)) =

�̃�𝑖 (𝑞ℓ) for all 1 ≤ ℓ ≤ 𝑘},
• 𝑣 , the length 𝑙 vector consisting of Tarski queries for
the subsets, i.e., 𝑣𝑖 = 𝑁 (𝐼𝑖 , 𝐽𝑖).

Intuitively, as noted by our prior work [12], the meaning
of a matrix equation is captured by its associated list of
signs and list of (pairs of) subsets. Both the matrix 𝑀 and
the RHS vector 𝑣 are fully computable from these two lists,
and𝑤 , which stores information about which possible sign
assignments are consistent (sign assignment �̃�𝑖 is consistent
iff𝑤𝑖 is nonzero), is calculated as𝑀−1 · 𝑣 .

For multivariate polynomials the situation is more compli-
cated. We can still construct a matrix equation for multivari-
ate polynomials—the definition of the matrix𝑀 is the same
as it was in the univariate setting, but the righthandside vec-
tor uses our function to construct a list of Tarski queries for
multivariate polynomials. Each RHS vector—and so each ma-
trix equation—comes with an associated list of assumptions
which were generated by the multivariate Tarski queries. So,
for an input list of multivariate polynomials 𝑝 and 𝑞1, . . . , 𝑞𝑘 ,
we construct a list of multivariate matrix equations that store
sign information for these polynomials, subject to certain
assumptions on polynomials in one fewer variable.

The overall construction is very similar to that in the uni-
variate case [12]. It proceeds by induction on the number
of 𝑞’s, so that the base case is for a single 𝑞. Smaller matrix
equations are successively combined and reduced to form
the matrix equation for 𝑞1, . . . , 𝑞𝑛 . The reduction is what dif-
ferentiates the matrix equation of BKR from that of Tarski:
information for inconsistent sign assignments is removed at
appropriate intervals, which decreases the size of the matrix
equation. In the univariate case, the size of the matrix equa-
tion is bounded by #{𝑥 . 𝑝 (𝑥) = 0})2, where #{𝑥 . 𝑝 (𝑥) = 0} is
the number of roots of the polynomial 𝑝 . The size of a multi-
variate matrix equation is bounded by the number of roots
of 𝑝 in a valuation satisfying the associated assumptions. As
the univariate reduction step mainly involves computations
on the matrix 𝑀 , which is unchanged in the multivariate
setting, it generalizes quite naturally, and so our hybrid algo-
rithm essentially inherits reduction in the matrix equation
construction, thus incorporating insights from BKR into our
hybrid algorithm.

We formalize our multivariate matrix equation construc-
tion in the calculate_data_assumps_M function (cross refer-
ence Sec. 2.1), and prove the following two key lemmas:

lemma multivariate_calculate_data_correct:
assumes mat_eq: "(assumps, mat_eq) ∈

set (calculate_data_assumps_M p qs init_assumps)"
assumes "

∧
p n. (p,n) ∈ set assumps =⇒

satisfies_evaluation val p n"
assumes "eval_p = eval_mpoly_poly val p"
assumes "eval_qs = map (eval_mpoly_poly val) qs"
assumes p_nonzero: "eval_mpoly_poly val p ≠ 0"
shows "calculate_data_R eval_p eval_qs = mat_eq"

This first lemma connects the behavior of our multivariate
matrix equation constructor function to the Renegar-style
univariate matrix equation function (calculate_data_R) for-
malized in our prior work [12]. That is, on any valuation
val that satisfies the assumptions assumps, the associated
multivariate matrix equation mat_eq, which finds the consis-
tent sign assignments for qs at the zeros of some p in the
valuation val, is equal to the univariate matrix equation that
find the consistent sign assignments for eval_qs at the zeros
of eval_p , where eval_p is p evaluated on val and eval_qs

is qs evaluated on val. This is a soundness lemma, since it
explains that whenever our output is useful, it has the correct
mathematical meaning.

lemma multivariate_calculate_data_complete:
assumes "

∧
p n. (p,n) ∈ set init_assumps =⇒

satisfies_evaluation val p n"
shows "∃ (assumps, mat_eq) ∈

set (calculate_data_assumps_M p qs init_assumps).
(∀ (p,n) ∈ set assumps.
satisfies_evaluation val p n)"

This second lemma shows that when we give logically
consistent input assumptions to calculate_data_assumps_M,
some output with logically consistent assumptions will be
generated (i.e., useful input generates useful output). These
lemmas are analogous to those discussed for multivariate
Tarski queries; taken together, they help us prove key correct-
ness properties of our elim_forall method, which serves to
eliminate a single universal quantifier. We now turn to a dis-
cussion of our top-level QE methods, including elim_forall.

2.3 Overall Quantifier Elimination Algorithm
To best explain our formalized QE algorithm, we must first
touch on the framework we are working with.
We build on our prior framework [37] that verified (in

Isabelle/HOL) the virtual substitution algorithm, an efficient
QE method that applies to a low-degree fragment of real
arithmetic. This prior development sets up a framework for
multivariate QE (including a type for real QE problems and
a function to evaluate QE problems at real-valued points);
by building on this, we are ultimately able to link together
our verified (complete, inefficient) QE method with verified

8

A First Complete Algorithm for Real Quantifier Elimination in Isabelle/HOL CPP ’23, January 16–17, 2023, Boston, MA, USA

virtual substitution [37], using this (incomplete but experi-
mentally promising) QE method as a preprocessing step.

Accordingly, we work with formulas of type atom fm [37],
which have the following grammar:

𝐹,𝐺 ::= TrueF | FalseF | (Atom(Eq 𝑝)) | (Atom(Less 𝑝)) |
(Atom(Leq 𝑝)) | (Atom(Neq 𝑝)) | And 𝐹 𝐺 | Or 𝐹 𝐺 |
Neg 𝐹 | ExQ 𝐹 | AllQ 𝐹 | ExN 𝑛 𝐹 | AllN 𝑛 𝐹,

where 𝑝 is a real polynomial and 𝑛 ∈ N. Here, (Atom(Eq 𝑝))
captures the relationship 𝑝 = 0, (Atom(Less 𝑝)) captures
𝑝 < 0, (Atom(Leq 𝑝)) captures 𝑝 ≤ 0, and (Atom(Neq 𝑝))
captures 𝑝 ≠ 0. Further, And 𝐹 𝐺 captures the logical mean-
ing of 𝐹 ∧𝐺 , Or 𝐹 𝐺 captures 𝐹 ∨𝐺 , and Neg 𝐹 captures ¬𝐹 .
Finally, ExQ 𝐹 indicates that formula 𝐹 is quantified by an
existential quantifier, AllQ 𝐹 indicates that 𝐹 is quantified by
a universal quantifier, ExN 𝑛 𝐹 indicates that 𝐹 is quantified
by a block of 𝑛 existential quantifiers, and AllN 𝑛 𝐹 indicates
that 𝐹 is quantified by a block of 𝑛 universal quantifiers.

In these formulas, variables are represented with de Bruijn
indices; Var 0 is the variable quantified by the innermost
quantifier, Var 1 is the variable quantified by the second
innermost quantifier, and so on. We operate on quantifiers
inside-out, i.e. we start with the quantifier attached to Var 0.

Our elim_forall function is designed to eliminate a single
∀ quantifier. It parallels the method visualized in Fig. 1.
fun elim_forall:: "atom fm ⇒ atom fm"

where "elim_forall F = (let
qs = extract_polys F;
univ_qs = univariate_in qs 0;
reindexed_univ_qs = map

(map_poly (lowerPoly 0 1)) univ_qs;
initial_data = sign_determination

reindexed_univ_qs [];
filtered_data = filter (𝜆(assumps, signs_list).
list_all (𝜆 signs.
lookup_sem_M F (zip qs signs) = (Some True))

signs_list
) initial_data

in create_disjunction filtered_data)"

Here, extract_polys finds the polynomials qs in our formula
F, and univariate_in qs 0 transforms our polynomials qs to
have the rmpoly type (so that they are univariate polynomials
in Var 0, with coefficients that are multivariate polynomials
in bigger variables). The resulting list of polynomials is called
univ_qs. Then, in reindexed_univ_qs, we transform the coef-
ficients of every polynomial in univ_qs (which do not contain
Var 0) by lowering every variable index by 1. This lowering
is crucial for finding all possible signs/assumptions pairs
for our multivariate polynomial coefficients (cross reference
Sec. 2.1), as sign_determination expects polynomials in Var

0. We then retain all the sign assignments that satisfy our
formula of interest, and return a disjunction of the associated
assumptions. If our original formula involved polynomials
in variables Var 0, Var 1, . . . , Var n, then, because of the

transformation and reindexing, these assumptions will be
polynomials in variables Var 0, . . . , Var (n - 1). Our new Var

0, which was previously Var 1, will correctly match to the
new innermost quantifier, which was previously the second
innermost quantifier, and so on.
Our top-level QE method, named qe, heavily relies on

elim_forall and elim_exist (where elim_exist F is defined
as Neg (elim_forall (Neg F))):

fun qe:: "atom fm ⇒ atom fm"
where

"qe TrueF = TrueF"
| "qe FalseF = FalseF"
| "qe (Atom a) = (Atom a)"
| "qe (And F1 F2) = And (qe F1) (qe F2)"
| "qe (Or F1 F2) = Or (qe F1) (qe F2)"
| "qe (Neg F) = Neg (qe F)"
| "qe (ExQ F) = elim_exist (qe F)"
| "qe (AllQ F) = elim_forall (qe F)"
| "qe (AllN n F) = (elim_forall ^^ n) (qe F)"
| "qe (ExN n F) = (elim_exist ^^ n) (qe F)"

Our top-level correctness theorem says that for any as-
signment 𝜈 of the free variables in F to real numbers, our
original formula F has the same truth-value as qe F; or, in
other words, F and qe F are logically equivalent:

theorem qe_correct:
fixes F:: "atom fm"
shows "eval F 𝜈 = eval (qe F) 𝜈"

Here, eval is the function formalized by Scharager et al. [37]
to evaluate formulas of type atom fm on valuations. This
function accounts for the reindexing of free variables that
naturally takes place during QE. For example, ∀𝑥 . 𝑥2𝑦 ≤
0 is logically equivalent to 𝑦 ≤ 0, but since variables are
represented with de Bruijn indices, where the innermost
quantifier corresponds with Var 0,∀𝑥 . 𝑥2𝑦 ≤ 0 is represented
in the atom fm type as AllQ (Leq ((Var 0)^2 · Var 1))

whereas 𝑦 ≤ 0 is represented as Leq (Var 0). In eval, this
subtlety is handled by defining, e.g., eval (AllQ F) v as (∀
x. (eval F (x#v))), where x#v is the list with head x and tail
v. So, qe_correct shows that F evaluated on any mapping of
free variables to real numbers is equal to qe F evaluated on
that same mapping, which establishes that qe is sound.

We also show that qe fully removes quantifiers in the fol-
lowing lemma, where countQuantifiers counts the number
of existential or universal quantifiers in formula F:

theorem qe_complete:
shows "countQuantifiers (qe F) = 0"

This result shows that qe is complete.
To our knowledge, qe is the first sound and complete algo-

rithm for real QE to be formalized in Isabelle/HOL (previous
work [25, 32, 37] was sound but not complete). We now turn
to some further details regarding our formalization.

9

CPP ’23, January 16–17, 2023, Boston, MA, USA Katherine Kosaian, Yong Kiam Tan, and André Platzer.

3 Formalization Details
Isabelle/HOL is well-suited for us; we not only benefit consid-
erably from thewell-developed libraries (including aforemen-
tioned prior work [12, 25, 37]), but also from Isabelle/HOL’s
support for automated proof search in Sledgehammer [33].
However, at the same time, working in the formal set-

ting of Isabelle/HOL poses considerable challenges. In this
section, we begin by discussing some of those challenges, fol-
lowed by some of the high-level proof techniques that helped
us succeed in our formalization. We then discuss some useful
low-level details regarding our extensions to Isabelle/HOL’s
multivariate polynomials library. Finally, we discuss our code
export and the performance of our algorithm.

3.1 Challenges
Many design decisions for the functions described in Sec. 2
were not initially evident. For example, the need to consis-
tently track assumptions and pass them in as an argument to
our functions throughout the calculation of the matrix equa-
tion was initially not obvious. At first, we wrote a function
that was nearly identical to calculate_data_assumps_M, with
the one major difference that we did not include assumps as
an argument to this function. While this function was fully
capable of generating a multivariate matrix equation, we
soon realized we had made a major mistake when we tried
to extend it into a larger QE algorithm. After this, we were
careful to always include an argument for assumptions in
our functions if it could possibly be applicable, regardless of
whether or not it seemed immediately relevant.

The challenge of correctly formalizing the algorithm in
Isabelle/HOL is heightened because the precision of formal-
ization sometimes identifies details that were underspecified
in the source material. Indeed, BKR’s discussion of the mul-
tivariate QE algorithm was limited to only two pages and
proceeds at a very high level [2]. Renegar [36] is considerably
more detailed, but is also written in the style of mathemat-
ics, which necessitates significant translation to the level
of formalization. For example, the way in which the limit
point calculation should be formalized, while entirely obvi-
ous in retrospect, did not become clear to us until we fixed
a method of branching—and indeed, our initial method of
formalizing the limit point calculation, which was agnostic
to branching, did not make it into the final code for the al-
gorithm. Of this calculation, Renegar writes the following,
in which he uses the notation 𝑔𝑖 where we use 𝑞𝑖 , and 𝑓

instead of 𝑝 [36]: “. . . each consistent sign vector of {𝑔𝑖 }𝑖
occurs at some real zero of 𝑓 except, perhaps, for the sign
vectors of points to the right or left of all real zeros of

∏
𝑖 𝑔𝑖 .

However, the latter two consistent sign vectors are trivially
determined from the leading coefficients of the polynomials
𝑔𝑖 .” While this completely describes the mathematical use of
the limit point calculations, it took some time to translate it
into Isabelle/HOL definitions and proofs.

Finally, a last challenge is that even simple details can be-
come complex in the formalized setting of a theorem prover.
For example, working with multivariate polynomials in Is-
abelle/HOL poses a challenge, as the formal setting requires
rigor even for operations that are simple on paper but may
become much more involved when formalized. For example,
the transformation to treat a multivariate polynomial as uni-
variate in some variable of interest is immediate on paper,
but in Isabelle/HOL it is more subtle, precisely because the
type of our object is changing: 3𝑥𝑦𝑧2 + 6𝑥2𝑤𝑣 + 5𝑥𝑦 + 1 has
type real mpoly, whereas (6𝑤𝑣)𝑥2 + (3𝑦𝑧2 + 5𝑦)𝑥 + 1 has
type rmpoly (see also Sec. 2.1).

3.2 High Level Proof Techniques
Though treating multivariate polynomials as univariate in
some variable of interest poses low-level challenges in our
formal setting, it affords significant high-level simplifica-
tions. Many of our proofs rely on the technique of univer-
sal projection—we assume fixed real values for all variables
aside from a variable of interest, which lets us work with
truly univariate polynomials. Projection allows us to connect
functions in our multivariate construction to corresponding
functions in the univariate construction from our prior work
[12]. This works because the multivariate case of the BKR al-
gorithm builds rather directly on the univariate case, making
it amenable to formalization, as noted previously [12].
In consequence, each key function involved in the con-

struction of the multivariate matrix equation requires two
top-level associated lemmas. The first is a soundness lemma
which connects the behavior of the multivariate function
to a corresponding univariate function [12] through pro-
jection. The second is a completeness lemma which estab-
lishes that data for all possible projections is captured by
the function for some assumptions. Some examples of these
soundness and completeness lemmas are seen in Sec. 2.2 (e.g.
the soundness lemma multiv_tarski_query_correct and the
completeness lemma multiv_tarski_query_complete); there
are many more in the actual proof development. This proof
structure does not seek to closely mimic the (highly mathe-
matical) proofs in the source material [12, 36], but rather to
translate the key intuition into a shape which is amenable
to formalization.
Our construction and proofs are designed to be modular,

and we often rely on induction to prove key properties of
helper functions. In particular, we found it very helpful to
use custom induction theorems, supplementing those au-
tomatically generated by Isabelle/HOL. For example, the
spmods_multiv_aux function shown (abridged) below com-
putes a list of pseudo-remainder sequences for polynomials
p and q together with corresponding sign assumptions on
the leading coefficients of the polynomials in each sequence.
function spmods_multiv_aux::

"rmpoly ⇒ rmpoly ⇒ assumps ⇒
(assumps × rmpoly list) list" where

10

A First Complete Algorithm for Real Quantifier Elimination in Isabelle/HOL CPP ’23, January 16–17, 2023, Boston, MA, USA

"spmods_multiv_aux p q assumps = (
if q = 0 then [(assumps, [p])]
else
case (lookup_assump_aux (lead_coeff q) assumps) of
None ⇒

let lcz = spmods_multiv_aux p (one_less_degree q)
((lead_coeff q, 0) # assumps) in

let lcp = spmods_multiv_aux q (mul_pseudo_mod p q)
((lead_coeff q, 1) # assumps) in

let lcn = spmods_multiv_aux q (mul_pseudo_mod p q)
((lead_coeff q, -1) # assumps) in

. . . /* combine lcz, lcp, lcn */
| (Some i) ⇒ . . . /* two recursive branches */)"

The function branches depending on whether q is the zero
polynomial, otherwise, it recurses on the (possible) signs of
its leading coefficient lead_coeff q. Here, assumps specifies a
list of assumed input sign conditions, which are checked for
assumptions on lead_coeff q. Notably, spmods_multiv_aux
is not structurally recursive; its termination uses the fact
that, on each recursive call, the degree of the polynomial
arguments one_less_degree q or mul_pseudo_mod p q strictly
decreases. For such functions, Isabelle/HOL automatically
generates induction theorems, but these theorems lack the
usual case-splitting support for structurally recursive func-
tions [42]. The following snippet shows the Isabelle/HOL
subgoal (cases) structure that results from applying induc-
tion with the generated theorem for spmods_multiv_aux.

// apply (induct ... spmods_multiv_aux.induct)
Proof outline with cases:
case (1 p q assumps)
...

qed

Although spmods_multiv_aux.induct can, in principle, be
used to prove the aforementioned soundness and complete-
ness properties for spmods_multiv_aux, we found the proofs
tedious in practice because they lack the case structuring
benefits of Isabelle/HOL’s structured proof language [42].
Instead, we manually prove an alternative induction theorem
that mimics the branching structure of spmods_multiv_aux
(one base case, three branches with recursion). As before,
a snippet of the Isabelle/HOL subgoal (cases) structure is
shown below (comments illustrate the branching structure).

// apply (induct ... spmods_multiv_aux_induct)
Proof outline with cases:
case (Base p q assumps)
... // base case (q = 0)

next
case (Rec p q assumps)
... // lookup_assump_aux returns None

next
case (Lookup0 p q assumps)
... // lookup_assump_aux returns Some 0

next
case (LookupN0 p q assumps r)
... // otherwise

qed

Though some manual effort is needed to state and prove
spmods_multiv_aux_induct, our subsequent, repeated use of
this customized induction theorem makes it well worth the
initial investment. We expect similar induction theorems to
be broadly useful for structuring proofs about non-structural
recursive functions, including in other proof assistants. In-
deed, manual induction theorems are also used elsewhere in
the development, particularly to verify invariant properties
of the helper function that underlies the branching function
lc_assump_generation_list (see Sec. 2.1).

3.3 Library Extensions
We turn to some of our key results for multivariate polyno-
mials and the library extensions they prompted.

As seen in Sec. 3.1, we need a function to convert polyno-
mials of type real mpoly to polynomials of type real mpoly

poly. Eberl and Thiemann formalized one such way of doing
this in their mpoly_to_mpoly_poly definition [18]. We provide
the following alternate definition, which is executable:
definition mpoly_to_mpoly_poly_alt :: "nat ⇒

’a :: comm_ring_1 mpoly ⇒ ’a mpoly poly"
where "mpoly_to_mpoly_poly_alt x p =
(
∑
i∈{0..MPoly_Type.degree p x} .
monom (isolate_variable_sparse p x i) i)"

This definition applies to multivariate polynomials with co-
efficients in a commutative ring with unity (denoted by
comm_ring_1). It relies on the isolate_variable_sparse func-
tion [38], where isolate_variable_sparse p x i finds the
coefficient of x^i in p. For each i from 0 to the degree of x in
p, we find this coefficient and construct a monomial of type
poly with degree i and this coefficient. Our final polynomial
is the sum of all of these monomials.

We connect our new definition to mpoly_to_mpoly_poly in
the following lemma:
lemma multivar_as_univar:

shows "mpoly_to_mpoly_poly_alt x p =
mpoly_to_mpoly_poly x p"

This enables a natural interface between Eberl and Thie-
mann’s work [18] and the large and powerful collection
of lemmas regarding isolate_variable_sparse [38], from
which we benefit in the formalization.

We benefit from Eberl and Thiemann’s lemmas regarding
mpoly_to_mpoly_poly in one of our main results regarding
polynomials, which is useful in our correctness proof for
elim_forall (cross reference Sec. 2.3):
lemma reindexed_univ_qs_eval:

assumes "univ_qs = univariate_in qs 0"
assumes "reindexed_univ_qs =

map (map_poly (lowerPoly 0 1)) univ_qs"
shows "map (eval_mpoly (x#xs)) qs =
(map (𝜆p. (poly p x))
(map (𝜆q. eval_mpoly_poly xs q) reindexed_univ_qs))"

This lemma relates the evaluation of multivariate poly-
nomials, of type real mpoly, and multivariate polynomials

11

CPP ’23, January 16–17, 2023, Boston, MA, USA Katherine Kosaian, Yong Kiam Tan, and André Platzer.

treated as univariate polynomials in the variable of interest
Var 0, of type rmpoly. To fully understand it, we must explain
a few Isabelle/HOL operators that manipulate multivariate
polynomials. Here, eval_mpoly is our name for the natural
definition of multivariate polynomial evaluation which sub-
stitutes real values for variables. Because variables are rep-
resented with de Bruijn indices, we can store the values to
substitute in a list L, where the element of L at position 0
is then substituted for Var 0, the element of L at position
1 is substituted for Var 1, and so on. If the length of L is
shorter than the number of variables, a default value of 0
is substituted for any variables that are not covered by L.
This definition was implicitly used in prior work [37], but
without being explicitly stated and named:
definition eval_mpoly:: "real list ⇒ real mpoly ⇒ real"
where "eval_mpoly L p = insertion (nth_default 0 L) p"

The eval_mpoly_poly function maps eval_mpoly over the co-
efficients of a real mpoly poly.

Continuing to unpack the reindexed_univ_qs_eval lemma,
the lowerPoly function is from Scharager et al. [37]; here, it
serves to reindex variables in multivariate polynomials, so
that lowerPoly 0 1 q lowers every variable index in q by
1. The univariate_in operator is our function to perform
this multivariate to univariate transformation. Let 𝑞𝑖 be the
polynomial at the 𝑖th index of qs, and 𝑢𝑞𝑖 be the polyno-
mial at the 𝑖th index of univ_qs—then the first assumption
of reindexed_univ_qs_eval says that 𝑢𝑞𝑖 is the polynomial
that we obtain by treating 𝑞𝑖 as univariate in Var 0.
Next, the second assumption in reindexed_univ_qs_eval

says that reindexed_univ_qs is the list of polynomials ob-
tained by lowering all variable indices in the coefficients of the
univ_qs by 1. Let us call 𝑟𝑢𝑞𝑖 the polynomial at the 𝑖th index
of reindexed_univ_qs. Then, lemma reindexed_univ_qs_eval
captures the mathematical equivalence of 𝑞𝑖 and 𝑟𝑢𝑞𝑖 by
showing that evaluating 𝑞𝑖 on the valuation 𝑣 = x#xs gives
the same result as evaluating the coefficients of 𝑟𝑢𝑞𝑖 on xs and
then evaluating the resulting univariate polynomial (which
now has constant coefficients) on x.
The proof of this key lemma required that we first prove

the following fundamental extensionality result, which says
that if two polynomials p and q (in 𝑛 variables) have identical
evaluations on R𝑛 , then they are themselves identical:
lemma same_evaluations_same_mpoly:
assumes "(

∧
L. eval_mpoly L p = eval_mpoly L q)"

shows "p = q"

Since real multivariate polynomials are fundamental to
many areas of mathematics, it is our hope that our library
developments will be useful to others, including in the for-
malization of other QE algorithms, but also more widely.

3.4 Code Export
We export our multivariate QE algorithm to SML code, which
removes overhead and allows us to better test our algorithm

on examples.10 Building on the framework of Scharager et al.
(by using the same type for QE formulas and the same evalu-
ation function for formulas) makes the connection with the
verified virtual substitution algorithm [37] very easy.11 This
means that we are able to retain efficiency [37] on examples
that are tractable for virtual substitution.
However, because virtual substitution is not a complete

QE method (i.e., it is not able to solve all QE problems), the
efficiency, or lack thereof, of our (complete) algorithm is still
significant. Unfortunately (but not unexpectedly), without
the link to virtual substitution, our hybrid multivariate algo-
rithm is not at all efficient; it appears to hang on all but the
simplest univariate examples. However, we do not consider
our algorithm’s present inefficiency to be a fatal flaw, since
we envision it as being a (major) stepping stone on the way
towards an optimized algorithm. As noted previously [37],
unverified computer algebra systems have realized efficient
QE in part because many have been extensively optimized
over several decades; thus, it is natural that optimized veri-
fied algorithms will similarly take time to develop.

While inefficiency is not unexpected given that even Rene-
gar may not realize practical efficiency in its current state
[20, 21], at present, we suspect that part of the efficiency
bottleneck for our algorithm is the untenable branching in
the computation of the multivariate Tarski queries; this can
be significantly reduced in the future by implementing an al-
gorithm that more closely follows BKR. We also believe that
our algorithm’s lack of inherent optimizations is another
contributing factor; as one example, we currently branch
unnecessarily on the signs of constant coefficients. Further,
we are not currently exploiting the algorithm’s inherent
parallelism. However, it does not make sense to focus on
optimizing our algorithm at this stage (optimizations may
be brittle). Once the branching reflects the full reduction of
BKR, then inefficiencies (such as the unnecessary branching
on constant coefficients) should be identified and handled
appropriately.

4 Related Work
From a theoretical standpoint, the most closely related work
is one by Cyril Cohen, who formalized a sign-determination
algorithm with reduction in Coq that, to our understanding,
uses the same matrix equation as our algorithm, although
the details of his formalization look quite different from

10This step requires trusting Isabelle/HOL’s code generator in addition
to the theorem prover’s trusted core. Partial progress has been made on
verifying Isabelle’s code generator [22].
11The top-level correctness theorems for verified virtual substitution [37]
have a very similar shape to qe_correct, as they state that for each top-
level formalized virtual substitution method V and valuation 𝜈 , eval F 𝜈

equals eval (V F) 𝜈 . This makes it easy to verify that, for any valuation
𝜈 , eval F 𝜈 equals eval ((qe ◦ V) F) 𝜈 .

12

A First Complete Algorithm for Real Quantifier Elimination in Isabelle/HOL CPP ’23, January 16–17, 2023, Boston, MA, USA

ours.12 To our knowledge, he has not yet used this improved
sign-determination algorithm for a QE algorithm, and this
work is unpublished, but a writeup is available on his web-
page [7]. Additionally, because the algorithm we verify is a
hybrid between Tarski’s QE algorithm and BKR, our work
shares some theoretical overlap with Cohen and Mahboubi’s
formalization of Tarski’s algorithm in Coq [6, 8].
From a practical standpoint, we benefit from the well-

developed Isabelle/HOL libraries. This includes, of course,
our previous verification of univariate BKR [12] and our
verification of virtual substitution [37], which have already
been discussed at length. Additionally, we build on the for-
malization of pseudo-remainder sequences (recently made
available on the AFP [24]) described by Li, Passmore, and
Paulson [25]. Although we formalize our own functions to
generate pseudo-remainder sequences, which interface well
with our assumptions-based framework (and which are spe-
cialized to the rmpoly type), we derive insights from Li’s code
and mimic some of his structure in our functions, adapted
appropriately to our purposes. We also benefit from proving
a connection between our functions and his.

5 Conclusion and Future Work
We develop and formalize Isabelle/HOL’s first complete mul-
tivariate quantifier elimination (QE) algorithm for the first-
order logic of real arithmetic. Our algorithm mixes ideas
from Tarski’s original QE algorithm [40] and more efficient
algorithms by BKR [2] and Renegar [36]; the formalization
requires rigorizing high-level mathematical insights [2, 36].
We realize a number of ideas suggested in our prior work by
extending a formalization of univariate BKR [12] to the mul-
tivariate case and by building on the framework of Scharager
et al. [37] in order to link our work with an efficient verified
virtual substitution QE algorithm. While our algorithm (on
its own) currently has prohibitive inefficiency, its nontriv-
ial library extensions and theoretical interest (including its
potential to be extended into variant algorithms that have
promising parallel complexity [5, 13, 36]) make it a mean-
ingful contribution.
Future work includes first extending our algorithm to

one that realizes the full reduction of BKR [2]. After this, it
would be interesting to identify other areas of inefficiency
and aggressively optimize. In addition to fine-tuning the
branching to avoid splitting on trivial cases (most notably,
on constants), one very significant (and challenging) task will
be to optimize the computation of the Tarski queries; this was
previously noted in the univariate case also [12]. Overall,
our contribution lays considerable groundwork for more
optimized verified QE algorithms with inherent parallelism.

12This is in part because the setup is considerably different: while we ex-
tended a univariate QE procedure with reduction into multivariate, Cohen
added reduction to an already multivariate sign-determination procedure.

Acknowledgments
We thank the anonymous CPP reviewers for their helpful
feedback on the paper.
This material is based upon work supported by the Na-

tional Science Foundation under Grant No. CNS-1739629, a
National Science Foundation Graduate Research Fellowship
under Grants Nos. DGE1252522 and DGE1745016, by the
AFOSR under grant number FA9550-16-1-0288, by A*STAR,
Singapore, and the Alexander von Humboldt Foundation.
Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National Sci-
ence Foundation, AFOSR, or A*STAR.

References
[1] Saugata Basu, Richard Pollack, and Marie-Françoise Roy. 2006. Al-

gorithms in Real Algebraic Geometry (second ed.). Springer, Berlin,
Heidelberg. https://doi.org/10.1007/3-540-33099-2

[2] Michael Ben-Or, Dexter Kozen, and John H. Reif. 1986. The Complexity
of Elementary Algebra and Geometry. J. Comput. Syst. Sci. 32, 2 (1986),
251–264. https://doi.org/10.1016/0022-0000(86)90029-2

[3] Christopher W. Brown. 2001. Improved Projection for Cylindrical
Algebraic Decomposition. J. Symb. Comput. 32, 5 (2001), 447–465.
https://doi.org/10.1006/jsco.2001.0463

[4] Christopher W. Brown. 2003. QEPCAD B: a program for computing
with semi-algebraic sets using CADs. SIGSAM Bull. 37, 4 (2003), 97–108.
https://doi.org/10.1145/968708.968710

[5] John F. Canny. 1993. Improved Algorithms for Sign Determination and
Existential Quantifier Elimination. Comput. J. 36, 5 (1993), 409–418.
https://doi.org/10.1093/comjnl/36.5.409

[6] Cyril Cohen. 2012. Formalized algebraic numbers: construction and
first-order theory. Ph.D. Dissertation. École polytechnique. https:
//perso.crans.org/cohen/papers/thesis.pdf

[7] Cyril Cohen. 2021. Formalization of a sign determination algo-
rithm in real algebraic geometry. (2021). Preprint on webpage at
https://hal.inria.fr/hal-03274013/document.

[8] Cyril Cohen and Assia Mahboubi. 2012. Formal proofs in real algebraic
geometry: from ordered fields to quantifier elimination. Log. Methods
Comput. Sci. 8, 1 (2012). https://doi.org/10.2168/LMCS-8(1:2)2012

[9] George E. Collins. 1975. Quantifier elimination for real closed fields by
cylindrical algebraic decomposition. In Automata Theory and Formal
Languages (LNCS, Vol. 33), H. Barkhage (Ed.). Springer, 134–183. https:
//doi.org/10.1007/3-540-07407-4_17

[10] George E. Collins and H. Hong. 1991. Partial Cylindrical Algebraic
Decomposition for Quantifier Elimination. J. Symb. Comput. 12, 3
(1991), 299–328. https://doi.org/10.1016/S0747-7171(08)80152-6

[11] Katherine Cordwell, Yong Kiam Tan, and André Platzer. 2021. The
BKR Decision Procedure for Univariate Real Arithmetic. Archive of
Formal Proofs (April 2021). https://www.isa-afp.org/entries/BenOr_
Kozen_Reif.html, Formal proof development.

[12] Katherine Cordwell, Yong Kiam Tan, and André Platzer. 2021. A
Verified Decision Procedure for Univariate Real Arithmetic with the
BKR Algorithm. In ITP (LIPIcs, Vol. 193), Liron Cohen and Cezary
Kaliszyk (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
14:1–14:20. https://doi.org/10.4230/LIPIcs.ITP.2021.14

[13] Felipe Cucker, Hervé Lanneau, Bud Mishra, Paul Pedersen, and Marie-
Françoise Roy. 1992. NC Algorithms for Real Algebraic Numbers. Appl.
Algebra Eng. Commun. Comput. 3 (1992), 79–98. https://doi.org/10.
1007/BF01387193

[14] James H. Davenport and Joos Heintz. 1988. Real Quantifier Elimination
is Doubly Exponential. J. Symb. Comput. 5, 1/2 (1988), 29–35. https:

13

https://doi.org/10.1007/3-540-33099-2
https://doi.org/10.1016/0022-0000(86)90029-2
https://doi.org/10.1006/jsco.2001.0463
https://doi.org/10.1145/968708.968710
https://doi.org/10.1093/comjnl/36.5.409
https://perso.crans.org/cohen/papers/thesis.pdf
https://perso.crans.org/cohen/papers/thesis.pdf
https://doi.org/10.2168/LMCS-8(1:2)2012
https://doi.org/10.1007/3-540-07407-4_17
https://doi.org/10.1007/3-540-07407-4_17
https://doi.org/10.1016/S0747-7171(08)80152-6
https://www.isa-afp.org/entries/BenOr_Kozen_Reif.html
https://www.isa-afp.org/entries/BenOr_Kozen_Reif.html
https://doi.org/10.4230/LIPIcs.ITP.2021.14
https://doi.org/10.1007/BF01387193
https://doi.org/10.1007/BF01387193
https://doi.org/10.1016/S0747-7171(88)80004-X
https://doi.org/10.1016/S0747-7171(88)80004-X

CPP ’23, January 16–17, 2023, Boston, MA, USA Katherine Kosaian, Yong Kiam Tan, and André Platzer.

//doi.org/10.1016/S0747-7171(88)80004-X
[15] Leonardo Mendonça de Moura and Grant Olney Passmore. 2013. Com-

putation in Real Closed Infinitesimal and Transcendental Extensions
of the Rationals. In CADE (LNCS, Vol. 7898), Maria Paola Bonacina (Ed.).
Springer, 178–192. https://doi.org/10.1007/978-3-642-38574-2_12

[16] Andreas Dolzmann, Andreas Seidl, and Thomas Sturm. 2004. Efficient
projection orders for CAD. In ISSAC, Jaime Gutierrez (Ed.). ACM, 111–
118. https://doi.org/10.1145/1005285.1005303

[17] Manuel Eberl. 2015. A Decision Procedure for Univariate Real Poly-
nomials in Isabelle/HOL. In CPP, Xavier Leroy and Alwen Tiu (Eds.).
ACM, 75–83. https://doi.org/10.1145/2676724.2693166

[18] Manuel Eberl and René Thiemann. 2021. Factorization of Polynomials
with Algebraic Coefficients. Archive of Formal Proofs (November 2021).
https://isa-afp.org/entries/Factor_Algebraic_Polynomial.html, Formal
proof development.

[19] John Harrison. 2007. Verifying Nonlinear Real Formulas Via Sums of
Squares. In TPHOLs (LNCS, Vol. 4732), Klaus Schneider and Jens Brandt
(Eds.). Springer, 102–118. https://doi.org/10.1007/978-3-540-74591-4_9

[20] Joos Heintz, Marie-Françoise Roy, and Pablo Solernó. 1993. On the
Theoretical and Practical Complexity of the Existential Theory of Reals.
Comput. J. 36, 5 (1993), 427–431. https://doi.org/10.1093/comjnl/36.5.
427

[21] Hoon Hong. 1991. Comparison of Several Decision Algorithms for
the Existential Theory of the Reals. Technical Report. RISC. https:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.30.8707

[22] Lars Hupel and Tobias Nipkow. 2018. A Verified Compiler from Is-
abelle/HOL to CakeML. In ESOP (LNCS, Vol. 10801), Amal Ahmed (Ed.).
Springer, 999–1026. https://doi.org/10.1007/978-3-319-89884-1_35

[23] Katherine Kosaian, Yong Kiam Tan, and André Platzer. 2022. A First
Complete Algorithm for Real Quantifier Elimination in Isabelle/HOL.
Archive of Formal Proofs (Dec. 2022). https://www.isa-afp.org/entries/
Quantifier_Elimination_Hybrid.html, Formal proof development.

[24] Wenda Li. 2014. The Sturm-Tarski Theorem. Archive of Formal Proofs
(Sept. 2014). https://isa-afp.org/entries/Sturm_Tarski.html, Formal
proof development.

[25] Wenda Li, Grant Olney Passmore, and Lawrence C. Paulson. 2019.
Deciding Univariate Polynomial ProblemsUsing Untrusted Certificates
in Isabelle/HOL. J. Autom. Reason. 62, 1 (2019), 69–91. https://doi.org/
10.1007/s10817-017-9424-6

[26] Wenda Li and Lawrence C. Paulson. 2016. A modular, efficient formal-
isation of real algebraic numbers. In CPP, Jeremy Avigad and Adam
Chlipala (Eds.). ACM, 66–75. https://doi.org/10.1145/2854065.2854074

[27] Assia Mahboubi. 2007. Implementing the cylindrical algebraic decom-
position within the Coq system. Math. Struct. Comput. Sci. 17, 1 (2007),
99–127. https://doi.org/10.1017/S096012950600586X

[28] Scott McCallum. 1985. An Improved Projection Operation for Cylin-
drical Algebraic Decomposition. In EUROCAL (LNCS, Vol. 204), B. F.
Caviness (Ed.). Springer, 277–278. https://doi.org/10.1007/3-540-15984-
3_277

[29] Sean McLaughlin and John Harrison. 2005. A Proof-Producing De-
cision Procedure for Real Arithmetic. In CADE (LNCS, Vol. 3632),
Robert Nieuwenhuis (Ed.). Springer, 295–314. https://doi.org/10.1007/
11532231_22

[30] César A. Muñoz, Anthony J. Narkawicz, and Aaron Dutle. 2018. A
Decision Procedure for Univariate Polynomial Systems Based on Root
Counting and Interval Subdivision. J. Formaliz. Reason. 11, 1 (2018),
19–41. https://doi.org/10.6092/issn.1972-5787/8212

[31] AnthonyNarkawicz, César A.Muñoz, andAaronDutle. 2015. Formally-
Verified Decision Procedures for Univariate Polynomial Computation
Based on Sturm’s and Tarski’s Theorems. J. Autom. Reason. 54, 4 (2015),
285–326. https://doi.org/10.1007/s10817-015-9320-x

[32] Tobias Nipkow. 2010. Linear Quantifier Elimination. J. Autom. Reason.
45, 2 (2010), 189–212. https://doi.org/10.1007/s10817-010-9183-0

[33] Lawrence C. Paulson and Jasmin Christian Blanchette. 2010. Three
years of experience with Sledgehammer, a Practical Link Between
Automatic and Interactive Theorem Provers. In IWIL (EPiC Series in
Computing, Vol. 2), Geoff Sutcliffe, Stephan Schulz, and Eugenia Ter-
novska (Eds.). EasyChair, 1–11.

[34] André Platzer. 2018. Logical Foundations of Cyber-Physical Systems.
Springer, Cham. https://doi.org/10.1007/978-3-319-63588-0

[35] André Platzer, Jan-David Quesel, and Philipp Rümmer. 2009. Real
World Verification. In CADE (LNCS, Vol. 5663), Renate A. Schmidt (Ed.).
Springer, 485–501. https://doi.org/10.1007/978-3-642-02959-2_35

[36] James Renegar. 1992. On the Computational Complexity and Geometry
of the First-Order Theory of the Reals, Part III: Quantifier Elimination.
J. Symb. Comput. 13, 3 (1992), 329–352. https://doi.org/10.1016/S0747-
7171(10)80005-7

[37] Matias Scharager, Katherine Cordwell, Stefan Mitsch, and André
Platzer. 2021. Verified Quadratic Virtual Substitution for Real Arith-
metic. In FM (LNCS, Vol. 13047), Marieke Huisman, Corina S. Pasareanu,
and Naijun Zhan (Eds.). Springer, 200–217. https://doi.org/10.1007/978-
3-030-90870-6_11

[38] Matias Scharager, Katherine Cordwell, Stefan Mitsch, and André
Platzer. 2021. Verified Quadratic Virtual Substitution for Real Arith-
metic. Archive of Formal Proofs (October 2021). https://isa-afp.org/
entries/Virtual_Substitution.html, Formal proof development.

[39] Adam Strzeboński. 2000. Solving algebraic inequalities. The Mathe-
matica Journal 7, 4 (2000), 525–541.

[40] Alfred Tarski. 1951. A Decision Method for Elementary Algebra and
Geometry. RAND Corporation, Santa Monica, CA. https://www.rand.
org/pubs/reports/R109.html

[41] Volker Weispfenning. 1988. The Complexity of Linear Problems in
Fields. J. Symb. Comput. 5, 1-2 (1988), 3–27. https://doi.org/10.1016/
S0747-7171(88)80003-8

[42] Makarius Wenzel. 2006. Structured Induction Proofs in Isabelle/Isar. In
MKM (LNCS, Vol. 4108), Jonathan M. Borwein and William M. Farmer
(Eds.). Springer, 17–30. https://doi.org/10.1007/11812289_3

Received 2022-09-21; accepted 2022-11-21

14

https://doi.org/10.1016/S0747-7171(88)80004-X
https://doi.org/10.1007/978-3-642-38574-2_12
https://doi.org/10.1145/1005285.1005303
https://doi.org/10.1145/2676724.2693166
https://isa-afp.org/entries/Factor_Algebraic_Polynomial.html
https://doi.org/10.1007/978-3-540-74591-4_9
https://doi.org/10.1093/comjnl/36.5.427
https://doi.org/10.1093/comjnl/36.5.427
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.30.8707
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.30.8707
https://doi.org/10.1007/978-3-319-89884-1_35
https://www.isa-afp.org/entries/Quantifier_Elimination_Hybrid.html
https://www.isa-afp.org/entries/Quantifier_Elimination_Hybrid.html
https://isa-afp.org/entries/Sturm_Tarski.html
https://doi.org/10.1007/s10817-017-9424-6
https://doi.org/10.1007/s10817-017-9424-6
https://doi.org/10.1145/2854065.2854074
https://doi.org/10.1017/S096012950600586X
https://doi.org/10.1007/3-540-15984-3_277
https://doi.org/10.1007/3-540-15984-3_277
https://doi.org/10.1007/11532231_22
https://doi.org/10.1007/11532231_22
https://doi.org/10.6092/issn.1972-5787/8212
https://doi.org/10.1007/s10817-015-9320-x
https://doi.org/10.1007/s10817-010-9183-0
https://doi.org/10.1007/978-3-319-63588-0
https://doi.org/10.1007/978-3-642-02959-2_35
https://doi.org/10.1016/S0747-7171(10)80005-7
https://doi.org/10.1016/S0747-7171(10)80005-7
https://doi.org/10.1007/978-3-030-90870-6_11
https://doi.org/10.1007/978-3-030-90870-6_11
https://isa-afp.org/entries/Virtual_Substitution.html
https://isa-afp.org/entries/Virtual_Substitution.html
https://www.rand.org/pubs/reports/R109.html
https://www.rand.org/pubs/reports/R109.html
https://doi.org/10.1016/S0747-7171(88)80003-8
https://doi.org/10.1016/S0747-7171(88)80003-8
https://doi.org/10.1007/11812289_3

	Abstract
	1 Introduction
	2 Quantifier Elimination
	2.1 Sign Determination
	2.2 The Multivariate Matrix Equation
	2.3 Overall Quantifier Elimination Algorithm

	3 Formalization Details
	3.1 Challenges
	3.2 High Level Proof Techniques
	3.3 Library Extensions
	3.4 Code Export

	4 Related Work
	5 Conclusion and Future Work
	References

