LEARNING TO FIND PROOFS AND THEOREMS
BY LEARNING TO REFINE SEARCH STRATEGIES

THE CASE OF LOOP INVARIANT SYNTHESIS

® .

' \{ Jonathan Laurent, André Platzer
NEU RAL

' »%. INFORMATION Carnegie Mellon University

'Of * PROCESSING

39 SYSTEMS Karlsruhe Institute of Technology

Can theorem proving be learned without a single

example of a proof or theorem?

* Imitation learning is limited by the scarcity of human proofs
* Reinforcement learning presents challenges:
* Infinite action spaces are hardly amenable to exploration

* Theorems are still needed as training tasks

PROPOSED APPROACH

Teacher Solver

: theorems
random :

> :
seeds : E : E
. rewards 13 guidance : i rewards 1 guidance :
] ~— : O : :
-] Strategy | €-- =" O ------------ > | J Strategy
= i expert — _
writes l

LOOP INVARIANT SYNTHESIS

* Training data unavailable and hard to generate!

* No pre-existing deep-learning agent capable of generalizing
across instances.

To prove the final assertion, one must find

assume x = 1 a lOOP invariant that:
y = 0 is true before the loop
while y < 1000 { ,
X = X +y 2. is preserved by the loop body (when the
y =y + 1 loop guard holds)
} 3. implies the final assertion (when the
assert x = vy loop guard does not hold)

Invariant: x>y A x>1 Ay>0

A LANGUAGE FOR EXPRESSING STRATEGIES

We define a strategy language based on choose and event operators.

— NN NN NN NN EEE .
Istrategy def solver(
init: Formula, guard: Formula,
W m— : body: Program, post: Formula) — Formula:
Eixpertstratqu E def prove_inv(inv: Formula) — List[Formulal]:

assert valid(Implies(init, inv)) :
: ind = Implies(And(guard, inv), wlp(body, inv)) E
compiled event(PROVE_INV_EVENT) :
: match abduct(ind):
case Valid:
return [inv]
" e : case [*suggestions]:
O O : aux =|choose(suggestions)
- return [inv] + prove_inv(aux)
: inv_cand =|choose(pbduct(Implies(Not(guard), post)))

oele :
\f/ : inv_conjuncts = prove_inv(inv_cand)
O

E return And(*inv_conjuncts)

nto

MDP amenable to RL and
neural-guided search A A solver strategy for invariant synthesis

GENERATING TRAINING PROBLEMS

* Generating interesting theorems is harder than proving those!

* Our approach: refining conditional generative strategies using RL.

def teacher(rng: RandGen) — Prog: p = refine_guard(p, cs)
cs = sample_constrs(rng) p = refine_inv(p, cs)
=F=f=§:ﬁ§?§?§f??§§??§j==== p = refine_body(p, cs)
p = transform(p, rng) assert valid(inv_preserved(p))
p = hide_invariants(p) p = refine_post(p, cs)
return p assert valid(inv_post(p))
p = refine_init(p, cs)
def generate_prog(cs: Constrs): assert valid(inv_init(p))
p = Prog(" penalize_violations(p, cs)
assume 1init; return p
while (guard) {
invariant inv_1lin; def transform(p: Prog, rng: RandGen):
invariant inv_aux; p = shuffle_formulas(p, rng)
invariant inv_main; p = add_useless_init(p, rng)
body; }
assert post;") return p

A Outline of a teacher strategy for invariant synthesis

RESULTS ON INVARIANT SYNTHESIS

* Training curves for the teacher and the solver (respectively):

1.0 0.8
T 054 B 0.7 | | |
; 0.0 ; 0.6
? % F_’—A
«% —0.5 1 .:% 0.5
—1.0 T T T T 0.4 T T T T
0 15 10 15 0 5 10 15
Iteration number Iteration number
e Experimental results on Code2Inv (no backtracking search):
Policy % Problems solved
Random 18.4 4+ 0.0
Network (untrained teacher) 39.7 &+ 1.6

Network (trained teacher) 61.5 + 04

@ Shared oracle (Large Language Model)

Teacher Solver

Invariant synthests

Contributor 1

Teacher Solver

Inequality proving

Contributor 2

Teacher Solver

Euclidian geometry

Contributor N

