
Learning to Find Proofs and Theorems by Learning to Refine Search Strategies
The Case of Loop Invariant Synthesis

A Flexible Strategy LanguageMotivation
Can theorem proving be learned without examples of proofs or theorems?

• Automated theorem proving has crucial applications in many fields,
including software verification.

• The dominant approach for scaling it up with machine-learning is to use
imitation learning. However, human proof data is scarce (and nearly
nonexistent in many domains).

• Reinforcement learning alleviates the need for human proofs but training
tasks of suitable relevance and diversity are still needed (equally scarce).

Evaluation Setting
Verifying imperative programs by generating loop invariants:

• Training data unavailable and hard to generate!

• No pre-existing deep-learning agent can generalize across instances.

assume x !" 1
y = 0
while y < 1000 {
 x = x + y
 y = y + 1
}
assert x !" y

To prove the final assertion, one must find a loop
invariant that is true before the loop, preserved by the
loop body (when the loop guard holds) and implies the
final assertion (when the loop guard does not hold).

Invariant: x ≥ y ∧ x ≥ 1 ∧ y ≥ 0

Our approach

proofs

theorems

random seeds

Teacher (AlphaZero agent)

Strategy

rewards guidance

Strategy

Solver (AlphaZero agent)

Strategy

rewards guidance

expert
writes

A teacher/solver architecture in which both agents use RL to refine generic
expert-defined strategies expressed as nondeterministic programs.

We propose a flexible language for experts to define search strategies in the form
of nondeterministic programs, using the choose , reward and event operators.

Strategies in this language can be compiled by our tool into
MDPs that are amenable to neural-guided search and RL.
Non-final states correspond to nondeterministic choice points:

For RL to properly generalize across instances, diverse and relevant theorems
(i.e. initial states in the strategy MDP) must be provided. Generating such
theorems is often harder than proving them (for invariant synthesis, naive
approaches based on rejection sampling produce low-quality training tasks).

def solver(
 init: Formula, guard: Formula,
 body: Program, post: Formula) !# Formula:
 def prove_inv(inv: Formula) !# List[Formula]:
 assert valid(Implies(init, inv))
 ind = Implies(And(guard, inv), wlp(body, inv))
 match abduct(ind):
 case Valid:
 return [inv]
 case [*suggestions]:
 aux = choose(suggestions)
 return [inv] + prove_inv(aux)
inv_cand = choose(abduct(Implies(Not(guard), post)))
inv_conjuncts = prove_inv(inv_cand)
reward(max(-1, -0.2 * len(inv_conjuncts))
return And(*inv_conjuncts)

“Start with an
invariant candidate
that implies the
post-condition. If
the candidate is not
preserved, find a
missing assumption
that makes it so and
prove it invariant
recursively.”

A solver strategy
for loop invariant
synthesis:

Key insight: teacher agents can be implemented similarly to solver agents, by
using RL to refine expert-defined strategies. To do so, we introduce the concept
of a conditional generative strategy, which generates a problem in two steps:

1. Sample a set of random constraints.

2. Generate a problem nondeterministically and get rewarded for satisfying

as many constraints as possible (amenable to learning).

def teacher(rng: RandGen) !# Prog:
 cs = sample_constraints(rng)
 i = generate_invariant(cs)
 p = generate_program(cs)
 assert valid_invariant(p, i)
 penalize_constr_violations(p, cs)
 return p

Outline of a teacher strategy for invariant
synthesis. Examples of constraints are:

• “Use an invariant with 3 conjuncts, only one

of which is used to prove the postcondition.”
• “The loop guard must only be relevant for

proving the invariant inductive.”
• “The postcondition must feature 2 disjuncts

and at least one equality.”

Experiments
• We implemented our strategy language along with a toolchain to write,

debug and compile strategies into MDPs.

• We trained a teacher and a solver agent for invariant synthesis based on

two strategies written in this language. We used Dynamic Graph
Transformers with 2M parameters as neural oracles and trained both
agents for 160K AlphaZero episodes (with 32 MCTS simulations per move).

• Training took 16 hours on a 10-core CPU and 1 Nvidia RTX 3080 GPU.

Average collected reward as a function of the training iteration

Teacher Solver

• We evaluated the resulting solver on the Code2Inv benchmark suite (130
problems involving loops, conditionals and linear integer arithmetic).

• The Code2Inv problems can be solved via pure search so we conducted the
evaluation with no search allowed (i.e. using the network policy greedily).

Takeaway: the trained network can solve a majority of problems with no
search at all despite never seeing those during training. Using an untrained
teacher leads to an inferior solver with decreased generalization capabilities.

Conclusion and Future Work

• Broader vision: interactive provers allow users to write teacher and solver
strategies for various domains in a distributed way. A large language model
is fine-tuned to serve as a shared oracle that generalizes across those.

• Future work:
• Evaluation of our framework in other application domains

• Intrinsic teacher rewards (curiosity, solver rewarding the teacher directly…)

• Integration with large pretrained language models

We demonstrated the possibility of learning a theorem proving task (invariant
synthesis) in the absence of both proof and theorem examples.

Teacher Strategies

… … …

choose([x,y,z])

……

… …
x y z

x,y,z

serialized
execution

state

network

value
policy

events

(zooming in)MDP

Choice points in expert strategies are resolved by neural network oracles that
are trained in a purely self-supervised fashion.

Jonathan Laurent 1,2 and André Platzer 1,2 (Carnegie Mellon University 1, Karlsruhe Institute of Technology 2)

