KeYmaera X: An Axiomatic Tactical Theorem Prover
for Hybrid Systems*

Nathan Fulton!, Stefan Mitsch!, Jan-David Quesel®,
Marcus Volp!»2, and André Platzer!

! Computer Science Department, Carnegie Mellon University, Pittsburgh PA 15213, USA,
{nathanfu, smitsch, jquesel, aplat zer}@cs .cmu.edu,
2 Technische Universitit Dresden, 01157 Dresden, Germany,
marcus.voelp@tu-dresden.de

Abstract. KeYmaera X is a theorem prover for differential dynamic logic (dC), a
logic for specifying and verifying properties of hybrid systems. Reasoning about
complicated hybrid systems models requires support for sophisticated proof tech-
niques, efficient computation, and a user interface that crystallizes salient prop-
erties of the system. KeYmaera X allows users to specify custom proof search
techniques as tactics, execute these tactics in parallel, and interface with partial
proofs via an extensible user interface.

Advanced proof search features—and user-defined tactics in particular—are dif-
ficult to check for soundness. To admit extension and experimentation in proof
search without reducing trust in the prover, KeYmaera X is built up from a small
trusted kernel. The prover kernel contains a list of sound d£ axioms that are in-
stantiated using a uniform substitution proof rule. Isolating all soundness-critical
reasoning to this prover kernel obviates the intractable task of ensuring that each
new proof search algorithm is implemented correctly. Preliminary experiments
suggest that a single layer of tactics on top of the prover kernel provides a rich
language for implementing novel and sophisticated proof search techniques.

1 Introduction

Computational control of physical processes such as cyber-physical systems introduces
complex interactions between discrete and continuous dynamics. Developing techniques
for reasoning about this interaction is important to prevent software bugs from causing
harm in the real world. For this reason, formal verification of safety-critical software is
upheld as best practice [4].

Verifying correctness properties about cyber-physical systems requires analyzing
the system’s discrete and continuous dynamics together in a hybrid system [2]. For
example, establishing the correctness of an adaptive cruise control system in a car re-
quires reasoning about the computations of the controller together with the resulting
physical motion of the car. Theorem proving is a useful technique for proving correct-
ness properties of hybrid systems [11]. Theorem proving complements model checking
and reachability analysis, which are successful at finding bugs in discrete systems.

* This material is based upon work supported by the National Science Foundation under NSF
CAREER Award CNS-1054246, NSF CNS-1035800, and CNS-0931985, and by ERC under
PIOF-GA-2012-328378 (Mitsch on leave from Johannes Kepler University Linz).

(© Springer International Publishing Switzerland 2015
A.P. Felty and A. Middeldorp (Eds.): CADE-25, LNCS 9195, pp. 527-538, 2015.
DOI: 10.1007/978-3-319-21401-6_36

http://dx.doi.org/10.1007/978-3-319-21401-6_36

528 Nathan Fulton et al.

A theorem prover for hybrid systems must be sound to ensure trustworthy proofs,
and should be flexible to enable efficient proof search. This paper presents KeYmaera X,
a hybrid system theorem prover that meets these conflicting goals. Its design empha-
sizes a clear separation between a small soundness-critical prover kernel and the rest
of the theorem prover. This separation ensures trust in the prover kernel and allows
extension of the prover with user-defined proof strategies and custom user interfaces.

We build on experience with KeYmaera [15], an extension of the KeY theorem
prover [1]. The success of KeYmaera in cyber-physical systems is due, in part, to its
support for reasoning about programs with differential equations and its integration of
real arithmetic decision procedures. Case studies include adaptive cruise control and
autonomous automobile control, the European Train Control System, aircraft collision
avoidance maneuvers, autonomous robots, and surgical robots. Despite the prior suc-
cesses of KeYmaera, however, its monolithic architecture makes it increasingly difficult
to scale to large systems. Aside from soundness concerns, a monolithic architecture
precludes extensions necessary for proofs of larger systems, parallel proof search, or
proof strategies for specific analyses such as model refinement or monitor synthesis.

KeYmaera X is a clean-slate reimplementation to replace KeYmaera. KeYmaera X
focuses on a small trusted prover kernel, extensive tactic support for steering proof
search, and a user interface intended to support a mixture of interactive and automatic
theorem proving. KeYmaera X improves on automation when compared to KeYmaera
for our ModelPlex case study: it automates the otherwise ~60% manual steps in [8].

2 KeYmaera X Feature Overview

Hybrid Systems. Hybrid dynamical systems [2,12] are mathematical models for ana-
lyzing the interaction between discrete and continuous dynamics.

Hybrid automata [2] are a machine model of hybrid systems. A hybrid automaton
is a finite automaton over an alphabet of real variables. Variables may instantaneously
take on new values upon state transitions. Unlike classical finite automata, each state
is associated with a continuous dynamical system (modeled using ordinary differential
equations) defined over an evolution domain. Whenever the system enters a new state,
the variables of the system evolve according to the continuous dynamics and within
the evolution domain associated with that state. Hybrid automata are not conducive to
compositional reasoning; to establish a property about a hybrid automaton, it does not
suffice to establish that property about each component of a decomposed system.

Hybrid programs [10,11,12], in contrast, are a compositional programming lan-
guage model of hybrid dynamics. They extend regular programs with differential equa-
tions. A syntax and informal semantics of hybrid programs is given in Table 1.

Differential Dynamic Logic. Differential dynamic logic (d£) [10,11,12] is a first-order
multimodal logic for specifying and proving properties of hybrid programs. Each hybrid
program « is associated with modal operators [«] and (), which express state reacha-
bility properties of the parametrizing program. For example, []¢ states that the formula
¢ is true in any state reachable by the hybrid program «. Similarly, («)¢ expresses that
the property ¢ is true after some execution of «. The dZ formulas are generated by the

KeYmaera X: An Axiomatic Tactical Theorem Prover for Hybrid Systems 529

Table 1. Hybrid Programs

Program Statement Meaning

a; B Sequential composition of « and .

alUp Nondeterministic choice (U) executes either « or 5.

a” Repeats a zero or more times.

z:=0 Evaluate the expression € and assign its result to x.

T =% Assigns some arbitrary real value to z.

{z} = 64,...,z,, = 0,&F}|Continuous evolution along the differential equation system x; = 6;
for an arbitrary duration within the region described by formula F'.

F Tests if formula F' is true at current state, aborts otherwise.

EBNF grammar

pu=01 02 [0 [NV [OV || o |Vag|xe|[a]d| ()¢

where 6; are arithmetic expressions over the reals, ¢ and v are formulas, « ranges over
hybrid programs, and -~ is a comparison operator =, #, >, >, <, <.

Example 1. The following dZ formula describes a safety property for a car model.

v>0AA>0—[((a:=AUa:=0); {p=v, v =a})] v>0 (D

initial condition ctrl plant postcondition

Formula (1) expresses that a car, when started with non-negative velocity v > 0 and
positive acceleration A > 0 (left-hand side of the implication), will always drive for-
ward (v > 0) after executing (ctrl; plant)”™, i.e. running ctrl followed by the differential
equation plant arbitrarily often. Since there are no evolution domain constraints in plant
that limit the duration, each continuous evolution has an arbitrary duration r € Rx.
As its decisions, ctrl lists that the car can either accelerate a := A or coast a := 0,
while plant describes the motion of the car (position p changes according to velocity
v, velocity v according to the chosen acceleration a). Details on dZ are in the literature
[10,11,12], including a tutorial on modeling and proving in KeYmaera [16].

Proofs in KeYmaera X. Proofs in KeYmaera X are built up from three components
(kernel primitives): a small set of dZ axioms (not axiom schemata) [14] from its ax-
iomatization [12], bound variable renaming and uniform substitution [13,14], and the
propositional fragment of the dZ sequent calculus [10]. Even if unnecessary in theory
[12,14], the propositional fragment of the dZ sequent calculus is included in the prover
kernel because the implementation is easy to check for soundness and significantly im-
proves the efficiency of the prover during proof search.

The KeYmaera X prover kernel implements a Hilbert system for dC [12] as a uni-
form substitution calculus with bound variable renaming and uniform substitution [14].
A typical proof in KeYmaera X involves a succession of cuts of axioms, followed by
uniform substitution and variable renaming to align the current goal with the cut-in
axiom, and use the instantiated axiom by fast contextual equivalence rewriting [14].

530 Nathan Fulton et al.

Table 2. Dynamics of tactic combinators

Tactic Combinator Meaning

tu=b b Basic tactics.
| tsu Executes ¢ and, if successful, then executes u.
| tlu Executes t only if ¢ is applicable. If ¢ is not applicable, then u is executed.
| t* Repeats ¢ until ¢ is no longer applicable.
| <(u1,...,ur) | Applied to a goal with k subgoals, each u; is executed on the it" subgoal.
| label(?) Labels the current goal with label £.
| onLabel(¥,t) | Executes tactic ¢ only if the goal is labeled .
| 1£T(c)(u,v) | Executesw if ¢ is true, and executes v otherwise.

Kernel Primitives and the A Sequent Calculus. Although the Hilbert-style prover ker-
nel is helpful for ensuring soundness, manually constructing proofs from kernel primi-
tives is prohibitively tedious. To automate proof construction, KeYmaera X provides a
library of basic tactics and a set of tactic combinators.

Basic tactics implement the dC sequent calculus [10,11] in terms of kernel primi-
tives. Some dL proof rules are trivial to implement in terms of kernel primitives; for
example, ImplyRight is a tactic that just applies the corresponding proof rule in the
kernel’s propositional sequent calculus implementation. Other d sequent rules com-
pose multiple prover kernel primitives (e.g., the Differential Invariant proof rule [14]
for proving properties of differential equations without solving them).

Tactical Proving. The tactic combinator language (see Table 2) provides a mechanism
for combining basic and other pre-existing tactics to build proof search strategies. All
tactics—whether built-in or constructed using combinators—are applied to a sequent
or a set of sequents called a goal. Tactics have an applicability condition and a dynamic
semantics, both of which may depend upon the goal to which the tactic is applied.

The applicability condition associated with each tactic defines a set of sequents at
which the tactic may possibly succeed. Applicability for built-in tactics is defined by
their author, and these applicability conditions extend automatically to terms of the
combinator language. The dynamic semantics of a tactic is ultimately a sequence of
kernel primitives that are applied to the current goal. All tactics may either succeed or
fail on error, and errors are propagated through combinator terms.

The sequential composition combinator (&w) is similar to the semi-colon in a C-like
programming language, and is used in a similar way. The tactic t&w is applicable when
the first tactic (¢) is applicable. The tactic results in an error under three conditions: if ¢
results in an error, if u is not applicable at the result of ¢, or if w results in an error.

The either combinator (¢|u) is useful when writing tactics that apply at many pos-
sible syntactic forms (e.g., a tactic that symbolically executes any hybrid program). It
is applicable when either ¢ or u is applicable. The applicable tactic is executed and the
other is ignored; if both are applicable, then ¢ is executed and w is ignored. The tactic
t|u results in an error if the executed tactic results in an error.

The Kleene star (¢*) saturates the tactic ¢ by applying ¢ as often as possible, which
is useful when writing general-purpose tactics. The tactic t* is always applicable and
results in an error if any iteration of ¢ results in an error.

KeYmaera X: An Axiomatic Tactical Theorem Prover for Hybrid Systems 531

Branching composition (< (uy, ..., ux)) is useful for handling branching proofs (e.g.,
any proof that uses invariants or involves disjunctive assumptions). The tactic is always
applicable, and errors when applied to a goal with a non-k number of subgoals or if
any u; is inapplicable or results in an error. Branching (< (u1, ..., ux)) has a sequential
semantics given by applying each u; sequentially. The parallel semantics of branching
depends upon scheduling and synchronization, which are defined in terms of a proof
tree with And/Or-branching as in Fig. 1. KeYmaera X’s proof search engine is discussed
in Sect. 3.

Finally, labels are useful for structuring branch- subgoals for inv. I subgoals for inv. IT
ing proofs. Many built-in tactics that generate mul- subgoals Q G ° °
tiple subgoals provide labels for each subgoal, which AND branch AND branch

N\ N

can be matched against using the onLabel com- alwemative
binator. The tactic onLabel((¢1,t1), ..., (¢k, tx)) p‘°°fa"e“‘"‘fmarimﬁ\ o variant T
is applicable if any of the labels ¢; exists in the goal °

current goal and executes the corresponding con-

stituent tactic t;, resulting in an error if ¢; results in
an error.

Proof search strategies are expressed using combinators. While generic proof search
strategies exist (e.g., Master), KeYmaera X allows user-defined custom proof search
strategies expressed as tactics. The full Scala language is available when implementing
proof search strategies, but KeYmaera X also exposes an interface for running pure
combinator tactics. Where automated tactics fail, users can interact with the prover by
manually applying proof rules or by selecting the appropriate tactic and any necessary
input (e.g., loop invariants). The following tactic example illustrates the tactic language
by providing a detailed strategy for proving the safety property of Example 1 (note, that
the tactic Master with invariant v > 0 would prove the example fully automatically
as well but it is instructive to see the shape of the proof in a detailed proof tactic).

OR-branch

Fig. 1. Proof tree data structure

ImplyRight & Loop ("v>=0") & onLabel (
("base_case", Master),
("induction step", ImplyRight & Seqg & Choice & AndRight & <
(Assign & ODESolve & Master,
Assign & ODESolve & Master)),
("use_case", Master))

At every execution step the strategy applies to the topmost operator, starting with
the implication in (1) followed by induction with invariant v > 0 to handle the loop in
the box modality. The loop induction tactic generates three labeled subgoals.

The subgoals labeled “base case” and “use case” are handled by the Master tactic,
a general-purpose tactic for proving dZ formulas. Master tries non-branching propo-
sitional tactics and hybrid program tactics, then applies any branching in propositional
tactics, then searches for invariants, and finally resorts to quantifier elimination.

The tactic for the induction step follows the structure of the program. Seq handles
the sequential composition between ctrl and plant, then Choice & AndRight split
the non-deterministic choice a := A U a := 0. On the resulting two sub-branches, the
assignments a := A and a := 0 are handled, followed by ODESo1ve, which solves the
differential equations of plant. The remaining nonmodal goals are proved by Master.

532 Nathan Fulton et al.

o

é e KeYmaera X Web UI (JavaScript)

% “i & Simplified Proof Tree View

P i ,_L_\ Tactics, ‘ ' Models ¢ Proof Log ¢
ﬁ Proof View /mat [amt fmmt —
=]

‘ REST-API T T start/stop/;:;use/resume \ L‘ ‘

¥ ¥ L2 :ﬁj
l Proof Tree Simplification ‘ lSearching‘ l Execution ‘ l Proof Storing tores
I

controls [observes
[Scala-API [

— k1 Y

Proof Tree ‘ Proof Strategies ‘

&

Y uses M '
‘ dL Tactics ‘,{ Combinators\ | | executes

Scheduler

combines

¥
\ Wrappers for Kernel Primitives

manages executes tactics
— on tools/ CPU cores

KeYmaera X Kernel (soundness-critical, Scala)
Real Quantifier Elimination
| Proof Certificates | | Uniform Substitution 3
@ I Bound Renaming J" Differential Equation Solving
ST IPropositionaI Sequent Calculus with Skolemization I-—

HyDRA Server

Axiomatic Core Tactical Prover
[

Fig. 2. KeYmaera X architecture: soundness-critical kernel is shown in dark with a dashed border

3 KeYmaera X Tool Architecture

KeYmaera X was designed to achieve powerful automation of hybrid systems theorem
proving while ensuring soundness. The architecture of KeYmaera X (Figure 2) is sepa-
rated into a small, soundness-critical kernel and an extensive tactic framework to regain
and exceed the convenience of powerful proof rules. A scheduler multiplexes tactics to
worker threads to utilize available CPU cores. It also manages calls to external tools,
such as real quantifier elimination and differential equation solving. On top of proof
tactics and scheduling, the HyDRA server provides components for proof tree simpli-
fication, tactic search and custom tactic scheduling policies, as well as for storing and
accessing proofs. These components can be accessed remotely through a REST-API.
The KeYmaera X web user interface, implemented in JavaScript, uses this REST-API
to communicate with the server. The remaining subsections are organized around Fig. 2.

HyDRA: Hybrid Distributed Reasoning Architecture. KeYmaera X has an isolated
prover kernel, which offers a restricted interface to the remaining system components.
The prover kernel operates in terms of proof certificates, which capture certified prov-
ability in the kernel. A proof certificate means that from certain premises the prover
can soundly show a particular conclusion (e.g., a rule AndRight would have two
premises, one for each conjunct, whereas an axiom has no premises). KeYmaera X
ensures soundness by construction; it disallows construction of proof certificates that
do not correspond to a correct derivation. That way, the prover kernel does not need to
care about how proof certificates relate to each other, as long as it ensures that proof cer-
tificates only originate from within the kernel. To achieve this, components outside the
soundness-critical kernel, such as tactics, the user interface and the framework for par-
allel execution, receive at most read-only access to proof certificates. All mechanisms
for creating new proof certificates—rewrites corresponding to the axioms of dZ, uni-
form substitution, bound variable renaming, Skolemization and the rules of the propo-
sitional sequent calculus—are contained in the kernel. Proof certificates are managed

KeYmaera X: An Axiomatic Tactical Theorem Prover for Hybrid Systems 533

in an And/Or proof tree outside the prover kernel, so that tactics and users have access
to the proof history (Fig. 1 denotes And-branches with solid lines between nodes in the
proof tree, whereas Or-branches are depicted using dashed lines).

Correctness of the prover depends on the soundness of Scala’s pattern matching
capabilities in a similar way that Isabelle [9] depends upon the correctness of Standard
ML. Our selection of Scala is motivated by our need to interact with Mathematica and
a web server. The Scala ecosystem is also attractive from the perspective of supporting
parallel proof search and other advanced proof search features.

Collaboration and Distributed Search. KeYmaera X supports collaborative proving
and parallel, distributed proof search through a client-server architecture and proof tree
data structures with Or-branching. Multiple user interfaces may interact with the prover
via a REST-API on different goals, or attempt different strategies on the same goal.

Similarly, multiple goals may be processed in parallel and multiple tactics tried on
the same goal. KeYmaera X supports parallel exploration of proof strategies by means
of Or-branching alternatives in the proof-tree data structure and by its continuation-
passing tactics library, which we explain in greater detail below.

KeYmaera X Kernel. The soundness-critical KeYmaera X kernel consists of: (i) al-
gebraic data types representing dC expressions and proof certificates; (ii) the axioms
of differential dynamic logic [14]; (iii) bound variable renaming and uniform substi-
tution rules [14]; (iv) a propositional sequent calculus with Skolemization [10]. To a
lesser extent, the kernel also features expression parsing and printing. KeYmaera X
bans them from the soundness-critical kernel by dynamically checking whether pretty-
printing reparses to the original expressions and by declaring the pretty-printed property
to be proved rather than the textual representation in input files.

The entire prover kernel has a size of about 1700 lines of Scala code (LOC). Parsing
and printing weighs in at another 1700 LOC. Proofs are certified by an LCF-style design
in which only the small list of certified proof rules can create proof certificates. All
this puts verifying the kernel in feasible range: The axiomatic portion of the kernel
uses primarily algebraic data types and recursive functions defined over these types, so
mechanizing the theory of KeYmaera X in a higher-order proof assistant and possibly
performing code extraction appears feasible.

KeYmaera X implements rules from the propositional sequent calculus, bound vari-
able renaming, and, most importantly, uniform substitution. These rules are the basis for
constructing all proofs. Tactics are constructed from axioms by aligning them with the
current goal using bound variable renaming and uniform substitution. The axiom base
from which proofs are constructed is kept small (49 axioms and 17 additional derived
axioms) and syntactically close to the way it is presented in papers and books. Since the
axioms cannot be proven within the system itself, this design is crucial to allow manual
inspection to ensure that the system’s foundation is sound and well chosen.

KeYmaera X relies on external tools as real arithmetic decision procedures. Arith-
metic facts are stored as lemmas that are verified by the decision procedures. These
lemmas are collected together with the resulting proof and, thus, can be fed into differ-
ent decision procedures to increase trust in their correctness or retained as arithmetic as-
sumptions. The dependence on external tools is minimized compared to KeYmaera [15].

534 Nathan Fulton et al.

— -y

while ¢ executes, it dispatches

embedded tactics I \ g ! tactﬁls d_andi -
(awaiting dispatch) |
) 1 I-\ﬂ ﬁ I
) E! m
worker threads $ running tactics s ready d and e get ready
(one per core) when dispatched by c;
CPU, CPU,

f,g remain embedded in e

Fig. 3. Tactic scheduling using continuations

Differential equation solvers are removed from the trusted kernel and arithmetic is used
exclusively at the leaves of the proof tree.

Runtime and Scheduler for Executing Tactics. Tactics and kernel primitives (through
their wrappers) as well as external tools are not invoked directly from the user inter-
face but passed to a scheduler. The scheduler multiplexes tactics to worker threads for
parallel execution and manages limited parallelism and blocking on external tools.

To achieve this, the scheduler instantiates one worker thread per CPU core and in
addition one worker thread for each blocking link to external tools. By blocking we
mean a link that requires the worker thread to wait for a result after it has passed the
request to a tool. In addition, KeYmaera X tactics are schedulable objects comprised of
a main body and a continuation, which can be passed to other tactics to regain control
after completion, in particular if they have been executed on a different CPU core.

Figure 3 illustrates the dispatching of tactics and the role of continuations. A tactic
a (not shown) has dispatched the tactics b, ¢ and h for parallel execution by insert-
ing them into the global priority-sorted ready list from which the worker threads on
CPU, selected ¢, which it currently executes. Worker threads always pick the highest-
prioritized ready tactic from the ready list and execute them non-preemptively (i.e., they
first complete a started tactic before they look for the next one). Tactic ¢ represents any
tactic that would add multiple independent tactics to the queue, such as the <(d, e) tac-
tic. The tactics d and e are associated with subgoals of the goal at which c is applied.
Once a tactic has been associated to a proof node and a continuation, the tactic is ready
for dispatch into the scheduler’s ready list. The result of dispatching of d and e is shown
on the right of Fig. 3 when following the arrow. Tactic e is a combinator (e.g., e = f&g)
with embedded tactics f, g. Because e did not yet execute and because g will execute
on the subgoal yet-to-be produced by f, these tactics are not ready yet.

To regain control after d and e complete, ¢ has passed a continuation to both tactics
(c1is the parent of the continuation). Continuations are invoked once the body of a tactic
completes. A continuation can inspect the result and the completion status (success or
failure) of the completed tactic, as well as its parent to make decisions about the next
proof step based on whether or not the proof changed.

User Interface. The KeYmaera X system features multiple interfaces: (i) a Scala-API
for accessing the axiomatic core and tactical prover programmatically from (standalone)
Scala and Java applications; (ii) a REST-API intended for remote access to the HyDRA

KeYmaera X: An Axiomatic Tactical Theorem Prover for Hybrid Systems 535

KeYmaera X Dashboard Models Proofs (@ Hep~ O
B Agenda ‘ = Overview Induction Step

v>20AA>0AB>0FHVv>0AB>0AA>0

Invariant Initially Valid 0 L
vz0AB>0AA>0

—

Use case I

Fv>0AB>0AA>0->v>0 ! (@:=Auva:=0vua:=(-B)
? (@0) = a;

Induction Step x'=v,v' =a(, (v=0)

FV20AB>0AA>0> [@:=AUa:=0U a:=(-B); Aaf IW=0AB>0AA>0)

Custom Tactic

N ImplyRight
N | & Seq & Choice & AndRight & < (
\ Assign & Seq & Test & ImplyRight & ODESolve & ImplyRight & ArithmeticT,

Rule Application

[[a:=0Ua:=B)] [2@0) =a x' =v,v =a0 & (v 20)]v20] Cho|ce &iAnthght a<(
F Assign & Seq & Test & ImplyRight & ODESolve & ImplyRight & ArithmeticT,
[a] 4] N
(o) ¥ e VI 1| (weaken) (8 -)
1

1)

1 .
N Run Custom Tactic

d @
Step || Hide

)
1
1
1
1
1
! ! Assign & Seq & Test & ImplyRight & ODESolve & ImplyRight & ArithmeticT
1
1
1
1
1
1

Fig. 4. A tactic for closing the induction step of a simple hybrid car model. The dotted selection
illustrates what the Apply Rule dialog would look like just before executing the second Choice
in the custom tactic.

server; and (iii) a graphical web-based user interface for point-and-click interaction.
The Scala-API is designed for tight integration of KeYmaera X into other programs.
It is the basis for the HyDRA server and used in the development process for unit
testing. The REST-API wraps the Scala-API in a web application and gives access to
server functionality: it identifies the “resources” at the HyDRA server (such as goals in a
proof tree, formulas in a sequent, and tactics) using hierarchical URLs and uses standard
HTTP requests to manipulate these resources. On top of that, KeYmaera X provides a
native web interface for managing proofs and lemma databases, as well as for interactive
and tactical proving sessions. Figure 4 shows the web interface during an interactive
proving session. In the web interface, proof trees are collapsed for presentation into
simplified views, which highlight proof steps at the granularity of d_ sequent rules but
shortcut through the axiom-application steps that we introduced to improve confidence
in soundness. Custom tactics can be specified using the combinator language of Sect. 2.
Alternatively, proof rules such as ODESolve can be selected directly by clicking on the
formula, as illustrated in Fig. 4.

4 Related Work

KeYmaera X is the first theorem prover to unify Hilbert systems and Gentzen-style
sequent calculi by combining uniform substitution with a flexible tactics mechanism.
Hilbert systems simplify reasoning about soundness, which reduces the complexity and
risk associated with extending the theorem prover with new proof search techniques
or new logic fragments. This distinction separates KeYmaera X from other deductive
verification systems such as KeY [3] and KeYmaera [15].

536 Nathan Fulton et al.

LCF-style theorem provers, including Isabelle [9], feature both a minimal trusted
kernel as well as support for tactics. These tools influenced the design of KeYmaera X.
Most major theorem provers, including Coq [7] and Isabelle [9], also provide user in-
terfaces. In [5], similar to KIV [6], a tactical theorem prover for verifying software
is presented. Unlike these, KeYmaera X is particularly well-suited to the analysis of
hybrid dynamical systems with their differential equations.

Other successful tools exist for hybrid systems; however, apart from KeYmaera,
none based on the rigor of a sound logic let alone a small kernel. A comparison of d_
with other approaches to analysis of hybrid systems is provided in the literature [11].

Acknowledgments. The authors thank the anonymous reviewers for their helpful feed-
back, and Ran Ji for help with testing and extending KeYmaera X.

References

1. Ahrendt, W., Baar, T., Beckert, B., Bubel, R., Giese, M., Hihnle, R., Menzel, W., Mostowski,
W., Roth, A., Schlager, S., Schmitt, P.H.: The KeY tool. Software and System Modeling 4(1),
32-54 (2005)

2. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.H.: Hybrid automata: An algorithmic
approach to the specification and verification of hybrid systems. In: Hybrid Systems. pp.
209-229 (1992)

3. Beckert, B., Hihnle, R., Schmitt, PH.: Verification of Object-oriented Software: The KeY
Approach. Springer-Verlag, Berlin, Heidelberg (2007)

4. Bowen, J., Stavridou, V.: Safety-critical systems, formal methods and standards. Software
Engineering Journal 8(4), 189-209 (Jul 1993)

5. Felty, A.P,, Howe, D.J.: Tactic theorem proving with refinement-tree proofs and metavari-
ables. In: Bundy, A. (ed.) CADE. LNCS, vol. 814, pp. 605-619. Springer (1994)

6. Heisel, M., Reif, W., Stephan, W.: Tactical theorem proving in program verification. In:
Stickel, M.E. (ed.) CADE. LNCS, vol. 449, pp. 117-131. Springer (1990)

7. The Coq development team: The Coq proof assistant reference manual. LogiCal Project
(2004), http://cog.inria. fr, version 8.0

8. Mitsch, S., Platzer, A.: ModelPlex: Verified runtime validation of verified cyber-physical
system models. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV. LNCS, vol. 8734, pp. 199—
214. Springer (2014)

9. Nipkow, T., Wenzel, M., Paulson, L.C.: Isabelle/HOL: A Proof Assistant for Higher-order
Logic. Springer-Verlag, Berlin, Heidelberg (2002)

10. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reas. 41(2), 143189
(2008)

11. Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics.
Springer, Heidelberg (2010)

12. Platzer, A.: Logics of dynamical systems. In: LICS. pp. 13-24. IEEE (2012)

13. Platzer, A.: Differential game logic. CoRR abs/1408.1980 (2014)

14. Platzer, A.: A uniform substitution calculus for differential dynamic logic. In: Felty, A.,
Middeldorp, A. (eds.) CADE. LNCS, Springer (2015)

15. Platzer, A., Quesel, J.D.: KeYmaera: A hybrid theorem prover for hybrid systems. In: Ar-
mando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR. LNCS, vol. 5195, pp. 171-178.
Springer (2008)

16. Quesel, J.D., Mitsch, S., Loos, S., Aréchiga, N., Platzer, A.: How to model and prove hybrid
systems with KeYmaera: A tutorial on safety. STTT (2015)

http://coq.inria.fr

	KeYmaera X: An Axiomatic Tactical Theorem Prover for Hybrid Systems

