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Abstract Hybrid systems are models with joint discrete and continuous behav-

ior. They occur frequently in safety-critical applications in various domains such as

health care, transportation, and robotics, as a result of interactions between a digi-

tal controller and a physical environment. They also have relevance in other areas

such as systems biology, in which the discrete dynamics arises as an abstraction of

fast continuous processes. One of the prominent models is that of hybrid automata,

where differential equations are associated with each node, and jump constraints

such as guards and resets are associated with each edge.

In this chapter, we focus on the problem of model checking of hybrid automata

against reachability and invariance properties, enabling the techniques for the ver-

ification of general temporal logic specifications. We review the main decidability

results for hybrid automata, and since model-checking is in general undecidable,

we present three complementary analysis approaches based on symbolic represen-

tations, abstraction, and logic. In particular, we illustrate polyhedron-based reacha-

bility analysis, finite quotients, abstraction refinement techniques, and logic-based

verification. We survey important tools and application domains of successful hy-

brid system verification in this vibrant area of research.
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1 Introduction

Information technology (IT) has dramatically changed our lives. The first revolution

in information technology led to the birth of the computer. The second informa-
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tion technology revolution led to the creation of the Internet, connecting computing

around the world and resulting in the hyper-connected world that we live in. The

third revolution that is now taking place is connecting all the computational power to

the physical world. Computing powerhouses, such as Intel, are investing in wearable

computing and smart watches, Google is invested in self-driving cars and bought

Nest, the makers of a learning thermostat, thereby connecting Google to building

control and energy markets, and Amazon is investing in robotics and unmanned

aerial vehicles. Similarly the most significant innovation in automotive companies

recently came from software-intensive car technology, leading from adaptive cruise

control to driverless cars. There is a plethora of novel medical devices, either wear-

able or implantable, that sense patient vitals and use computer algorithms to diag-

nose medical conditions or even perform life-critical functions. The fundamental

aspect of this third revolution is the fusion of IT with physical devices that interact

with the physical world.

The marriage of IT with the physical world is known as embedded computing

as it consists of computing that is embedded and tightly interacts with the phys-

ical world. A major modeling challenge is how to formally capture the interac-

tion between computing and physics so that we can reason about the effect of

physics on computing and vice versa. This led to the development of hybrid systems

[8, 132, 34, 91, 35], where both discrete and continuous behaviors of the system are

important. Hybrid systems grew out of the necessity to enrich purely digital models

of computing with analog models of physics. As a result, hybrid systems contain

both digital models of computing (such as automata or programs) as well as ana-

log elements (such as differential equations) integrated in a way that one can model

many embedded computing applications.

The need for formal models of hybrid systems arises from the fact many embed-

ded computing problems are safety-critical. They arise in collision avoidance proto-

cols in air traffic control [175, 174, 113, 31, 129, 176, 177, 149, 100], cruising con-

trollers for automotive vehicles [46, 168, 101, 164, 24, 62, 53, 114], obstacle avoid-

ance algorithms for autonomous ground robots [182, 130], and software-controlled

medical devices that actively regulate life-critical functions or help surgeons with

surgical robotic systems [104]. Therefore there is not only a need for formal models

of embedded computing, but also for rigorous verification approaches to guarantee

that the embedded computation, as modeled by a hybrid system, is formally safe.

This has resulted in the development of a new paradigm within the formal methods

community, namely the formal verification of hybrid models of embedded comput-

ing.

There is a range of formal models for hybrid systems [167, 120, 131, 132, 134,

8, 27, 35, 91, 118, 52, 29, 179, 180, 135, 143], each with different advantages for

different purposes. This chapter focuses on hybrid automata [8, 91], because they

directly generalize the timed automata that have been considered in Chapter 27. The

basic idea in hybrid automata is to associate differential equations with the nodes of

an automaton. The automaton structure defines how and under which condition the

system switches between the various differential equations and what happens to the

state if they switch. Timed automata, which are discussed in Chapter 27, are a spe-
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cial case of hybrid automata, where all differential equations are of the form ẋ = 1

such that x is a clock variable measuring the progress of time and additional linearity

assumptions are met for the switching conditions. Timed automata are an interest-

ing subclass of hybrid automata, because reachability is decidable in this subclass.

For systems with more general continuous dynamics, e.g., moving, acceleration, or

curving, however, timed automata are not sufficient, and hybrid systems models are

needed instead.

In this chapter, we give a survey of model checking techniques for hybrid sys-

tems with an emphasis on the handling of continuous dynamics. It has been proved

that continuous dynamics verification is the most fundamental question in hybrid

systems verification [135, 141], because discrete dynamics can be verified exactly

as good as continuous dynamics. Discrete systems have already been addressed in

the other chapters of this handbook in great detail.

In this section, we survey a set of complementary verification techniques for

hybrid systems, including explicit-state reachability computations with termination

criteria like bounded-horizon (Sect. 4, which is related to Chap. ??), abstraction

techniques and abstraction-refinement loops (Sect. 5, also see Chap. ??), and logic-

based verification approaches (Sect. 6, which is related to Chaps. ??, ??, ??, and

??). Other surveys of several aspects of hybrid systems can be found in the liter-

ature [12, 172, 39, 80, 7, 163, 171, 103, 143]. A control-theoretic view on hybrid

systems verification has been reported in a book by Tabuada [165]. A logic and

proofs view on hybrid systems verification can be found in a book by one of the

authors [137]. Introductions to embedded systems from a cyber-physical systems

perspective have been reported in the literature [122, 111] and in university courses.

Hybrid systems have become a very active and successful area of research with

a vibrant community. Giving a complete overview of all relevant approaches is im-

possible in this chapter. This chapter strives to focus on giving an overview of some

of the most important representative classes of techniques. By their very nature,

hybrid systems tend to be mathematically demanding, but can also be exceedingly

beautiful. The broad applicability and scope of the resulting hybrid systems analysis

techniques make hybrid systems a very rewarding area of science with the potential

of significant impact on practical applications.

2 Basic Definitions

Hybrid systems combine discrete evolutions (namely, mode changes and variable

updates) and continuous evolutions through variables whose dynamics is governed

by differential equations. Hybrid system models have been introduced to deal with

such systems in a uniform way [167, 120, 131, 132, 134, 8, 91, 27, 35, 118, 52, 29,

179, 180, 135, 136]. The original definitions are very general. In this chapter, we

focus on subclasses of particular interest. Timed automata are an important class

of hybrid automata for which safety verification is decidable (see Chap. ??). When

continuous variables are subject to rectangular flow constraints, that is constraints
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of the form ẋ ∈ [a,b], hybrid automata are called rectangular. For that subclass of

hybrid automata, there exists a reasonably efficient algorithm to compute the image

of a (simple) set. Based on this algorithm, there exists an iterative method that com-

putes the exact set of reachable states when it terminates. This semi-algorithm can

be used to establish or refute safety properties. On the other hand, if the evolution

of the continuous variables is subject to more complicated flow constraints, for ex-

ample affine dynamics like ẋ = 3x− y, computing the flow successor is much more

difficult and only approximate methods are known.

2.1 Predicates

Let X = {x1, . . . ,xn} be a finite set of variables. Given a valuation v : X → R and

Y ⊆ X , define v|Y : Y →R by v|Y (x) = v(x) for every x ∈Y .

Definition 1 (Polynomial term). A polynomial term over a finite set of variables

X = {x1, . . . ,xn} is an expression of the form y ≡ ∑i∈Nn aix
i1
1 . . .xin

n where ai ∈ Q

(i = (i1, . . . , in) ∈Nn) are rational constants and almost all ai are zero. Given a valu-

ation v over X , we write JyKv for the real number ∑i∈Nn aiv(x1)
i1 . . .v(xn)

in obtained

by evaluating the polynomial term at v. We denote by PTerm(X) the set of all poly-

nomial terms over the variables X .

Definition 2 (Polynomial constraint). A polynomial constraint over X (also known

as semi-algebraic constraint) is a finite formula ϕ defined by the following grammar

rule:

ϕ ::= θ ⊲⊳ 0 | ϕ ∧ϕ | ϕ ∨ϕ

where θ ∈PTerm(X) and ⊲⊳∈ {<,≤,=,>,≥}. We denote by PConstr(X) the class

of polynomial constraints over the set of variables X .

Definition 3. Given a valuation v : X→R and a polynomial constraint ϕ ∈PConstr(X),
we write v |= ϕ and say that v satisfies ϕ , which we define inductively as:

• v |= θ ⊲⊳ 0 if JθKv ⊲⊳ 0,

• v |= ϕ1∧ϕ2 if v |= ϕ1 and v |= ϕ2,

• v |= ϕ1∨ϕ2 if v |= ϕ1 or v |= ϕ2.

We also write v ∈ JϕK when v |= ϕ . If v : X → R and w : Y → R are two valuations

for disjoint sets of variables X ,Y (with X ∩Y =∅), we also write (v,w) ∈ JϕK when

u |= ϕ where u : X ∪Y →R is defined such that u|X = v and u|Y = w.

Important special cases of polynomial constraints are linear constraints. The set

of solutions of a linear constraint describes a set of polyhedra. This geometric in-

terpretation is sometimes used for model checking since image computations of

polyhedra can be quite efficient.

Definition 4 (Linear constraint). A linear term is a polynomial term of the form

y ≡ a0 +∑xi∈X aixi with ai ∈ Q. We denote the set of all linear terms over X by



Contents 7

LTerm(X). A linear constraint is a polynomial constraint where all terms are lin-

ear. It is called conjunctive if it does not contain any disjunctions. We denote by

LConstr(X) the class of linear constraints over X and by LConstrc(X) the class of

conjunctive linear constraints. The constraints true and false are defined as abbrevi-

ations in a standard way.

Definition 5 (Polyhedron). A set of valuations that can be defined by a conjunctive

linear constraint is called a polyhedron, and a closed and bounded polyhedron is

called a polytope. We denote a polyhedron in its constraint representation as

P =
{

x

∣

∣

∣

m
∧

i=0

aT
i x ⊲⊳i bi

}

, with ⊲⊳i,∈ {<,≤,=,>,≥},1

where the ai ∈ Qn are called facet normals and the bi ∈ Qn constants. In vector-

matrix notation, this corresponds to

P =
{

x

∣

∣

∣ Ax ⊲⊳ b

}

, with A =





aT1

...
aTm



,⊲⊳=

(

⊲⊳1

...
⊲⊳m

)

,b =

(

b1

...
bm

)

.

A closed polyhedron P⊆ Rn can be represented by a pair (V,R), called the gen-

erators of P, where V ⊆ Qn is a finite set of vertices, and R ⊆ Qn is a finite set of

rays, with:

P =
{

∑
vi∈V

λi · vi + ∑
r j∈R

µ j · r j

∣

∣

∣ λi ≥ 0,µ j ≥ 0,∑
i

λi = 1
}

.

The representation can be extended with closure points to deal with non-closed

polyhedra [22].

There are algorithms for transforming one representation into the other, namely the

Fourier-Motzkin procedure (or quantifier elimination) for computing the system of

inequalities from the generators [55, 63], and Chernikova’s algorithm for computing

the generators from a set of predicates [44].

2.2 Hybrid Automata

We define hybrid automata with polynomial dynamics [6, 96].

Definition 6 (Hybrid automaton with polynomial dynamics). A hybrid automa-

ton H with polynomial dynamics is a tuple

〈Loc,Lab,Edg,X , Init, Inv,Flow,Jump,Final〉

1 xTy=∑n
i=1 xiyi is the scalar product of n-dimensional vectors x= (x1, . . . ,xn) and y =(y1, . . . ,yn).
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where:

• Loc= {ℓ1, . . . , ℓm} is a finite set of locations;

• Lab is a finite set of labels, including the silent label τ;

• Edg⊆ Loc×Lab×Loc is a finite set of edges;

• X = {x1, . . . ,xn} is a finite set of variables;

• Init : Loc → PConstr(X) gives the initial condition Init(ℓ) of location ℓ. The

automaton can start in ℓ with an initial valuation v lying in JInit(ℓ)K;

• Inv : Loc→PConstr(X) gives the evolution domain restriction Inv(ℓ) (also called

invariant) of location ℓ. The automaton can stay in ℓ as long as the values of its

variables lie in JInv(ℓ)K;

• Flow : Loc→ PConstr(X ∪ Ẋ) is the flow constraint, which constrains the evo-

lution of the variables in each location. In a location ℓ, if the valuation of the

variables is v0 at time t = 0, then at time t ≥ 0, the value of the variables is φ(t)
where φ(t) : R→RX is such that the flow relation Flow(ℓ)(φ(t), φ̇ (t)) holds for

the flow φ(t) and its time-derivative φ̇(t), and φ(0) = v0. 2

• Jump : Edg→ PConstr(X ∪X+) with X+ = {x+1 , . . . ,x
+
n } gives the jump condi-

tion Jump(e) of edge e. The variables in X+ refer to the updated values of the

variables after the edge has been traversed. Jump conditions are often conjunc-

tions of a guard and a reset constraint. There, the constraints purely on variables

in X are called guards, and the constraints that describe variables in X+ in terms

of variables in X are called updates or resets.

• Final : Loc→ PConstr(X) gives the final condition Final(ℓ) of location ℓ. De-

pending on the analysis question at hand, final conditions can either specify the

unsafe states of the system or the desired states of the system.

The labels on edges can be used to synchronize hybrid automata in a composi-

tional design. In the rest of this chapter, we assume that a single automaton is to be

analyzed.

Example. Fig. 1 represents an affine automaton modeling a single gas-burner that

is shared for heating alternatively two water tanks. It has three locations ℓ0, ℓ1, ℓ2

and two variables x1 and x2, the temperature in the two tanks. The gas-burner can

be either switched off (in ℓ0) or turned on heating one of the two tanks (in ℓ1 or ℓ2).

The dynamics in each location is given by a combination of the predicates ONi and

OFFi (i= 1,2) where the constants ai model the heat exchange rate of the tank i with

the room in which the tanks are located, bi model the heat exchange rate between

the two tanks and hi depends on the power of the gas-burner. On every edge of

the automaton, we have omitted the condition x+1 = x1 ∧ x+2 = x2 also written as

stable(x1,x2) that asks that the values of the variables are maintained when the edge

is traversed. In the sequel, we fix the constants h1 = h2 = 2, a1 = a2 = 0.01 and b1 =
b2 = 0.005. The evolution of the continuous variables over time is shown in Fig. 2.

Starting in location ℓ1, the burner heats up tank 1 until it reaches a temperature of

2 Note that the semantics of flow constraints requires some attention, see differential-algebraic

constraints [136].
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ℓ1

ON1∧OFF2

I(0,100)

ℓ0

OFF1∧OFF2

I(80,100)

ℓ2

OFF1∧ON2

I(0,100)

ON1 ≡ ẋ1 = h1−a1x1 +b1x2

OFF1 ≡ ẋ1 =−a1x1 +b1x2

I(a,b) ≡ a≤ x1 ≤ b∧ a≤ x2 ≤ b

ON2 ≡ ẋ2 = h2−a2x2 +b2x1

OFF2 ≡ ẋ2 =−a2x2 +b2x1

x1 = 0

∧x2 = 50

turno ff1

x1 = 100

turnon2

x2 = 80

toggle

x1 = 100∧ x2 ≤ 80 ∨ x2 = 0∧ x1 ≥ 20

turnon1

x1 = 80

turno ff2

x2 = 100

x2 = 100∧ x1 ≤ 80 ∨ x1 = 0∧ x2 ≥ 20

toggle

Fig. 1 A shared gas-burner.

100 degrees. Since the temperature of tank 2 is below 80 degrees, the automaton

takes edge toggle to location ℓ2. Note that edge turnoff 1 can not be taken since

the evolution domain of the target location is not satisfied by x2. In location ℓ2, the

burner heats up tank 2 until it reaches 100 degrees. Since x1 is still above 80 degrees,

the automaton takes edge turnoff 2 to location ℓ0, where the burner is off. It briefly

remains until x1 falls to 80 degrees, at which point it takes edge turnon1 to location

ℓ1, where the burner heats up tank 1. The automaton converges towards a limit cycle

of heating tank 1, heating tank 2, and briefly turning off the burner.

The definitions above define what a hybrid automaton consists of (flows, jumps,

initial regions, . . . ) but they do not specify the behavior of a hybrid automaton or

how its state evolves over time. This is the purpose of defining a semantics for hybrid

automata by providing a transition system for each hybrid automaton.

Definition 7 (Semantics of hybrid automata). The semantics of a hybrid au-

tomaton H = 〈Loc,Lab,Edg,X , Init, Inv,Flow,Jump,Final〉 is the transition system

JHK = 〈S,S0,S f ,Σ ,→〉 where S = {(ℓ,v) ∈ Loc×RX | v ∈ JInv(ℓ)K} is the state

space, S0 = {(ℓ,v) ∈ S | v ∈ JInit(ℓ)K} is the initial space, S f = {(ℓ,v) ∈ S | v ∈
JFinal(ℓ)K} is the final space, the actions are Σ = Lab∪ {time} (we assume that

time 6∈ Lab) and the transition relation → contains all the tuples ((ℓ,v),σ ,(k,w))
such that:

• (discrete transition) either there exists e = (ℓ,σ ,k) ∈ Edg such that (v,w) ∈
JJump(e)K, or
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• (continuous transition) ℓ= k, σ = time and there exists an r ∈R≥0 and a contin-

uously differentiable function ξ : [0,r]→ RX such that ξ (0) = v, ξ (r) = w and

(ξ (t), ξ̇ (t)) ∈ JFlow(ℓ)K for all t ∈ [0,r] and ξ (t) ∈ JInv(ℓ)K for all t ∈ [0,r]. We

call ξ a trajectory from v to w. We also write (ℓ,v)
r
−→ (k,w) to emphasize that the

continuous transition is of duration r. Usually Flow(ℓ) is a differential equation,

in which case ξ is a solution of that differential equation.

We write (ℓ,v)
σ
−→ (k,w) if→ contains the tuple ((ℓ,v),σ ,(k,w)).

A state q = (ℓ,v) ∈ S is reachable if there exists a finite path q0σ0q1σ1 . . .σn−1qn

where q0 ∈ S0, q= qn, and (qi,σi,qi+1)∈→ for all 0≤ i < n. This path generates the

word σ̄ = σ0σ1 . . .σn−1 ∈ Σ∗. If q ∈ S f is final, we say that the word σ̄ is accepted

by H. The set of words that are accepted by H is the language of H, denoted L(H).
The set of reachable states of JHK is denoted by Reach(JHK). The transition system

JHK is safe if Reach(JHK)∩S f =∅.

Safety verification problem. Many verification problems for hybrid systems reduce

to the safety problem for hybrid automata.

Definition 8 (Safety verification problem for hybrid automata). Given a hybrid

automaton H, the safety verification problem for hybrid automata asks whether JHK
is safe.

A parameter in a hybrid automaton is a variable which has first derivative 0 in

every location and is never modified by discrete transitions. The parametric safety

verification problem for hybrid automata asks, given a hybrid automaton H and a

parameter p in H, whether there exists a value vp ∈ R such that JHp=vpK is safe,

where Hp=vp is obtained by replacing every constraint ϕ in H by ϕ ∧ (p = vp).

Remark There would be no loss of generality in assuming that there is a location ℓbad
such that Final(ℓbad) = true and Final(ℓ) = false for all ℓ 6= ℓbad. Indeed, it suffices

to add transitions eℓ = (ℓ,σ , ℓbad) with Jump(eℓ) = Final(ℓ) for each ℓ ∈ Loc.

3 Decidability and Undecidability Results

We review the main important results about the decidability of the safety verification

problem for subclasses of hybrid automata. References are given where details and

proofs can be found.

Safety verification problem. The safety verification problem is decidable only for

restricted classes of hybrid automata. The main classes for which safety verification

is decidable are timed automata (see Chap. ??), initialized rectangular automata, and

o-minimal hybrid automata [108]. The safety verification problem is undecidable

already for the class of rectangular hybrid automata (and therefore also for linear,

and affine hybrid automata).
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Fig. 2 The evolution of the continuous variables of the shared gas burner example, starting from

location ℓ1 with initial values x1 = 0 and x2 = 50

A rectangular predicate over X is an expression of the form a ≺ x ≺ b where

x ∈ X ,≺∈ {≤,<} and a≤ b define a nonempty (possibly unbounded) interval with

endpoints a,b ∈ Q∪{−∞,∞}. Rectangular hybrid automata are hybrid automata

where (i) the flow constraint in each location ℓ is a conjunction of rectangular pred-

icates over Ẋ , (ii) the initial, final, and evolution domain conditions are conjunctions

of rectangular predicates over X , and (iii) the jump condition of every edge is a con-

junction of rectangular predicates over X+ and expressions of the form x+ = x for

x ∈ X . A hybrid automaton is initialized if for every edge e = (ℓ,σ ,k) and for ev-

ery variable x, if we have {v(ẋ) | v ∈ JFlow(ℓ)K} 6= {v(ẋ) | v ∈ JFlow(k)K}, then the

set updatex
e(v) = {w(x

+) | (v,w) ∈ JJump(e)K} does not depend on the valuation v

(i.e., updatex
e(v) = updatex

e(v
′) for all valuations v,v′). In words, whenever the flow

condition changes for a variable x by a discrete transition e, then this variable is

(nondeterministically) reinitialized to a new value in updatex
e that is independent of

the previous value.

The following decidability result is obtained by a translation of initialized rect-

angular hybrid automata to timed automata, preserving safety (see also Section 5.1).

Theorem 1 ([96]). The safety verification problem is decidable for initialized rect-

angular hybrid automata (and therefore also for timed automata).

The safety verification problem remains decidable for various extensions of

timed automata. For instance, if diagonal constraints of the form x− y ⊲⊳ c for

x,y ∈ X ,⊲⊳∈ {<,≤,=,>,≥}, and c ∈Q are allowed in guards, or if assignments of

the form x+ = y are allowed in updates, then the safety verification problem is still

decidable [11, 33]. The decidability result for safety verification, useful for model-

checking, can be extended to the controller-synthesis problem, solved as a game.

We refer to Chap. ?? for games on timed automata, and mention the decidability of

discrete-time control for rectangular hybrid automata [95].

The safety verification problem becomes undecidable for automata with rectan-

gular flow constraints.
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Theorem 2 ([96]). The safety verification problem is undecidable for rectangular

hybrid automata (and therefore also for linear, and affine hybrid automata).

Note that the class of initialized rectangular hybrid automata (for which safety

verification is decidable) have a finite language-equivalence quotient [156, 94]. The

special case of initialized rectangular hybrid automata with only two variables even

has a finite similarity quotient [94], and the class of timed automata has finite bisim-

ilarity quotient (see also Chap. ??).

The result of Theorem 2 has been refined in several directions [96]. The prob-

lem is undecidable even if there is a single variable x with two different slopes, i.e.

there exists k1,k2 ∈ Q with k1 6= k2 such that in every location ℓ, either Flow(ℓ)
implies ẋ = k1, or Flow(ℓ) implies ẋ = k2. The undecidability result holds for all

fixed rational constants k1 6= k2. The problem is also undecidable if diagonal con-

straints or assignments of the form x+ = y are allowed, and one variable has slope

k 6= 1. There are extremely simple classes of hybrid systems, stopwatch automata,

i.e. timed automata with only differential equations of the form ẋ = 1 and ẋ = 0, that

are already undecidable [40] (see also Chap. ??). The variant of time-bounded safety

verification asks, given a time bound T whether there exists a final state reachable

within a total duration of T time units. This problem is also undecidable for general

rectangular hybrid automata, but it is decidable for a larger class than plain safety

verification, namely for rectangular hybrid automata with monotone dynamics (the

rate of every variable is either always non-negative, or always non-positive [36]).

Note that while differential equations define single continuous executions, the

safety verification problem has been considered under various perturbed semantics

with finite precision where drifting executions or tubes of executions are considered.

It turns out that the undecidability result of Theorem 2 is mostly robust [97], but

some decidability results can be obtained [155, 64, 57, 23].

Systems between timed and hybrid automata may remain decidable, e.g., weigh-

ted timed automata [15, 25]. Even systems with piecewise constant derivatives

quickly become undecidable for dimension 3 [21]. On the other hand, if the dis-

crete and the continuous parts of a hybrid system are completely independent of

each other, the system falls apart into separate continuous systems, so that reacha-

bility becomes decidable for certain classes of linear differential equations [108].

Parametric safety verification problem. If parameters are allowed only in the

jump conditions of the edges, then it can be shown that the parametric safety veri-

fication problem is decidable for timed automata with one clock [14, 124], and un-

decidable for timed automata with one parameter and (i) three clocks (all of which

being possibly constrained by the parameter) [124], or (ii) four clocks, but only

one is compared with the parameter [124]. These undecidability results require the

use of equalities in jump conditions. An undecidability result is known for open

timed automata (in which all guards are open sets, thus forbidding equality con-

straints) with two parameters and five clocks (among which two are compared with

the parameters) [59]. If parameters are allowed in the flow constraints, then it can be

shown that the parametric safety verification problem is undecidable for rectangular

automata with three variables and one parameter [181].
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Computability and Polynomial Constraints. A frequent misconception about

the definition of hybrid automata is that they should allow an arbitrary subset

Init(ℓ)⊆Rn of the real numbers as initial region for each location ℓ, an arbitrary sub-

set Inv(ℓ)⊆Rn as evolution domain restriction, arbitrary relation Flow(ℓ)⊆Rn×Rn

as flow constraints, arbitrary relation Jump(e) ⊆ Rn×Rn jump conditions, and an

arbitrary subset Final(ℓ) ⊆ Rn as final conditions. Generalizations like those have

been suggested in the literature numerous times. They are useful as mathematical

models, but not for any computational or verification purpose. It is important to

understand why.

We can only obtain meaningful model checking results for a hybrid automa-

ton if we can describe the hybrid automaton (e.g., as an input file in a computer

for the model checker). There is no way to describe arbitrary sets Init(ℓ), Inv(ℓ) ⊆
Rn,Jump(e) ⊆ Rn×Rn etc. as inputs, because there are uncountable many such

sets, but model checkers accept only finite input files from a countable set of inputs.

Moreover, even for cases where there is some description of those sets, we still

need to equip the model checker with a way to decide membership in those sets.

Suppose some model checking algorithm worked hard to find out that the hybrid

automaton will be unsafe when started in a particular state ν ∈Rn. Then, the model

checker still needs to find out whether the hybrid automaton allows ν as an initial

state or not. That is, we need to give the model checker a way of deciding whether

ν ∈ Init(ℓ) for any location ℓ ∈ Loc. Mathematically, this is a simple set inclusion

and looks trivial. But that does not mean there would be a computer program that

can decide whether ν ∈ Init(ℓ) or ν 6∈ Init(ℓ). For arbitrary sets Init(ℓ)⊆ Rn, this is

impossible by classical results on the limits of computation due to Turing, Church,

Gödel, and others. The Mandelbrot set is an example of such a set Init(ℓ) for which it

is impossible to decide membership even in a very strong model of real computation

[32].

Similar observations hold for all the other parts of hybrid automata. Conse-

quently, we have to assume more structure on Init(ℓ) and all the parts of the def-

initions of hybrid automata. This is the reason why it is crucial that Definition 6

requires hybrid automata to be described in a definable way. Definition 6 requires

hybrid automata to be described by polynomial constraints with rational coefficients,

which are representable on a computer, unlike constraints with any arbitrary real

coefficients. This also explains why it is critical to restrict polyhedra to rational

coefficients in Definition 5.

It should be noted that these observations about the requirements on hybrid au-

tomata are crucial for all model checkers, whether they try to decide fragments

or semidecide fragments or whether they just strive to approximately answer the

reachability problem. Fundamental limits of computation that represent the numer-

ical analogue of the halting problem otherwise cause strong undecidabilities even

for approximate answers [147], unless additional assumptions are imposed on the

hybrid automata [51, 147].
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4 Set-based Reachability Analysis

There are two kinds of events that can take place in a hybrid automaton: time can

pass with the state evolving according to the flow constraints, or a jump can take

the system instantaneously to a new state. Starting from the initial states, set-based

reachability analysis exhaustively computes the successor states for both time elapse

and jumps in alternation until this no longer produces any new states. Since this

process might not terminate (see decidability results in Sect. 3), an a-priori limit on

the search depth is sometimes imposed. The search depth is usually counted in the

number of jumps and, in analogy to discrete automata, this is referred to as bounded

model checking.

Reachability computation can be seen as a generalization of numerical simu-

lation. In numerical simulation, one picks an initial state and tries to compute a

successor state that lies on one of the solutions of the corresponding flow constraint

and also satisfies one of the jump conditions (some intermediate points along the

trajectory are usually kept as well). Then one picks one of the successor states of

the jump and repeats the process. Like numerical simulation, reachability analy-

sis directly follows the transition semantics of hybrid automata (Definition 7), but

considers sets of states instead of single states.

Just like numerical simulation, reachability computation has to use approxima-

tions if the dynamics of the system are complex. Working with sets instead of points,

approximate reachability can be conservative in the sense that the computed sets are

sure to cover all solutions. Computation costs generally increase sharply in terms

of the number of continuous variables. Scalable approximations are available for

certain types of dynamics, as discussed later in this section, but this performance

comes at a price in accuracy. The trade-off between runtime and accuracy remains

a central problem in reachability analysis. Surveys of reachability techniques for

hybrid automata can be found, e.g., in [119, 7, 117, 165].

4.1 Reachability Algorithm

The standard method to compute the reachable states is to iterate the following one-

step successor operators for discrete and continuous transitions. Given a set of states

S, let PostC(S) be the set of states reachable by letting time elapse from any of the

states in S,

PostC(S) = {(ℓ,w) | ∃(ℓ,v) ∈ S : (ℓ,v)
time
−−→ (ℓ,w)}.

Let PostD(S) be the set of states resulting from taking a discrete transition from any

of the states in S,

PostD(S) = {(k,w) | ∃(ℓ,v) ∈ S,∃σ ∈ Lab : (ℓ,v)
σ
−→ (k,w)}.
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The reachable states are obtained by applying PostC(S) and PostD(S) in alternation

and recording all states that are obtained. The basic algorithm for forward reacha-

bility computes the following sequence, starting from the initial states:

R0 = {(ℓ,v) | v ∈ JInit(ℓ)K},

Ri+1 = Ri∪PostC(Ri)∪PostD(Ri) for i = 0,1,2, . . . .

The algorithm terminates when a fixed-point is reached, i.e., when Ri+1 = Ri for

some i ≥ 0 (note that Ri ⊆ Ri+1 for all i ≥ 0). This simple algorithm does not nec-

essarily terminate, even for systems where reachability is decidable. E.g., a system

with an (unbounded) counter would enter a new state at each iteration such that

the fixed-point is never reached. Abstraction techniques such as widening [86, 22]

are used in program analysis to ensure termination, and while they have been ap-

plied to hybrid systems with simple dynamics [92] it is difficult to obtain finite-state

abtractions for more general cases.

Reachability with symbolic states. A semi-algorithm used frequently for reacha-

bility of hybrid automata is shown as Algorithm 1. The states of the hybrid automa-

ton H are represented by finite sets of symbolic states (ℓ,P), where ℓ ∈ Loc and P is

a set of continuous states in a suitable set representation such as polyhedra. The set

of states corresponding to such a set R = {(ℓ1,P1),(ℓ2,P2), . . .} is

JRK = {(ℓ,v) | ∃(ℓ,P) ∈ R : v ∈ P}.

If H is safe, Algorithm 1 computes the reachable states by iterating one-step suc-

cessor computations on such a set R, without guarantee of termination. If H is not

safe, the procedure will eventually stop when a nonempty intersection of R with the

final states is found. A similar semi-algorithm implements the backward approach

by iterating a one-step predecessor operator. Other approaches are possible such as

mixed forward-backward, where the forward and backward algorithms are executed

in an interleaved fashion [92]. All those variations are semi-algorithms since the

problem is undecidable.

The one-step successors PostC(S) and PostD(S) are implemented for symbolic

states by enumerating over locations and transitions, respectively, using the follow-

ing operators. The continuous successors of a set of continuous states P in a location

ℓ is the set of continuous states

postℓ(P) = {x
′ | ∃x ∈ P : (ℓ,x)

time
−−→ (ℓ,x′)}.

Similarly, the discrete successors of set of continuous states P for an edge ε =
(ℓ,σ ,k) is the set of continuous states

postε(P) = {x
′ | ∃x ∈ P : (ℓ,x)

σ
−→ (k,x′)}.

Formally, the one-step successors of a set of symbolic states R are expressed using

the above operators as
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Algorithm 1: A reachability semi-algorithm using symbolic states

Input : A hybrid automaton H = 〈Loc,Lab,Edg,X , Init, Inv,Flow,Jump,Final〉.

Output : If H is safe then SAFE else UNSAFE.

begin

Bad←{(ℓ,JFinal(ℓ)K) | ℓ ∈ Loc} ;

R← {(ℓ,postℓ(JInit(ℓ)K)) | ℓ ∈ Loc} ;

Rold ←∅ ;

while JRK 6⊆ JRoldK do

Rold ← R ;

R←{(ℓ,postℓ(postε(P))) | (ℓ,P) ∈ R ∧ ε = (ℓ,σ ,k) ∈ Edg} ;

if JRK∩ JBadK 6=∅ then return UNSAFE;

return SAFE ;

end

PostC(JRK) = J{(ℓ,postℓ(P)) | ∃(ℓ,P) ∈ R}K,

PostD(JRK) = J{(k,postε (P)) | ∃(ℓ,P) ∈ R,ε = (ℓ,σ ,k) ∈ Edg}K.

In the following, we discuss the above successor operators postℓ(P), postε(P) for

different classes of hybrid automata with increasingly complex continuous dynam-

ics. We will focus mainly on computing time elapse successors, since this operation

usually dominates costs. Other operations of the reachability algorithm may also

become bottlenecks, e.g., computing the discrete successors, containment checking,

and clustering.

4.2 Piecewise Constant Dynamics

Hybrid automata with piecewise constant dynamics (PCDA) are a special case of

hybrid automata with polynomial dynamics (Definition 6), where all constraints are

conjunctive linear and the flow constraints are linear predicates over dotted variables

only. That is, the derivatives of the variables are independent of the current continu-

ous state. They are also called linear hybrid automata (LHA), where the term linear

refers to trajectories instead of dynamics (they do not allow the linear dynamics dis-

cussed in the next section). In order to avoid possible confusion resulting from this

terminology, we prefer the name PCDA.

Definition 9 (Hybrid automaton with piecewise constant dynamics). A hybrid

automaton H = 〈Loc,Lab,Edg,X , Init, Inv,Flow,Jump,Final〉 with polynomial dy-

namics is called hybrid automaton with piecewise constant dynamics iff:

• Init, Inv, Final are conjunctive linear constraints over X ,

• Flow are conjunctive linear constraints over Ẋ , and

• Jump are conjunctive linear constraints over X ∪X+.
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PCDA are of particular interest to formal verification because the one-step succes-

sors can be computed exactly, which is not the case for the more complex dynamics

discussed in later sections.

Examples for flow constraints of a PCDA include differential inclusions such

as ẋ ∈ [1,2], and conservation laws such as ẋ+ ẏ = 0. The jump constraints of a

PCDA admit arbitrary linear updates of the variables, which can generate complex

behavior. For example, PCDA can model discrete-time affine systems, a widely used

class of control systems, by using jump constraints of the form x+ = Ax+b. Chaotic

behavior can arise in PCDA due to switching flows [42] or guarded jumps, with

which one can model piecewise affine maps such as the tent map [48].

Continuous successors. In the following, we discuss computing the states reachable

by time elapse in a given location ℓ of a PCDA and write x as shorthand for the state

(ℓ,x). By definition, a trajectory can be an arbitrarily curved function as long as it

is differentiable and satisfies both flow constraint and evolution domain restriction.

For the purposes of reachability, it suffices to consider only straight-line trajectories

of PCDA, as formalized in the following lemma.

Lemma 1. [13] In any given location of a PCDA, there is a trajectory ξ (t) from

x = ξ (0) to x′ = ξ (r) for some r > 0 iff η(t) = x+ qt with q = x′−x
r

is a trajectory

from x to x′.

Using this lemma, we now show that the states reachable by time elapse from a

polyhedral set of states P are given by the union of P with a polyhedron that is

readily computable [8, 28]. Consider polyhedra P and Q. The states on straight line

trajectories starting in P with constant derivative ẋ = q for any q ∈ Q are the time

successors

PրQ = {x′ | x ∈ P,q ∈ Q, t ∈ R≥0,x′ = x+ qt}. (1)

We now transform the right-hand term of (1) into a linear constraint. Let P and Q

be polyhedra given in vector-matrix form as P = {x | Ax ⊲⊳ b}, Q = {q | Āq ⊲̄⊳ b̄}.

By separating the case t = 0 from t > 0 in (1) we have q = x′−x
t

. Eliminating q and

multiplying with t yields

PրQ = P∪
{

x′
∣

∣

∣ Ax ⊲⊳ b ∧ Ā(x′− x) ⊲̄⊳ b̄ · t ∧ t > 0
}

. (2)

The right-hand term of the union in (2) is a polyhedron that can be computed by

quantifier elimination over X ∪ {t} using, e.g., Fourier-Motzkin elimination. If Q

is closed and bounded, the constraint t > 0 in (2) can be replaced by t ≥ 0, so the

right-hand term contains P and PրQ becomes a single polyhedron. The following

example illustrates that PրQ can be the union of two polyhedra.

Example 1. For P = {x1 = 0∧ x2 = 0}, and Q, Q′ given in Fig. 3, (2) yields

PրQ = P∪{(x′1,x
′
2) | x1 = 0∧ x2 = 0∧ x′1− x1 = t ∧ x′2− x2 ≤ t ∧ t > 0}

= P∪{(x′1,x
′
2) | x

′
1 = t ∧ x′2 ≤ t ∧ t > 0}= P∪{(x′1,x

′
2) | x

′
1 > 0∧ x′2 ≤ x′1}.



18 Contents

P
x1

x2

(a) PրQ with closed and unbounded

Q = {q1 = 1∧q2 ≤ 1}

P
x1

x2

(b) PրQ′ with bounded and non-closed

Q′ = {q1 = 1∧−1≤ q2 < 1}

Fig. 3 Given a polyhedron P and a polyhedral set of derivatives Q, the time successors PրQ can

be a convex set that is not a single polyhedron but the union of P with another polyhedron

x1

x2

Q
pos(Q)

(a) Q and its cone pos(Q)

x1

x2

P

P⊕pos(Q)

(b) P and PրQ = P∪P⊕pos(Q)

Fig. 4 The time successors PրQ using geometric operations on polyhedra P and Q

Here, the closed but unbounded set Q results in a convex set PրQ that is not a

polyhedron but the union of two polyhedra. Similarly, the bounded but non-closed

set Q′ results in PրQ′ = P∪{x′1 > 0∧−x′1 ≤ x′2 < x′1}, which is also convex and

not a polyhedron.

The time successor operation can also be carried out using geometrical operations

on the polyhedra P and Q as shown in Fig. 4 [86]. The positive cone of Q is the

polyhedral set pos(Q) = {q · t | q ∈ Q, t > 0}. The time successors are given by the

Minkowski sum3 with P and the positive cone of Q,

PրQ = P∪ (P⊕ pos(Q)) (3)

If P and Q are closed with generator representation (V,R) and (V ′,R′), respectively,

then a generator representation of PրQ is (V,R∪V ′∪R′).
It remains to ensure that the time successors are reachable by trajectories that

satisfy Inv(ℓ). Assuming that P ⊆ JInv(ℓ)K, this restriction reduces to x′ ∈ JInv(ℓ)K
since JInv(ℓ)K is convex and only straight line trajectories need to be considered.

This leads us to the following discrete successor operator for PCDA.

Lemma 2. [8] The continuous successors of a polyhedron P in a location ℓ of a

PCDA H is the set:

postℓ(P) =
(

PրJFlow(ℓ)K
)

∩ JInv(ℓ)K.

3 The Minkowski sum is defined as P⊕Q = {p+q | p ∈ P,q ∈ Q}.
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Discrete successors. The discrete successors of a polyhedron P for an edge ε =
(ℓ,σ ,k) of a PCDA H is the set:

postε (P) =
{

x+
∣

∣ ∃x ∈ P : (x,x+) ∈ JJump(ε)K ∧ x+ ∈ JInv(k)K
}

.

This set is defined using existential quantification, and computing it may require

costly quantifier elimination. Frequently occurring special cases can be computed

more efficiently. As an example, consider Jump(e) given by a guard x ∈G and a re-

set x+ =Cx+d, with a constant matrix C and a vector d of appropriate dimensions.

The discrete successors are

postε(P) =
(

C(P∩G)⊕{d}
)

∩ JInv(k)K. (4)

If C is invertible and all sets are polyhedra in constraint representation, the com-

putation is straightforward since intersection corresponds to concatenation of con-

straints, and for any polyhedra Q = {x | Ax ⊲⊳ b},

CQ⊕{d}= {x | AC−1x ⊲⊳ b+C−1d}.

Computational cost. Computing the continuous successors using (3) involves the

cone, Minkowksi sum and intersection operations, for details see [86, 22]. The cone

and Minkowski sum are efficient only in the generator representation of a poly-

hedron (see Definition 5). The intersection operation is efficient only in constraint

representation. Translating the polyhedron from constraints to generators and vice

versa can produce a number of generators that is exponential in the number of vari-

ables. E.g., consider that a n-dimensional cube has 2n constraints and 2n vertices.

Dually, a n-dimensional cross-polytope (hyperoctahedron) has 2n vertices and 2n

constraints. In total, the cost of computing the continuous successors is exponential

in the number of variables. Tools such as HyTech and PHAVer use the geometric

version (3) of the time successor operator since in practice it is often more efficient

than quantifier elimination [87]. The operator is available in computational geome-

try libraries such as the Parma Polyhedra Library (PPL) [22].

The cost of computing the discrete successors is exponential for polyhedra in

constraint representation since it involves quantifier elimination. For some fre-

quently occurring special cases the cost is polynomial, e.g., in the case of (4) with

invertible map.

The containment and emptiness tests in Algorithm 1 are carried out pairwise

over the elements of sets of symbolic states. The containment test P⊆Q is solvable

with linear programming (and thus in polynomial time) if P,Q are in constraint

representation.4 The emptiness test P = ∅ is solvable as a linear program if P is in

constraint representation and trivial if P is in generator representation.

4 Checking P ⊆ Q is polynomial unless P is in constraint representation and Q is in generator

representation, in which case it is known to be NP-complete [71].



20 Contents

Path constraints. A path of a hybrid automaton is a sequence of adjacent edges

(usually from an initial to a final location). An interesting property of PCDA is that

the reachable states along a given path can be encoded by a conjunction of linear

constraints, the so-called path constraints. The reachability problem for a given path

can therefore be solved very efficiently using linear programming. This approach

has been implemented in the tool BACH [37]. The number of paths in a PCDA

can be infinite if there are cycles, so techniques such as CEGAR have been used to

reduce the number of paths to be checked and accelerate termination [162].

4.3 Piecewise Affine Dynamics

Hybrid automata with piecewise affine dynamics (PWA) are a special case of hybrid

automata with polynomial dynamics (Definition 6), where all constraints are linear

and the flow constraints are linear ordinary differential equations (ODEs). We divide

the continuous variables into state variables X = {x1, . . . ,xn}, whose derivative is

explicitly defined, and input variables U = {u1, . . . ,um}, whose derivative is uncon-

strained. The input variables can be used to model nondeterminism such as open

inputs to the system, approximation errors, disturbances, etc.

In each location of a PWA, the continuous dynamics are affine, i.e., given by

differential equations of the form

ẋ = Ax+Bu, u ∈ U , (5)

where A and B are matrices of appropriate dimension and the input set U is compact

and convex. Note that some differential inclusions can be brought to this form by

introducing auxiliary variables. Similarly, jump constraints of an edge e define resets

of the form

x+ =Cx+Du, (6)

where x+ denotes the value of x after the jump, u is defined as above and C and

D are matrices of appropriate dimension. The jump constraints also define a set G
called the guard of the edge, and a jump can only take place of x ∈ G. The formal

definition of PWA is as follows.

Definition 10 (Hybrid automaton with piecewise affine dynamics). A hybrid au-

tomaton with piecewise affine dynamics is a hybrid automaton H = 〈Loc,Lab,Edg,
X ∪U, Init, Inv,Flow,Jump,Final〉 where

• Init and Inv are conjunctive linear constraints over X .

• Inv are conjunctive linear constraints over X ∪U , such that each linear term

ranges over variables exclusively from either X or U (no correlation between

state and input variables). The input set U of a location ℓ is given by the terms of

Inv(ℓ) that range over U and must be closed and bounded.

• Flow are constraints over Ẋ ∪X ∪U of the form ẋ = Ax+Bu.
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• Jump are conjunctive linear constraints over X+∪X ∪U whose terms range ei-

ther over X or are of the form x+ = Cx+Du. The guard set G of an edge e is

given by the terms of Jump(e) that range over X .

The reachable states of a PWA can be computed using Algorithm 1 from Sect. 4.2,

with suitable operators postℓ for continuous and poste for discrete successors that

will be presented in the following section.

4.3.1 Successor Computations

The successor computations for affine dynamics can be approximated by sequences

of geometric set operations. We first present such a sequence for the continuous

successors, then give the equation for the discrete successors. Different set repre-

sentations can be used to implement these operations, and a selection is discussed

in the subsequent Sect. 4.3.2.

Continuous successors. In the following, we discuss how to compute the states

reachable by time elapse in a given location ℓ. Since ℓ is clear from the context we

call x a (continuous) state. We will initially ignore any evolution domain restriction

on x and discuss it after the basic construction has been presented. The evolution of

the input variables is described by an input signal ζ :R≥0→U that attributes to each

point in time a value of the input u. The input signal does not need to be continuous.

A trajectory ξ (t) from a state x0 is the solution of the differential equation (5) for

initial condition ξ (0) = x0 and a given input signal ζ . It has the form

ξx0,ζ (t) = eAtx0 +

∫ t

0
eA(t−s)Bζ (s)ds. (7)

It consists of the superposition of the solution of the autonomous system, obtained

for ζ (t) = 0, and the input integral obtained for x0 = 0. In the following, this decom-

position of (7) will be exploited to obtain efficient and accurate approximations. A

state x′ is reachable from some initial set of states X0 in time t if for some x0 ∈ X0

and some ζ , x′ = ξx0,ζ (t). We now describe the reachable states as sets using (7).

Let Xt be the states reachable in time t from any state in X0 and let Yt be the states

reachable from X0 = {0}, then (7) can be written as

Xt = eAtX0⊕Yt . (8)

The goal is to conservatively approximate the reachable states over some finite

time horizon T , i.e., to compute a finite sequence of sets Ω0,Ω1, . . . such that

⋃

0≤t≤T

Xt ⊆Ω0∪Ω1∪ . . . . (9)

We present the construction of a sequence of Ωk for a fixed sampling time δ > 0

such that Ωk covers Xt for t ∈ [kδ ,(k+ 1)δ ], as illustrated in Fig. 5. The so-called
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X0

Ω0

Xδ

Ω1

X2δ

Ω2

Fig. 5 A sequence of sets Ω0,Ω1, . . . that covers Xt over a finite time horizon T . The choice of

set representation for Ωk (illustrated here by ellipsoids) has a substantial impact on accuracy and

computational complexity

semi-group property of reachability says that, starting from Xs, for any s ≥ 0, and

then waiting r time units leads to the same states as starting from X0 and waiting

r+ s time units. Applying this to (8), we obtain that for any r,s≥ 0,

Xr+s = eArXs⊕Yr. (10)

Substituting r← δ , s← kδ , we obtain a recursive time discretization in the form of

X(k+1)δ = eAδXkδ ⊕Yδ .

It follows that if we have initial approximations Ω0 and Ψδ such that

⋃

0≤t≤δ

Xt ⊆Ω0, Yδ ⊆Ψδ , (11)

then the sequence

Ωk+1 = eAδ Ωk⊕Ψδ . (12)

satisfies (9). Note that Ω0 covers the reachable set over an interval of time [0,δ ],
while Ψδ covers the values of the input integral at a single time instant δ .

Computing initial approximations Ω0 and Ψδ . The set Ω0 needs to cover Xt

from t = 0 to t = δ . A good starting point for such a cover is the convex hull of

X0 and Xδ . One approach, shown in Fig. 6(a), is to compute the convex hull in

constraint representation, and push the facets out far enough to be conservative [81].

The required values can be computed from a Taylor approximation of (7) [19], or

by solving an optimization problem [45]. Note that the cost of computing the exact

constraints of the convex hull can be exponential in the number of variables, which

limits the scalability of this approach.

A scalable way to obtain Ω0 is to bloat X0 and Xδ enough to compensate for

the curvature of trajectories [75], as illustrated in Fig. 6(b). We present the approach

from [75], which uses uniform bloating and whose approximation error is asymp-

totically linear in the time step δ as δ → 0. This is asymptotically optimal for any

approximation containing the convex hull of X0 and Xδ [110]. The bloating can
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X0

Xδ

(a) pushing facets

X0

Xδ

(b) bloating

Fig. 6 An approximation Ω0 that covers Xt for t ∈ [0,δ ] can be obtained from the convex hull of

X0 and Xδ and enlarging it enough to compensate for the curvature of trajectories

be made non-uniform in space and time to obtain a more precise approximation

[110, 68]. The bloating factor is derived from a Taylor approximation of (7), whose

remainder is bounded using norms. To formalize the above statements, we use the

following notation. Let ‖·‖ be a vector norm and let ‖A‖ be its induced matrix

norm.5 Let µ(X ) = maxx∈X ‖x‖ and let B be the unit ball of the norm, i.e., the

largest set B such that µ(B) = 1. For a scalar c, let cX = {cx | x ∈ X}. The approx-

imation error is measured using the Haussdorff distance between sets X ,Y ,

dH(X ,Y) = max
{

sup
x∈X

inf
y∈Y
‖x− y‖, sup

y∈Y
inf
x∈X
‖x− y‖

}

.

Lemma 3. [75] Given a set of initial states X0 and affine dynamics (5), let

αδ = µ(X0) · (e
‖A‖δ − 1−‖A‖δ ),

βδ = 1
‖A‖µ(BU) · (e‖A‖δ − 1),

Ω0 = chull(X0∪ eAδX0)⊕ (αδ +βδ )B,
Ψδ = βδB.

Then
⋃

0≤t≤δ Xt ⊆Ω0 and Yδ ⊆Ψδ . Furthermore, if BU is a ball of the norm, i.e.,

BU = µ(BU)B, the approximation error is bounded by

dH

(
⋃

0≤t≤δ Xt ,Ω0

)

≤ δe‖A‖δ
(

µ(BU)+ ( 1
2
+ δ )‖A‖µ(X0)

)

,

dH

(

Yδ ,Ψδ

)

≤ δ 2‖A‖e‖A‖δ µ(BU).

Propagating the initial approximation Ω0 forward in time using (12) gives an ap-

proximation ofXt over a bounded horizon. The following theorem gives a bound on

the total approximation error.

Theorem 3. [75] Given Ω0 and Ψδ as defined in Lemma 3, let Ωk+1 = eAδ Ωk⊕Ψδ

for k = 1, . . . ,N−1. Then
⋃

0≤t≤Nδ Xt ⊆
⋃

0≤k≤N−1 Ωk. Furthermore, if BU is a ball

5 For example, the infinity norm ‖x‖∞ = max{|x1|, . . ., |xn|} induces the matrix norm ‖A‖ =
max1≤i≤n ∑m

j=1|ai j|, where A is of dimension n×m. Its ball B∞ is a cube of side length 2.
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X0

eAδX0

Appr(eAδX0)

Appr(eAδ Appr(eAδX0))

(a) approximation with wrapping effect

X0

eAδX0

Appr(eAδX0)

Appr(eA2δX0)

(b) using a wrapping-free algorithm

Fig. 7 The wrapping effect can lead to an exponential increase in the approximation error that

can be avoided for affine dynamics. This example shows the exact solution eAkδ
X0 (shaded) and

an interval hull approximation (thick), with eAδ performing a rotation of 45 degrees around the

origin. The wrapping effect occurs if the approximation is applied to the map of the previous

approximation (dashed). To illustrate the effect more clearly, X0 is used here instead of Ω0

of the norm, the approximation error is bounded by

dH

(
⋃

0≤t≤Nδ Xt ,
⋃

0≤k≤N−1 Ωk

)

≤ δe‖A‖Nδ
(

2µ(BU)+ ( 1
2
+ δ )‖A‖µ(X0)

)

Approximations and the wrapping effect. The sequence in (12) can be problem-

atic to compute since the complexity of Ωk may increase sharply with k. We il-

lustrate this for the case where Ωk is a polytope in generator representation, and a

similar argument can be made for constraint representation. Let Nk be the number of

vertices of Ωk and let Ψδ have M vertices. Since Ωk+1 is the sum of eAδ Ωk with Ψδ

it can have Nk+1 = Nk ·M vertices. Resolving the recursion, we get the tight upper

bound Nk ≤ N0 ·M
k. To avoid this increase in complexity, we approximate each Ωk

by a simplified set. Let Appr be an approximation function such that for any set P,

P⊆ Appr(P). The sequence (12) then becomes

Ω̂k+1 = Appr(eAδ Ω̂k⊕Ψδ ). (13)

For example, if Appr computes the interval hull (bounding box) and Ω0 is a poly-

tope, then all Ω̂k are polytopes with 2n facets. However, the recursive application of

the approximation function can lead to an exponential increase in the approximation

error. This phenomenon is known in numerical analysis as the wrapping effect [105]

and is illustrated in Fig. 7.

For affine dynamics, the wrapping effect can be avoided by combining two tech-

niques [77]. First, the approximation operator is chosen such that it distributes over

Minkowski sum, i.e., Appr(P⊕Q) = Appr(P)⊕Appr(Q). This is the case, e.g., for

the interval hull (bounding box). Second, the alternation of the map eAkδ with the

Minkowski sum in (12) is avoided by splitting it into two sequences
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Ψ̂k+1 = Appr(eAkδΨδ )⊕Ψ̂k, with Ψ̂0 = {0},

Ω̂k = Appr(eAkδ Ω0)⊕Ψ̂k.
(14)

For sequence (14) it holds that Ω̂k = Appr(Ωk), which means the resulting approx-

imation is free of the wrapping effect. The total approximation error consists of the

bounds of Theorem 3 plus the error introduced by the operator Appr (measured in

terms of the Hausdorff distance).

The approach is easily extended to variable time steps by adapting Ω0 and Ψδ to

the time step while computing the sequence [68].

Evolution domain restriction. So far we have neglected the evolution domain re-

striction (invariant) Inv(ℓ) of the location. Let S = JInv(ℓ)K. A simple but efficient

heuristic tries to find, if it exists, the smallest K such that ΩK lies completely outside

S. The search of such a K may be combined with finding a suitable time horizon

T and a suitable time step δ (this search obviously might not terminate). Then one

computes the sequence Ω0, . . . ,ΩK and obtains the sequence Ω̄k = Ωk ∩S as an

approximation of the continuous successors over the time horizon T = Kδ .

In cases where the above solution is overly conservative, one can improve the ap-

proximation using the following approach from [83]. Let St be the states reachable

from S (neglecting the evolution domain restriction), and let ξ (τ) be a trajectory in-

side S for all 0≤ τ ≤ t. Then the semi-group property implies that ξ (τ+ s) ∈ Ss for

all 0 ≤ s ≤ t− τ , so that ξ (t) ∈
⋂

0≤τ≤t Sτ . We may therefore improve the approx-

imation by intersecting Ωk with an approximation of the states reachable from S,

which we obtain from the sequence in (14) with Ω0←S. This leads to the following

sequence Ω̄k that approximates the continuous successors, starting with k = 0 and

Ψ0 = {0}:

Ψk+1 = Appr
(

eAkδΨδ )⊕Ψk,

Ω̄k =
(

Appr(eAkδ Ω0)⊕Ψk

)

∩
⋂

0≤i≤k

(

Appr(eAiδS)⊕Ψi

)

.
(15)

Discrete successors. Consider an edge ε = (ℓ,σ ,k) of a PWA, whose jump con-

straints define the reset map

x+ =Cx+Du

and the guard set G, which only lets states jump where x ∈ G. Recall that u ∈ U ,

where U is compact, convex and given by constraints in Inv(ℓ). Let S+ = JInv(k)K
be the evolution domain restriction of the target location. The discrete successors of

a set P can be written using geometric operators as

postε(P) =
(

C(P∩G)⊕DU
)

∩S+.

We now turn to representing the individual sets in the sequences Ψk and Ωk, and

which approximation operator Appr to use.



26 Contents

Fig. 8 A zonotope is a special form of

centrally symmetric polytope, as illus-

trated here with generators v1,v2,v3,v4,

and center c = 0 v1

v2

v3

v4

c

4.3.2 Set Representations

Several set representations have been proposed in literature for computing the con-

tinuous successors under affine dynamics, using variations of the algorithm pre-

sented in the previous section. To be efficient, scalable implementations or approx-

imations need to be available for the operators in the algorithm. Using the initial

approximation from Lemma 3 and the recurrence equation (14), the operators are

linear map, Minkowski sum, convex hull and intersection. The following paragraphs

summarize the results for a selection of prominent representations.

Ellipsoids. The first scalable reachability algorithms for affine dynamics were ob-

tained for ellipsoids, see [133, 107] and references therein. An approximation of

the reachable states using ellipsoids is shown in Fig. 5. A nondegenerate ellip-

soid E(c,Q) ⊆ Rn is represented by a center c ∈ Qn and a positive definite6 matrix

Q ∈Qn×n,

E(c,Q) =
{

x
∣

∣ (x− c)TQ−1(x− c)≤ 1
}

(this can be generalized to degenerate ellipsoids). Deterministic affine transforms

can be computed efficiently for ellipsoids. For a matrix A∈Qn×n and vector b∈Qn,

AE(c,Q)+ b = E(Ac+ b,AQAT).

Ellipsoids are not closed under Minkowski sum, convex hull, nor intersection. Using

ellipsoids one therefore generally suffers from the wrapping effect unless BU is a

singleton. Efficient approximations are available for Minkowski sum, convex hull,

and special cases of intersection, but the computation of discrete successors can be

problematic in terms of accuracy. For an implementation, see [106].

Zonotopes. Zonotopes are a compact representation for a special form of polytopes

that have been used successfully for reachability analysis due to their computation-

ally attractive features [75, 3]. A zonotope P ⊆ Rn is defined by a center c ∈ Qn

and a finite number of generators v1, . . . ,vk ∈Qn that span the polytope as bounded

linear combinations from the center:

6 A matrix Q is positive definite iff it is symmetric and xTQx > 0 for all x 6= 0.
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X0

Ω̂0

Xδ

Ω̂1

X2δ

Ω̂2

Fig. 9 A reach set cover Ω̂0, Ω̂1, . . . (dotted) computed with zonotopes using the implementation

in [3] (solid).

P =
{

c+
k

∑
i=1

αivi

∣

∣

∣ αi ∈ [−1,1]
}

A common denotation for this zonotope is P = (c,〈v1, . . . ,vk〉). A zonotope with k

generators is an affine transformation of a k-dimensional unit hypercube. Zonotopes

are central-symmetric convex polytopes, see Fig. 8 for an illustration. Affine trans-

formations can be computed efficiently for zonotopes. For a matrix A ∈ Qm×n, the

image of the linear transformation can simply be computed component-wise:

AP = (Ac,〈Av1, . . . ,Avk〉)

The Minkowski sum can be computed efficiently for zonotopes P = (c,〈v1, . . . ,vk〉)
and Q = (d,〈w1, . . . ,wm〉) by a single vector addition and a single list concatenation:

P⊕Q = (c+ d,〈v1, . . . ,vk,w1, . . . ,wm〉).

Since zonotopes are closed under Minkowski sum, it is straightforward to devise

an approximation operator Appr that distributes over Minkowski sum and use the

wrapping-free sequence (14). When the list of generators of a zonotope becomes

large, one can efficiently compute a smaller list that results in a cover of the original

zonotope [75].

Zonotopes are neither closed under convex hull, nor under intersection. Efficient

approximations exists, and the accuracy of approximating the convex hull in the

above reachabililty algorithm can be improved by taking smaller time steps. How-

ever, the lack of accuracy in intersections can make the computation of discrete

successors with zonotopes problematic. In special cases it can be advantageous to

use an approach called continuization to avoid the intersection operation, see [5].

Instead of intersecting a set of states with the guard set and then applying the dy-

namics of the successor location to the result, the states suspected to intersect with

the guard set (by some approximative measure) are subjected to nondeterministic

dynamics that overapproximate the dynamics both before and after the jump. The

dynamics of the successor location are used once enough time steps have been car-

ried out to be sure the set no longer intersects with the guard set.
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d
ρP(d)

P

0

(a) support function in direction d

d3

d4

d1

d2

P ⌈P⌉D

(b) outer approximation with D = {d1,d2,d3,d4}

Fig. 10 Evaluating the support function in a set of directions gives a polyhedral outer approxima-

tions that can be computed very efficiently

Reachability with zonotopes is extremely scalable for affine dynamics [77, 3].

The approach has been extended to nonlinear differential algebraic equations [2].

Support functions. A support function represents a closed, bounded, and convex

set exactly, somewhat like a characteristic function. Support functions lead to very

scalable algorithms since linear map, Minkowski sum, and convex hull correspond

to simple operations on vectors and scalars [74, 116, 83].

The support function ρP : Rn→ R of a nonempty, closed, bounded, and convex

set P is

ρP(d) = max{dTx | x ∈ P}.

It attributes to every direction d ∈ Rn the position of the tangent halfspace in that

direction, see Fig. 10(a). The values of the support function over a set of directions

D⊆ Rn define an outer approximation

⌈P⌉D =
⋂

d∈D

{

dTx≤ ρP(d)
}

.

If D = Rn or D is the ball of a norm, then ⌈P⌉D = P, which shows that the support

function indeed represents the set exactly. If D is a finite set of directions, the outer

approximation is a polyhedron, as illustrated in Fig. 10(b) and applied to reachabil-

ity in Fig. 11. While for a given direction the numerical value of the support function

can often be computed very efficiently, one does not escape the curse of dimension-

ality if the goal is to compute an outer approximation of a given accuracy: To obtain

an outer approximation within a Hausdorff distance ε of P in n dimensions, one

needs to evaluate the support function in O(1/εn−1) directions. Asymptotically op-

timal algorithms to construct ε-close approximations are described, e.g., in [116].

However, for some examples even a small number of directions can lead to reacha-

bility results with an acceptable approximation error[68].

Linear map, Minkowski sum, and convex hull are easily computed with support

functions:
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X0

Ω̂0

Xδ

Ω̂1

X2δ

Ω̂2

(a) using the axis directions gives a bounding

box approximation of Ωk from (14)

X0

Ω̂0

Xδ

Ω̂1

X2δ

Ω̂2

(b) adding more directions, the approximation

approaches Ωk from (14)

Fig. 11 A reach set cover can be computed with support functions and initial approximations Ω0,

Ψδ from a variation of Lemma 3 where the bloating is non-uniform [68]. Evaluating the support

function in a given set of directions results in the shown outer approximation Ω̂0, Ω̂1, . . . (solid)

ρAP(d) = ρP(A
Td),

ρP⊕Q(d) = ρP(d)+ρQ(d),

ρchull(P∪Q)(d) = max{ρP(d),ρQ(d)}.

The intersection operation is more complex, and can be formulated as an optimiza-

tion problem [83].

Thanks to the above properties, support functions serve well as a lazy represen-

tation for sets that arise from the successor computations described in Sect. 4.3.1.

Computing the support function of the sequence (14) for a given direction can be

done very efficiently even without the approximation operator Appr [83].

Two issues need to be solved to use support functions efficiently in the reachabil-

ity Algorithm 1. First, the nesting of support functions should be of limited depth,

in particular because evaluating the support function of an intersection operation re-

quires multiple evaluations of its operands. Secondly, deciding containment is hard

for support functions. Both problems can be solved by switching the set represen-

tation from a support function to its polyhedral outer approximation at appropriate

points in the algorithm [68]. Combining support functions and polyhedral compu-

tations for a fixed set of directions D is closely related to reachability with template

polyhedra [160] and both require that a good set of directions D be chosen. The

support function representation can be extended to represent the entire (nonconvex)

reachable set by parameterizing it over time [69].

Polyhedra. The class of polyhedra is closed under all required operations, i.e., lin-

ear map, Minkowski sum, convex hull, and intersection. However, not all of them

scale well. As mentioned in Sect. 4.2, there are no scalable algorithms for comput-

ing convex hull and Minkowski sum on polyhedra in constraint representation. For

illustration, consider that using the convex hull of n line segments, each given by 2n

constraints in n dimensions, on can construct a cross-polytope, which has 2n con-

straints. Taking the Minkowski sum can lead to a similar explosion in the number of

constraints. This is illustrated by the fact that the Minkowski sum can be computed



30 Contents

with a convex hull and an intersection operation in n+1 dimensions using the Cay-

ley Trick [173]. A polyhedral approximation for the non-scalable operations can be

efficiently computed by a-priori fixing the facet normals of the result, e.g., using the

outer approximation of the support function. The accuracy of the approximation can

be increased by including additional directions, leading to a scalable approach [20].

4.3.3 Clustering

The accuracy of the approximation in Lemma 3 depends on the size of the time step.

This property, common to all approaches cited in Sect. 4.3, points to a potential bot-

tleneck: To achieve a desired accuracy, one may end up with a large number of sets

to cover the required time horizon. In the next successor computation, each one of

these sets may become the initial set of yet another sequence, and so one may easily

end up with an exponential increase in the number of sets. If only very few of these

sets intersect with the guard sets, the discrete successor computation results in few

sets and therefore acts as a filter that might just keep the number of sets manageable.

But this is not the case in general; note that these sets necessarily overlap. To pre-

vent an explosion in the number of sets, a common approach is to cluster together

all sets that intersect with the same guard [83]. The clustering operation, e.g., taking

the convex hull, can itself be costly and adds to the approximation error in a way

that is not easy to quantify. An approach to obtain a suboptimal number of clusters

for a given error bound is presented in [69].

4.4 Nonlinear Dynamics

We give a very brief overview of techniques that deal with nonlinear dynamics

ẋ = f (x),

where f is usually assumed to be globally Lipschitz continuous.

Linearization. One way to deal with nonlinear dynamics is to approximate them

with affine dynamics ẋ = Ax+ u,u ∈ U and then use reachability algorithms for

affine dynamics. First, the states are confined to a bounded domain S. This could

be the evolution domain restriction in a location, or S can be derived iteratively by

growing suitable bounds around a given set of initial states. Then, a suitable matrix

A and vector b are chosen. For example, linearizing f (x) around a point x0 ∈S gives

a matrix A with elements ai j =
∂ fi
∂x j

∣

∣

x=x0
and a vector b = f (x0)−Ax0. Finallly, one

derives a set Uε that bounds the error such that for all x ∈ S,

f (x)− (Ax+ b) ∈ Uε .
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Such bounds can be obtained using, e.g., interval arithmetic or optimization tech-

niques. The states reachable using the affine dynamics ẋ = Ax+ u, u ∈ Uε ⊕{b}
cover those of the original nonlinear dynamics. This is approach constructs an ab-

straction of the system. Such abstractions are discussed more formally in Sect. 5.2.

The accuracy of the linearization depends on the size of the domain S. It can be

increased by partitioning S into smaller parts. Each part can then be associated with

smaller error bounds Uε and consequently gives a more accurate approximation of

the reachable set. The switching of the system from one element of the partition to

another is straightforward to model with a hybrid automaton. This process is known

as phase portrait approximation, see also Sect. 5.2. It can be of use even when

dealing with purely continuous dynamical systems, in which case it is also referred

to as hybridization [18]. The abstract model can be simplified by projecting away

variables and adding a clock variable to preserve timing properties [17].

Polynomial Approximations. If the dynamics are polynomial, bringing them to

Bernstein form allows one to compute conservative approximations of successors

sets in polynomial form [54, 152]. Another approach is to use Taylor models, which

are polynomial approximations of a functions that are derived from a higher-order

Taylor expansion and an interval bound on the remainder [30]. The resulting ODE

can be solved by iterative approximations using the Picard operator. The reachable

states are approximated by sets that are polyhedra [160] or polynomial images of

intervals [43]. A similar approach uses polynomial images of zonotopes, which are

themselves images of intervals [4]. Since polynomial images of intervals are gen-

erally not closed under intersection, the accuracy may be diminished when com-

puting discrete successors. It can also be shown that additional assumptions, such

as knowledge of a Lipschitz constant, are required in these approaches in order to

ensure computable error bounds [147].

5 Abstraction-based Verification

Explicit-state reachability analysis is very easy to use. Its flat and direct representa-

tion of the system behavior can, however, cause it to run into scalability issues for

bigger systems. One technique that has been very successful for scaling up discrete

model checking is that of abstraction (see also Chap. ??).

The basic idea is to replace the actual system by a simpler, abstract system, in

which model checking is easier to perform. The verification results about the ab-

stract system, of course, can only be related back to verification results about the

original concrete system under certain conditions on how the abstract and concrete

system are related and whether the particular property in question survives this ab-

straction process.

The options for directly constructing discrete abstractions by finite quotients and

for which subclasses they work have been examined by Henzinger [88, 93] and Laf-

ferriere et al. [108]. Because of the limited scope of discrete abstractions, more
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general predicate abstractions [10, 9] and abstraction-refinement techniques like

Counterexample-Guided Abstraction-Refinement (CEGAR) have been developed

subsequently [46, 9]; see Chap. ??. Those directions have again worked success-

fully in discrete and, to some extent, real-time systems.

5.1 Discrete Abstractions

We present a general notion of abstraction for transition systems based on simulation

relations [125] and we illustrate the principle of using abstractions in the verification

of hybrid systems for the class of initialized rectangular automata.

Definition 11 (Abstraction). A transition system T A = 〈SA,SA
0 ,S

A
f ,Σ ,→A〉 is an ab-

straction of a transition system (with same alphabet) T = 〈S,S0,S f ,Σ ,→〉 (which is

then called the concrete system) if there exists an abstraction mapping α : S→ SA

such that the following conditions hold:

1. α(s) ∈ SA
0 for all initial states s ∈ S0;

2. for all σ ∈ Σ , for all states s1,s2 ∈ S, if s1
σ
−→ s2, then α(s1)

σ
−→A α(s2);

3. α(s) ∈ SA
f for all final states s ∈ S f .

The abstraction mapping α is in fact a particular case of a (time-abstract) simu-

lation relation [126]. It may be convenient to allow the abstraction mapping to map

a state s ∈ S to several abstract states s1
A,s

2
A, . . . s

k
A ∈ SA, that is to consider abstrac-

tion mappings α : S→ 2SA
or equivalently to consider an abstraction relation over

S× SA, rather than a function. We take the simpler definition which is sufficient for

the purpose of describing the main principles of abstraction for hybrid automata.

The main property of abstractions which is useful for safety verification problem

of hybrid automata is that they are conservative. Formally, {α(s) | s ∈ Reach(T )} ⊆
Reach(T A), which implies the following.

Lemma 4. Let T A be an abstraction of T . If T A is safe, then T is safe.

By Lemma 4, if we show (e.g., using algorithmic techniques) that the unsafe

states are not reachable in an abstraction of a hybrid system, then we can conclude

that the concrete system is safe. Intuitively, this is because abstractions are over-

approximations of the original system, and therefore they exhibit (or simulate) all

executions of the concrete system, and possibly more. In particular, every path to

an unsafe state has a matching path in the abstraction, which is the main argument

for proving Lemma 4. The converse of this lemma does not hold simply because

abstractions may introduce spurious executions (which have no matching execution

in the concrete system) due to over-approximation.

The main purpose of abstraction for hybrid system is to obtain finite-state tran-

sition systems which are amenable to model-checking by automatic tools, and give

useful conclusion about the original system. Remember that the transition system



Contents 33

of hybrid automata have (uncountably) infinite state space, and (uncountably) infi-

nite branching. In the next subsections, we present ideas for practically constructing

such abstractions.

Initialized rectangular automata. We illustrate abstractions with an informal argu-

ment of why the safety verification problem is decidable for initialized rectangular

automata. The idea is that for such hybrid automata H, one can construct a timed

automaton A such that A is an abstraction of H, and H is an abstraction of A, thus

A is safe if and only if H is safe. Note that in this case the constructed abstrac-

tion (the timed automaton A) has infinite state space, but since we know that the

safety verification problem for timed automata is decidable, we obtain decidability

for initialized rectangular hybrid automata by Lemma 4.

We present the main steps behind this construction. In every location, a variable

x with flow constraint k1 ≤ ẋ ≤ k2 is replaced by two variables xl and xu with flow

constraint ẋl = k1 and ẋu = k2 which track the least and greatest possible value of

x respectively. An incoming edge with jump condition a ≤ x+ ≤ b (an update) is

replaced by x+l = a∧ x+u = b. An edge with jump condition x ≤ b (a guard) that

occurs in conjunction with x+ = x is replaced by two copy of the edge, one with

the constraint (xl ≤ b∧ xu ≥ b∧ x+u = b) and the other with the constraint xu ≤ b.

More complicated jump conditions (strict inequalities, and conjunction of simple

jump conditions) are handled analogously, as well as the constraints in initial, final,

and evolution domain conditions (invariants).

After this step, the slope of every variable is a singleton in every location. The

next step is to scale the nonzero slope of the variables to 1. To do this, in each

location we replace flow constraints ẋ = k (when k 6= 0) by ẋ = 1 and divide by k

the constants in the guards of outgoing edges, and in the updates of incoming edges.

This ensures that the value stored in variable x remains k times smaller the value of x

in the original automaton (as long as the flow constraint ẋ = k holds). It is therefore

important that the rectangular automaton is initialized, as it guarantees that if the

constraint x+ = x occurs in the jump condition of an edge (ℓ,σ , ℓ′), then the slope

of variable x is the same in ℓ and in ℓ′. It remains to eliminate variables with slope

0, which can be done easily by storing the lower and upper value of x in the finite

control structure of the automaton (these values can change only by discrete jumps).

The technical details of how to deal for instance with strict constraints in jump

condition like (a < x < b), or unbounded flow constraints (like ẋ≥ 1) can be found

in [96].

5.2 Phase-portrait approximation

Phase-portrait approximations are used as abstractions of hybrid automata with

complex flow constraints. We discuss the approach for affine flow constraints, but it

applies to flow constraints that are much more general (e.g., given by ẋ = f (x) for

a continuous function f ). Details about the theory and practice of this approach can
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be found e.g. in [93, 67] and extensions on hybridization [18] and other abstractions

[60, 70, 169].

The objective of phase-portrait approximations is to replace complex dynamics

by simple rectangular (or sometimes linear) flow constraints on the dotted variables

only. For example, the flow constraint ẋ = f (x) where f (x) = x+ 1 in a location

with evolution domain (invariant) 0≤ x≤ 10 is replaced by 1≤ ẋ≤ 11, which over-

approximates the exact dynamics. In general, bounds on the derivative can be de-

rived from bounds on the variables and computed as optimization problems, where

the lower bound should be smaller than infv∈JInv(ℓ)K f (v) and symmetrically for the

upper bound. Manual or numerical methods can be used as long as the bounds can

be proven to hold.

Formally, a phase-portrait approximation of a hybrid automaton H = 〈Loc,Lab,
Edg,X , Init, Inv,Flow,Jump,Final〉 is a hybrid automaton H ′ = 〈Loc,Lab,Edg,X ,
Init, Inv,Flow′,Jump,Final〉 in which all components in H and H ′ are identical, ex-

cept the flow constraint which is such that JFlow′(ℓ)K⊇ JFlow(ℓ)K for every location

ℓ ∈ Loc.

Lemma 5. Let H ′ be a phase-portrait approximation of H. Then JH ′K is an abstrac-

tion of JHK, and if JH ′K is safe, then JHK is safe.

The safety verification problem for phase-portrait approximations can be solved

using the algorithms and data-structure presented in Sect. 4 for reachability anal-

ysis. Rectangular phase-portrait approximation are relatively simple to obtain be-

cause bounds are computed for each variable separately. However, the quality of the

approximation may be too coarse to establish safety. If the bad states are reachable

in the phase-portrait approximation, it may be due to lack of accuracy. More pre-

cise approximations are obtained by splitting the evolution domains. For example,

a location with evolution domain 0 ≤ x≤ 10 can be replaced by two locations with

respective evolution domain 0 ≤ x ≤ 5 and 5 ≤ x ≤ 10, over which the approxima-

tion of ẋ = x+ 1 is more precise, namely 1 ≤ ẋ ≤ 6 and 6 ≤ ẋ ≤ 11 respectively.

Fig. 12 shows the states reachable from x = t = 0 (assuming ṫ = 1) in the rectangu-

lar phase-portrait approximation before splitting (light gray) and after splitting (dark

gray).

In general, splitting consists in replacing a location ℓ by k locations ℓ1, . . . , ℓk

with same flow constraint as in ℓ, and with evolution domains that cover the evolu-

tion domain of ℓ, i.e. such that JInv(ℓ)K ⊆
⋃k

i=1JInv(ℓi)K. For each incoming edge

(ℓ′,σ , ℓ), new edges (ℓ′,σ , ℓi) (i = 1, . . .k) are created with same jump condition,

and similarly for each outgoing edges. The split Locations ℓ1, . . . , ℓk are connected

by edges with jump condition stable(X) =
∧

x∈X x′ = x. It can be shown that lo-

cations splitting results in hybrid automata that are mutually abstractions of each

other, implying that one is safe if and only if the other is safe. By splitting locations,

rectangular phase-portrait approximation can be made arbitrarily precise in the fol-

lowing sense. Given a hybrid automaton H and ε > 0, an ε-relaxation of H is a

hybrid automaton the same locations and transition structure as in H, and where all

predicates φ in H are replaced by predicate φ ′ such that JφK ⊆ Jφ ′K ⊆ JφKε where
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x

1≤ ẋ ≤ 11

6≤ ẋ≤ 11

1≤ ẋ≤ 6

t0 10

5

10

5

ẋ = x+1

Fig. 12 Tighter approximations using evolution domain (invariant) splitting.

JφKε := {v ∈ RX | ∃u ∈ JφK : maxx∈X |v(x)− u(x)| ≤ ε} is the set of valuations at

distance at most ε of a valuation satisfying φ .

It can be shown that for every hybrid automaton H and ε > 0, there exists a

rectangular phase-portrait approximation Hε of a splitting of H such that Hε is an

abstraction of H, and there exists ε-relaxation of H which is an abstraction of Hε

(see [93]). This ensures that if H robustly satisfies a safety property (i.e. both H

and some ε-relaxation satisfy the safety property), then it is possible to establish the

property using rectangular phase-portrait approximation and splitting.

In practice, it is often useful to split locations according to specific information

we may have about the given hybrid automaton. For example, a flow constraint

ẋ = 3−x suggests to split the evolution domain along lines parallel to L≡ 3−x = 0.

More generally, a common heuristics is to use linear approximations of the flow

constraints as support of cutting planes.

5.3 Predicate Abstractions

This part is a survey of [46, 10, 9]. We provide general ideas and guidelines about

predicate abstraction schemes for hybrid systems. Chapter ??16 provides a detailed

presentation of abstraction techniques for program verification (note that imperative

programs can be viewed as a subclass of hybrid systems).
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Reachability analysis based on predicate abstraction consists of tracking the truth

value of a fixed finite set of predicates instead of computing the value of the con-

tinuous variables. The continuous part of the state space is replaced by the Boolean

truth values of the predicates.

Let H be a hybrid system, and let Π = {π1, . . . ,πk} be a finite set of linear pred-

icates πi of the form y ⊲⊳ 0 where y ∈ LTerm(X) and ⊲⊳∈ {<,≤,=,>,≥}. A truth

value for Π is a vector b ∈ Bk where B= {0,1} that assigns a truth value bi to each

predicate πi ∈ Π . Truth values induce a partition of the continuous state space into

finitely many abstract states. To obtain an abstraction we require that whenever there

exists a transition between two concrete states, then there is a transition between the

corresponding abstract states. Hence, the transition relation satisfies Definition 11

by construction.

We define an abstraction mapping αΠ as follows. For all states (ℓ,v) of the hybrid

automaton H, let αΠ (ℓ,v) = (ℓ,b) if b = (b1, . . . ,bk) ∈ Bk is the vector of truth

values of the predicates in Π under valuation v, i.e. such that πi(v) = bi for all

1 ≤ i ≤ k. We sometimes omit the location and write αΠ (v) = b. We denote by γΠ

the concretization function such that γΠ (b) = {v ∈RX | αΠ (v) = b} for all b ∈ Bk.

The predicate abstraction of H induced by Π is the finite-state transition system

HΠ = 〈SΠ ,S0,S f ,Σ ,→Π 〉 where:

• S = {(ℓ,b) ∈ Loc×Bk | ∃v ∈ JInv(ℓ)K : αΠ (ℓ,v) = (ℓ,b)}
• S0 = {(ℓ,b0) ∈ SΠ | ∃v ∈ JInit(ℓ)K : αΠ (ℓ,v) = (ℓ,b0)};
• S f = {(ℓ,b f ) ∈ SΠ | ∃v ∈ JFinal(ℓ)K : αΠ (ℓ,v) = (ℓ,b f )};
• Σ = Lab∪{time} where Lab is the alphabet of H;

• For each σ ∈ Lab, the transition relation→Π contains all tuples ((ℓ,b),σ ,(ℓ′,b′))

such that ∃e=(ℓ,σ , ℓ′)∈Edg ·∃v∈ γΠ (b) ·∃v′ ∈ γΠ (b′) : (ℓ,v)
σ
−→ (ℓ′,v′); and the

transition relation→Π contains the tuples ((ℓ,b), time,(ℓ′,b′)) such that ℓ′ = ℓ

and ∃r ≥ 0 · ∃v ∈ γΠ (b) · ∃v′ ∈ γΠ (b′) : (ℓ,v)
r
−→ (ℓ,v′).

While predicate abstractions are finite-state, their size can be of prohibitive com-

putational cost. The number of states in HΠ is at most exponential in the number of

predicates in Π . In practice though, many truth value vectors are not feasible (i.e.,

they have an empty concretization). For example, think of a set of 2k predicates over

two variables x and y, where k predicates define a partition of the values for x (e.g.,

x ≤ 0, 0 ≤ x ≤ 1, and 1 ≤ x) and k predicates define a partition of the values for y.

Then the number of feasible abstract state is at most k2 rather than 22k. Note that

this example would still give a number of abstract states exponential in the number

of variables. The dimension of the space is a well-known source of computational

complexity. The choice of predicates is thus very important to obtain precise approx-

imations at the least cost. The initial set of predicates is usually chosen manually.

Natural candidates are the predicates occurring in the hybrid automaton itself, like

the evolution domains and jump conditions. Automatic construction and refinement

of predicate abstractions is discussed in Sect. 5.4.

For reachability analysis, it is usually not necessary to construct the entire tran-

sition systems of the predicate abstractions, because many states may not be reach-

able. On-the-fly approaches are used to simultaneously construct and explore the
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abstraction. Starting from the initial states in the abstraction, the transitions to other

abstract states are explored as and when they are computed. A classical strategy is

to explore the discrete successors first (because they are less expensive to compute),

and then the continuous successors for increasing amounts of time, as long as no

new discrete transition is enabled.

Computing discrete successors. Discrete successors can be computed as fol-

lows. Given b ∈ Bk, let Π(b) =
∧

i|bi=1 πi ∧
∧

i|bi=0 πi be the constraint defin-

ing the abstract state b. A transition e = (ℓ,σ , ℓ′) is enabled in a state (ℓ,b) if

EN(e) := J∃X ·Π(b)∧ Inv(ℓ)∧ Jump(e)K∩ JInv(ℓ′)K 6= ∅. The successor states of

(ℓ,b) by enabled transition e are the abstract states (ℓ′,b′) such that Rk 6= ∅ where

R0 = EN(e) and for all 1 ≤ i ≤ k, if b′i = 1 then Ri = Ri−1 ∩ JπiK, and if b′i = 0

then Ri = Ri−1∩ JπiK. A procedure for computing b′ can easily be derived from this

definition. Note that it may be that both Ri−1∩ JπiK 6= ∅ and Ri−1∩ JπiK 6= ∅ hold,

which would lead to set successively b′i = 1 and b′i = 0, and explore both cases. A

simple optimization to this procedure is for each 1≤ i≤ k to set b′i = 1 beforehand

if EN(e)∩ JπiK = ∅, and set b′i = 0 if EN(e)∩ JπiK = ∅. If one of the two cases

holds, then the corresponding predicate can be skipped in the computation of Ri’s.

Computing continuous successors. In general, the continuous successors are not

computed exactly, even according to the abstract transition relation. This is due

to the lack of exact algorithmic methods for solving differential equations. Note

that this is a difficult problem even if the differential equations in flow constraints

have closed-form solution, like in linear systems. Given R⊆ RX and location ℓ, we

want to compute the set PostC({ℓ}×R) of continuous successor states as defined in

Sect. 4.1, but over-approximations are sufficient for our purpose. This is consistent

with the framework of abstraction (in the sense of Definition 11), but strictly speak-

ing we are exploring in this way an over-approximation of the transition system HΠ

defined above.

Optimizations. Various optimizations and heuristics have been defined and eval-

uated on many examples in the literature, see e.g. [46, 10, 9]. For example, when

we discover that a new abstract state s is reachable as a continuous successor under

some flow constraint, we do not need to explore the continuous successors of s un-

der the same flow constraint (unless s is also reachable by some discrete transition).

This may significantly prune the search through the abstract state space. The search

can also be guided to discover unsafe reachable states as quickly as possible. Var-

ious exploration strategies have been defined, based on giving priority to the most

promising states, according to some greedy measures. For example, such measures

may estimate the distance of the current state to the unsafe state, such as the Eu-

clidean distance between the valuation of the variables in the abstract state and in

the unsafe states, or a discrete distance as the smallest number of discrete transitions

necessary to reach the unsafe states, possibly taking into account the jump condi-

tion on the edges. Combination thereof are also possible [10]. Finally, as in program

verification [90], it may be useful to maintain a set of predicates Π specific to each
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location, because certain predicates that are relevant in a location may not be useful

in other locations.

5.4 Abstraction Refinement

The abstraction schemes presented in Sect. 5.1 and Sect. 5.3 may not be sufficient

to establish safety of a system. In particular, we know that safety of the abstraction

implies safety of the original system, but non-safety of the abstraction is inconclu-

sive. The process of refinement consists in constructing abstractions that are tighter

(or more detailed) than a given abstraction, in order to prove safety. If the refine-

ment process repeatedly fails in proving safety, then one can reasonably conclude

that even if the original system may be safe indeed, it should not be considered as

acceptable because its correctness is not robust, a small deviation in the implementa-

tion of the system being able to cause violation of the safety requirement [155, 58].

Such considerations are used to stop the refinement process when a specified level

of precision is reached [64, 46].

In general, if T A is an abstraction of T , then a refinement T B of T A is an abstrac-

tion of T which is such that T A is an abstraction of T B.

In the case of splitting and phase-portrait approximations, refinements can be

obtained by further splitting locations. For predicate abstractions, adding new pred-

icates gives a refinement. We present one of the most popular framework to dis-

cover new predicates automatically, the counterexample-guided abstraction refine-

ment (CEGAR) [47, 46]. A general framework of abstraction-refinement is pre-

sented in Chapter ??.

Spurious counterexamples. When a predicate abstraction fails to establish safety,

the analysis usually returns a witness path from an initial abstract state to a final

abstract state. Such a path ρ = q0
σ1−→ q1 . . .

σn−→ qn is a spurious counterexample if

there exists no path (ℓ0,v0)
σ1−→ (ℓ1,v1) . . .

σn−→ (ℓn,vn) in the original system such

that (ℓi,vi) ∈ γΠ (qi) for all 0 ≤ i ≤ n. Clearly, if a counterexample is not spurious,

then we can immediately conclude that the original system is not safe. We present a

standard approach to check whether a counterexample is spurious [9].

To simplify the presentation, we assume in this section that every edge has a

different label that identifies it uniquely. The successor operator is

Postσ (S) = {(ℓ
′,v′) | ∃(ℓ,v) ∈ S : (ℓ,v)

σ
−→ (ℓ′,v′)},

where Posttime(·) = PostC(·) is the one-step continuous successor operator. Simi-

larly, the predecessor operator is

Preσ (S) = {(ℓ,v) | ∃(ℓ
′,v′) ∈ S : (ℓ,v)

σ
−→ (ℓ′,v′)}.
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Let R0 = γΠ (q0)∩{(ℓ,v) | v∈ JInv(ℓ)K}, and Ri+1 =Postσi
(Ri)∩γΠ (qi+1)∩{(ℓ,v) |

v ∈ JInv(ℓ)K} for all i ≥ 0. The counterexample ρ is spurious iff Ri = ∅ for some

0 ≤ i ≤ n. Note that over-approximations of Postσi
(·) may suffice to show that a

counterexample is spurious, but under-approximations are necessary to establish

with certainty that a counterexample exists in the original system.

Refinement. Assume that the counterexample is spurious, and let j ≥ 0 such that

R j 6= ∅ and R j+1 = ∅. Then it is easy to prove that R j ∩Preσ j+1
(γΠ (q j+1)) = ∅.

New predicates should be added to the set Π in order to rule out the counterexample.

Since R j ∩Preσ j+1
(γΠ (q j+1)) = ∅, we can search for a set of predicates which

separates R j and Preσ j+1
(γΠ (q j+1)). A set Π̂ of predicates separates two sets R and

Q if for every truth value b ∈ BΠ̂ , we have either γΠ̂ (b)∩R =∅ or γΠ̂ (b)∩Q =∅.

Note that to separate closed polyhedra, one simple linear constraint is always suf-

ficient, but since reachable states (and in particular states reachable by continuous

flow) are approximated by non-convex unions of polyhedra, several simple con-

straints may be necessary. Several methods have been developed to separate poly-

hedral sets, which are beyond the scope of this chapter. We refer to [9] for references

and discussion.

In some case, spuriousness can be established by analyzing fragments of the

counterexample [46], i.e. trying to show that a sub-sequence in the counter-example

is not feasible in the original system. Spurious fragments of length 2 are called

locally infeasible in [9] and defined as follows: qi−1
σi−→ qi

σi+1
−−→ qi+1 is spurious

if Postσi
(γΠ (qi−1))∩ γΠ (qi)∩Preσi+1

(γΠ (qi+1)) = ∅. Refinement is computed as

above using separating predicates.

Various forms of robustness have been considered for hybrid systems, which,

basically work by not distinguishing between almost safe and almost unsafe hy-

brid systems so that incorrect answers from the analysis procedure are accepted for

such borderline cases, but correct answers are required for clear-cut cases. Different

notions of robustness have been considered successfully [64, 158, 157].

5.5 Approximate Bisimulations

For discrete systems, the relationships between systems can be described by the no-

tions of language inclusion, simulation, and bisimulation. These concepts have been

transposed to continuous and hybrid systems [85], and extended to take advantage

of metrics over state spaces [78]. While traditional simulation and bisimulation re-

lations require the output traces of related states to be identical, it suffices for metric

relations that they are sufficiently close. This can be used to construct a discrete

bisimilar quotient by discretizing the state space. The quotient is then amenable to

verification and controller synthesis techniques for discrete systems [76].

We briefly sketch out the principle of approximate bisimulations in discrete time.

Two states x1, x2 are in a ε-bisimulation relation if their output values are within

distance ε and for every successor state x′1 of x1, x2 has a matching successor state
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x′2 so that x′1 and x′2 are also in the relation. As a consequence, the output traces of

two states in the relation will never be more than ε apart. Note that the definition

coincides with classical bisimulation for ε = 0. It is generally hard to compute ε-

bisimulation relations exactly, but (under some mild assumptions) one can define a

Lyapunov-like bisimulation function that maps pairs of states to a nonnegative value,

and whose sub-level sets are in an approximate bisimulation relation. The existence

of bisimulation relations can be tied to certain types of stability (the tendency of

the system to go to its equilibrium point). For example, a bisimulation function of

a linear continuous system with dynamics ẋ = Ax and output signal y = Cx can be

computed efficiently even for high dimensional systems by solving a set of linear

matrix inequalities (LMI) of the form M ≥CTC and ATM +MA ≤ 0. The LMI al-

ways has a solution if the system is stable. Therefore, two stable linear systems are

always ε-bisimilar, and an upper bound on ε can be computed. Note that approxi-

mate bisimulations can be used to relate continuous-time to discrete-time systems,

continuous-valued to discrete-values systems, etc.

Verification by simulation. Bisimulation relations can also be used to verify

bounded-horizon properties on bounded regions by computing a finite number of

trajectories, a technique called verification by simulation [61, 102]. Here, the prox-

imity measure of the bisimulation relation is combined with a robustness measure

on temporal logic formulas. Given an initial state x0 from which a trajectory satisfies

a temporal formula to some measure, a bisimulation metric allows one to identify

a neighborhood of initial states that all satisfy the same formula. This is possible

since the bisimulation metric guarantees that all trajectories from the neighborhood

(including all trajectories starting in x0) remain sufficiently close together to satisfy

the formula. Given a (dense) bounded region of initial states, it is, under suitable

assumptions, possible to identify a finite subset of initial states whose trajectories

are sufficient to show that the system satisfies a temporal logic formula [79]. A sim-

ilar approach has been developed for embedded control software [112]. Together

with the work on robustness mentioned in Sect. 5.4, these results demonstrate how

stability and robustness can be used to simplify verification tasks.

6 Logic-based Verification

The working principle behind logic-based verification is to use logical formulas

for characterizing some parts of the hybrid systems verification problem and solve

this verification problem or subproblem entirely by checking corresponding logical

formulas for validity. There are even verification techniques for hybrid systems that

are entirely based on logic and proof [137, 143], which are beyond the scope of

this chapter, however. In this section we survey the basic principles behind these
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approaches and show what kind of reasoning can be used to verify safety properties

of hybrid systems or their parts by showing the validity of logical formulas.7

We survey a number of different approaches that represent the verification prob-

lem by various logical formulas or logical constraints:

1. Polynomial barrier certificates [154]

2. Equational certificates from templates [161, 159]

3. Differential invariants [136, 148, 144, 142]

These logic-based verification approaches further have in common that they ar-

gue by invariance and are based on variations of the work of Sophus Lie, of Dar-

boux, or of Aleksandr Lyapunov. Differential invariants are based on Sophus Lie’s

1867–1873 work on what are now called Lie derivatives and Lie groups. Equa-

tional certificates are based on Darboux’s 1878 results [56] on a way to use Sophus

Lie’s approach. Barrier certificates are based on variations of Aleksandr Lyapunov’s

1884–1892 work on a criterion for stability, which is used for safety instead [154].

The logic-based verification techniques for hybrid systems are complementary, so

barrier certificates, equational templates, and differential invariants can be used to-

gether and also combined as abstractions with reachability analysis techniques.

Consider a location ℓ or a continuous evolution mode ℓ of a hybrid automaton

with polynomial dynamics defined by polynomial differential equations. Let

ẋ1 = f1(x), . . . , ẋn = fn(x)

be the polynomial differential equation system of the mode, which we abbreviate by

the (vectorial) differential equation ẋ = f (x). The mode ℓ has an invariant condition

Inv ∈PConstr(X). What we want to understand about it in model checking of safety

properties is whether the system will always stay in a safe region when it follows

this continuous evolution mode starting from some initial region. We represent the

desired initial region by a constraint Init ∈ PConstr(X). Finally, we consider a con-

straint Safe ∈ PConstr(X) defining the safe states for which we want to show that

our system never leaves the set of states JSafeK satisfying Safe.

Definition 12 (Continuous mode safety problem). Let ẋ = f (x) be a (vectorial)

differential equation, i.e., a polynomial differential equation system

ẋ1 = f1(x), . . . , ẋn = fn(x)

for the system variables X = {x1, . . . ,xn}. A continuous system (Init, ẋ = f (x), Inv)
consists of a constraint Inv ∈ PConstr(X) for the invariant condition (or evolution

domain restriction), and a constraint Init ∈ PConstr(X) for the initial condition. We

say that the continuous system (Init, ẋ = f (x), Inv) is safe with respect to constraint

Safe ∈ PConstr(X) iff for all δ ∈ R≥0 and all continuously differentiable func-

tions ϕ : [0,δ ]→ RX with ϕ(0) ∈ JInitK also satisfy ϕ(δ ) ∈ JSafeK provided that

ϕ̇(t) = f (ϕ(t)) and f (t) ∈ JInvK for all t ∈ [0,δ ]. We also say that the continuous

7 It should be noted that the other verification techniques surveyed in this chapter benefit from logic

as well, for example in their representation of big sets of states using simple logical formulas.
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system (Init, ẋ = f (x), Inv) respects Safe if (Init, ẋ = f (x), Inv) is safe with respect

to property Safe.

Logic-based verification techniques provide easily checkable witnesses to ver-

ify that a continuous system (Init, ẋ = f (x), Inv) respects Safe. The immediate sig-

nificance for model checking is that they induce abstractions that can be used to

terminate reachability computation.

Lemma 6 (Logical abstraction). Let (Init, ẋ = f (x), Inv) be a continuous system of

a mode ℓ ∈ Loc of a hybrid automaton. If (Init, ẋ = f (x), Inv) respects Safe, then

postℓ(JInitK)⊆ JSafeK

If the continuous system (Init, ẋ = f (x), Inv) of a mode ℓ ∈ Loc of a hybrid automa-

ton respects the desired safety property Safe, (continuous) reachability computation

can be terminated for all states in any subset P⊆ JInitK, because, by monotonicity,

Lemma 6 then implies

postℓ(P)⊆ JSafeK

In particular, notice that it is useful for fast reachability computation if we can iden-

tify big sets Init that make (Init, ẋ= f (x), Inv) respects Safe. These sets Init are often

much bigger than the original initial sets from Definition 6.

The logic-based verification techniques mentioned above have in common that

they provide easily checkable witnesses for the verification. They further enjoy the

benefit that they can be used for highly nonlinear dynamics. The primary challenge

in all cases is the need to first find the witnesses or their shape, which corresponds

to the challenge of finding the right directions for support functions.

An interesting special case of the continuous safety problem from Definition 12

is the case where Init and Safe are the same formula F . If the continuous system

(F, ẋ = f (x), Inv) is safe with respect to F , then F is called a (safety) invariant. In

that case, Lemma 6 implies

postℓ(JFK)⊆ JFK

That is, the continuous system will never be able to leave F . Thus, without reach-

ability computation, one can conclude that reachable sets that are within JFK will

stay there forever.

Observe that, despite the similar name, there is a crucial difference between an

invariant condition Inv of a continuous system (or a mode in a hybrid system) and

a safety invariant F . The difference is that we need to verify whether F is a safety

invariant, while we just assume that the system obeys the invariant condition Inv.

That is why Inv is also called an evolution domain restriction, because it restricts

the admissible evolution domain of the continuous system. So, Inv is part of the

system model, yet F is part of a safety property that we verify for the system model.

One of many possible approaches to logic-based verification is the one that fo-

cuses on showing that a formula F is a global invariant of a hybrid automaton by

showing that it is an invariant for each discrete transition and an invariant for each

continuous transition of the automaton. The best case is if F is the safety property
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and turns out to be a global invariant of the system in this manner. This is generally

somewhat overly simplistic, because the verification does not necessarily have to

work with the same invariant F in all places so that multiple invariants need to be

used instead. Nevertheless, having this simple example of a single global invariant

in mind is a useful guiding principle for logic-based verification approaches.

Related arguments have also been used for invariant generation as abstraction

techniques for abstract interpretation [169]. Based on decidability results for o-

minimal hybrid automata [109], this includes invariant generation techniques for

linear systems based on Gröbner basis computations [169] rather than based on

quantifier elimination [109]. The case of (hyper-rectangle) box invariants has been

discussed in more detail elsewhere [170].

6.1 Polynomial Barrier Certificates

The basic idea behind barrier certificates is to find a barrier separating good and

bad states that we can easily show to be impenetrable by the continuous system

dynamics. Barrier certificates were proposed for safety verification [154].

Theorem 4 (Weak barrier certificate [154]). Let (Init, ẋ = f (x), Inv) be a contin-

uous system with safety constraint Safe. If B is a (weak) barrier certificate for a

continuous safety problem, i.e., a polynomial satisfying

B(x)≤ 0 for all initial states x ∈ JInitK

B(x)> 0 for all unsafe states x 6∈ JSafeK

∂B

∂x
(x) f (x) ≤ 0 for all states x ∈ JInvK

Then the continuous system (Init, ẋ = f (x), Inv) respects Safe.

Barrier certificates themselves can be defined for more general non-polynomial

cases, but the conditions are generally not computable, when fi(x) and B are not

polynomials or Inv, Init, and Safe are not polynomial constraints. The purpose of a

barrier certificate is to separate safe from unsafe states in a way that initial states

are safe, and the differential equations can easily be seen to never cross the barrier

between safe and unsafe states.

The importance of barrier certificates comes from the fact that they reduce a

reachability question (can we ever reach an unsafe state) by a simple check on the

directional derivative ∂B
∂x
(x) f (x) of the barrier certificate along the differential equa-

tion of the system.

It had originally been proposed [153] that barrier certificates only need to be

checked on the boundary of the barrier and that it would be sufficient to check the

third condition in Theorem 4 for all x ∈ JInvK with B(x) = 0:

∂B

∂x
(x) f (x) ≤ 0 for all states x ∈ JInvK with B(x) = 0 (16)
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This condition is generally not strong enough and can lead to soundness issues as

the following example shows.

Example 2. When using condition (16), it looks as if the differential equation ẋ = 1

always stayed in the region Safe≡ x2 ≤ 0 because condition (16) succeeds as fol-

lows:
∂x2

∂x
1 = 2x≤ 0 for all states x with x2 = 0

This, however, is counterfactual, because the system ẋ = 1 will, of course, leave

region x2 ≤ 0. Thus, the condition (16) is unsound. The same issue occurs for a

suggestion on how to extend this approach to Boolean combinations of inequalities

[84]. A discussion under which assumptions the conditions can be restricted to such

subsets without losing soundness can be found in the literature [154, 136, 144, 142].

Checking on the boundary is sound, however, if the condition (16) is modified to

a strict inequality, instead of a weak inequality:

Theorem 5 (Strict barrier certificate [154]). Let (Init, ẋ = f (x), Inv) be a contin-

uous system with safety constraint Safe. If B is a (strict) barrier certificate for a

continuous safety problem, i.e., a polynomial satisfying

B(x)≤ 0 for all initial states x ∈ JInitK

B(x)> 0 for all unsafe states x 6∈ JSafeK

∂B

∂x
(x) f (x) < 0 for all states x ∈ JInvK with B(x) = 0

Then the continuous system (Init, ẋ = f (x), Inv) respects Safe.

Search procedures for barrier certificates include approaches that choose a degree-

bound for the barrier certificate B(x) and then turn the conditions from Theorem 4

into a convex optimization problem, which can be solved efficiently [154]. A simi-

lar approach has been proposed for Theorem 5, but the optimization problem is then

non-convex [154] so that optimizers can get stuck in local optima.

Barrier certificates can be extended to systems with disturbances and to switching

diffusion systems [154]. We refer to the literature for a discussion of those general-

izations and examples [154].

6.2 Equational Certificates

Equational certificates [161, 159] serve a purpose that has quite some similarity to

barrier certificates. They were introduced [161] at the same time as barrier certifi-

cates [154], and later rephrased and generalized [159] similar to a matrix reformu-

lation of that idea [123]. Equational certificates have been investigated earlier by

Darboux in 1878 [56] for continuous systems not in the context of hybrid systems.
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Like barrier certificates, the conditions of equational certificates make a reachabil-

ity analysis superfluous, because they give a simple certificate showing a property

of the system. One major difference of equational certificates compared to barrier

certificates is that an equational certificate consists of a single polynomial equa-

tion p(x) = 0, while a barrier certificate consists of a single polynomial inequality

B(x)≤ 0. The other major difference is the condition itself. It is an equational crite-

rion, not using inequalities. Another minor difference is that an equational certificate

p(x)= 0 shows invariance of the property p(x)= 0 instead of separating initial states

from bad states. That is a minor difference, though, because Safe is an invariance

property that can be read off from a barrier certificate that separates Init from¬Safe.

Theorem 6 (Equational certificates [161]). Let p(x) be a polynomial and let

(p(x) = 0, ẋ = f (x), Inv) be a continuous system. If there is a polynomial g(x) such

that
∂ p(x)

∂x
(x) f (x) = g(x)p(x)

for all x ∈ JInvK, then (p(x) = 0, ẋ = f (x), Inv) respects p(x) = 0. In particular,

p(x) = 0 is an invariant of (p(x) = 0, ẋ = f (x), Inv).

The equational template approach for equational certificates [161] works as fol-

lows. The user chooses a template for the polynomial equation p(x) = 0 and the

system then uses linear equation solving and/or Gröbner basis computations [38]

to check whether the equational certificate condition from Theorem 6 hold. In gen-

eral, the approach may use the decision procedures of quantifier elimination in real-

closed fields [49] to handle the nonlinear real arithmetic.

Common special cases of equational certificates include those where only num-

bers or only 0 is chosen for the polynomial g(x). It had been originally proposed

informally [161] that it should also be sufficient in Theorem 6 to check

∂ p(x)

∂x
(x) f (x) = 0 for all x ∈ JInvK with p(x) = 0 (17)

This variation is generally not strong enough and can lead to soundness issues.

Example 3. When using condition (17), it may seem as if x2 = 0 were an invariant

of the differential equation ẋ = 1, because condition (17) succeeds as follows:

∂x2

∂x
1 = 2x = 0 for all x with x2 = 0

This, however, is counterfactual, because the system ẋ = 1 will, of course, falsify the

safety condition x2 = 0 right away. Thus, the condition (17) is an unsound variation

of Theorem 6. We refer to the literature [136, 142] for a discussion of the conditions

under which stronger assumptions can be assumed without losing soundness.

There are additional conditions on the system dynamics and p, however, under

which the restriction (17) remains correct [142]. That line of research also identifies

under which conditions equational templates and equational differential invariants

are complete for verifying equational safety properties [142].
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6.3 Differential Invariants and Logical Certificates

Differential invariants are a generalized form of logic-based witness techniques

for hybrid systems and generalize equational certificates [161] and barrier certifi-

cates [153, 154]. Like equational certificates [161] a differential invariant can be an

equation p(x) = 0. Like barrier certificates [153, 154], they can be inequalities like

p(x)≤ 0. Differential invariants can be general logical formulas with propositional

combinations of mixed equations, strict inequalities, and weak inequalities, and can

be extended to contain quantifiers for distributed hybrid systems [138]. Differen-

tial invariants have been introduced in 2008 [136] and later refined to an automatic

verification procedure that searches for differential invariants [148]. Further results

about the theory of differential invariants can be found in the literature [144, 142].

Given a continuous system (Init, ẋ = f (x), Inv), we want to check if it respects

Safe. As a short notation, we say that the formula Init→ [ẋ = f (x)&Inv]Safe is

valid, if the continuous system (Init, ẋ = f (x), Inv) respects the safety condition

Safe. That is, if that continuous system will alway stays in the region Safe when it

follows differential equation ẋ = f (x) restricted to the evolution domain region Inv

and when started in any initial state satisfying Init. Even though more complex rep-

resentations can be used, we assume Init,Safe, and Inv to be (semi-algebraic) poly-

nomial constraints. A simple form corresponds to the case where Init and Safe are

the same formula F . If F → [ẋ = f (x)&Inv]F is valid, then F is called a continuous

invariant of the dynamics ẋ = f (x)&Inv. That is, if the continuous system starts in

F , then it will always stay in F .

In fact, the notation Init→ [ẋ = f (x)&Inv]Safe can be understood as a log-

ical formula. The logical formula [ẋ = f (x)&Inv]Safe uses the modal operator

[ẋ = f (x)&Inv] to say that formula Safe holds in all states that are reachable

along the differential equation ẋ = f (x) within revolution domain Inv. The impli-

cation Init→ in Init→ [ẋ = f (x)&Inv]Safe restricts this to only the set of initial

states that satisfy Init. The same principle extends to a logic for hybrid systems

[135, 136, 137, 143, 141] and to a logic for distributed hybrid systems [140]; see

[143] for an overview. Both of those logics are relatively complete (similarly to rel-

ative completeness of Hoare calculus). That is, they can prove every valid formula

about hybrid systems or (distributed) hybrid systems from elementary properties

of differential equations. Those results also give a precise construction lifting all

verification techniques for continuous systems to hybrid systems [141].

Differential invariants can be equational formulas like equational certificates,

they can include inequations like barrier certificates, but they also include mixed

cases, Boolean combinations, and cases with more complicated logical formulas.

Definition 13 (Continuous invariant). Let (Init, ẋ = f (x), Inv) be a continuous

system with safety constraint Safe. Constraint F is a continuous invariant of

Init→ [ẋ = f (x)&Inv]Safe iff the following formulas are valid (true in all states):

1. Init∧ Inv→ F (induction start), and

2. F → [ẋ = f (x)&Inv]F (induction step).
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Fig. 13 Differential invari-

ant F
¬

¬F
F

F

A continuous invariant F is sufficiently strong for Init→ [ẋ = f (x)&Inv]Safe if, in

addition, F → Safe is valid, because Init→ [ẋ = f (x)&Inv]Safe is then valid.

It is easy to see that the existence of a sufficiently strong continuous invariant for

Init→ [ẋ = f (x)&Inv]Safe implies that the property Init→ [ẋ = f (x)&Inv]Safe is

valid.

Continuous invariants are useful notions, but they are not computational per se,

because we still need to find a way to check the induction step. The induction start

is reasonable, because it is just a constraint, which is a logical formula of first-

order real arithmetic and thus decidable by quantifier elimination in real-closed

fields [49, 166, 50]. But we need to find a checkable representation of the induction

step. A checkable condition is made formally precise using the notion of differential

invariants.

Definition 14 (Differential invariant). Let (Init, ẋ = f (x), Inv) be a continuous sys-

tem with safety constraint Safe. A polynomial constraint F is a differential invariant

of Init→ [ẋ = f (x)&Inv]Safe iff the following formulas are valid:

1. Init∧ Inv→ F (induction start), and

2. Inv→ ∇ẋ= f (x)F (induction step),

where ∇ẋ= f (x)F is the conjunction of all directional derivatives of atomic formulas

in F in the direction of the vector field of ẋ = f (x) (the partial derivative of b by xi

is ∂b
∂xi

):

∇ẋ= f (x)F ≡
∧

(b∼c)∈F

(

n

∑
i=1

∂b

∂xi

fi(x)

)

∼

(

n

∑
i=1

∂c

∂xi

fi(x)

)

where∼∈{=,≥,>,≤,<}.

A differential invariant F is sufficiently strong for Init→ [ẋ = f (x)&Inv]Safe if, in

addition, F → Safe is valid (because Init→ [ẋ = f (x)&Inv]Safe is then valid by

Corollary 2 below).

The respective partial derivatives of terms are well-defined in the Euclidean space

spanned by the variables and can be computed symbolically [136, 137]. Differential

invariants capture the condition showing that the formula F is only becoming more

true when following the dynamics, not less true, see Fig. 13.

The central property of differential invariants for verification purposes is that

they replace infeasible or impossible reachability analysis with feasible symbolic

computation.
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Theorem 7 (Principle of differential induction [136]). All differential invariants

are continuous invariants.

Corollary 1. If F is a differential invariant for Init→ [ẋ = f (x)&Inv]Safe, then

Init→ [ẋ = f (x)&Inv]F is valid.

Corollary 2. If F is a differential invariant for Init→ [ẋ = f (x)&Inv]Safe that is

sufficiently strong, then F is a continuous invariant that is sufficiently strong for

Init→ [ẋ = f (x)&Inv]Safe. In particular, Init→ [ẋ = f (x)&Inv]Safe is valid.

Example 4. Consider the dynamics ẋ = x4, ẏ =−2. We are interested in seeing

whether 2x≥ 5y is an invariant of this dynamics. With differential invariants it is

easy to show that this is an invariant for the dynamics without using any state-based

reachability verification. We just compute symbolically:

∇ẋ=x4,ẏ=−2(2x≥ 5y) ≡
∂2x

∂x
x4 +

∂2x

∂y
(−2)≥

∂5y

∂x
x4 +

∂5y

∂y
(−2) ≡ 2x4 ≥−10.

Since the latter formula is easily found to be valid, 2x≥ 5y is proven to be a dif-

ferential invariant and thus stays true whenever it holds for the initial state of the

dynamics.

Consider the case where ẋ = x4, ẏ =−2 is the dynamics of one location of a

hybrid automaton. Then we know that 2x≥ 5y is true after staying in this location

arbitrarily long, if only we know that 2x≥ 5y is also true initially when entering the

location. This is a prototypical scenario where local verification results also need to

be combined together in order to verify the whole hybrid automaton.

Example 5. Consider the dynamics

ẋ1 = 2x4
1x2 + 4x2

1x3
2− 6x2

1x2, ẋ2 =−4x3
1x2

2− 2x1x4
2 + 6x1x2

2

Using differential invariants it is easy to show that x4
1x2

2 + x2
1x4

2−3x2
1x2

2 +1≤ c is an

invariant of this dynamics, as illustrated in Fig. 14. The justification again follows

by simple symbolic computation as in Example 4:

∇ẋ1=2x4
1x2+4x2

1x3
2−6x2

1x2,ẋ2=−4x3
1x2

2−2x1x4
2+6x1x2

2
(x4

1x2
2 + x2

1x4
2− 3x2

1x2
2 + 1≤ c)

≡
∂ (x4

1x2
2 + x2

1x4
2− 3x2

1x2
2 + 1)

∂x1

(2x4
1x2 + 4x2

1x3
2− 6x2

1x2)

+
∂ (x4

1x2
2 + x2

1x4
2− 3x2

1x2
2 + 1)

∂x2

(−4x3
1x2

2− 2x1x4
2 + 6x1x2

2)≤ 0

which simplifies to true.

Differential invariants work somewhat like loop invariants but for differential

equations instead of loops. When checking a loop invariant F , we can assume it

holds before the loop in the induction step. It thus looks as if we should be able to

assume F when proving the induction step Case 2 of Definition 14 and prove
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Fig. 14 Example of a differ-

ential invariant indicated by

the thick boundary
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Inv∧F → ∇ẋ= f (x)F (18)

instead. Or, better, yet, only check the condition on the boundary of the domain like

for barrier certificates. Neither of those would be sound, however, according to the

following counterexamples from [136, 148]:

Example 6. When using condition (18), it looks as if x2 ≤ 0 were an invariant of the

differential equation ẋ = 1, because condition (18) succeeds as follows:

(x2 ≤ 0→ ∇ẋ=1x2 ≤ 0) ≡ (x2 ≤ 0→
∂x2

∂x
1≤ 0) ≡ (x2 ≤ 0→ 2x≤ 0)

This, however, is counterfactual, because the system ẋ = 1 will, of course, leave

region x2 ≤ 0. Thus, the condition (18) is unsound. The same example shows that

checking on the boundary of F is unsound in general. We refer to the original work

[136] for a discussion of the conditions under which stronger assumptions can be

assumed without losing soundness.

A further elaboration of those phenomena as well as an identification of the con-

ditions under which such extra assumptions would be sound can be found in the

literature [144, 142].

It turns out that some properties cannot be verified using differential invariants

alone but that additional verification techniques are needed [144]. Differential sat-

uration (repeated application of differential cuts [136, 144]) has been introduced

together with differential invariants in 2008 [136] as a sound alternative that can be

used to add conditions iteratively without compromising soundness.

Theorem 8 (Differential saturation [136, 144]). Assume that F is a continuous

invariant (e.g., a differential invariant) of Init→ [ẋ = f (x)&Inv]Safe, then

Init→ [ẋ = f (x)&Inv]Safe iff Init→ [ẋ = f (x)&Inv∧F]Safe
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An evolution domain constraint Inv (also confusingly referred to as invariant of a

location) is an entirely different entity than an invariant property F of a system. An

automaton model assumes or prescribes that the system dynamics can only be fol-

lowed along traces that do not leave Inv, because the system will stop all executions

that leave Inv. In contrast, a differential invariant proves that the system will never

leave F whether it wants to or not. Nevertheless, Theorem 8 gives a sound way

of translating a proved differential invariant into a prescriptive evolution domain

constraint. Theorem 8 can be used to strengthen the evolution domain constraints

to subregions, which then become available for subsequent verification in a sound

way. The differential cut principle underlying Theorem 8 is particularly powerful

when used repeatedly until saturation [136, 148]. That is, verification with differen-

tial invariants often proceeds in stages, where a number of formulas F are verified

to be invariants and then used to constrain the evolution of the system using the

right-hand side of Theorem 8. This process repeats until all unsafe states have been

verified to be removable from the state space and so verification becomes trivial.

Repeating this process in a fixpoint loop has been shown to work successfully in

practice [148].

Differential invariants are computationally attractive concepts, because their in-

duction start and induction step are just polynomial constraints, which are formulas

of first-order real arithmetic, and are thus decidable by quantifier elimination in

real-closed fields [49, 166, 50]. Also the check whether a differential invariant F

is sufficiently strong to imply a polynomial safety constraint Safe is decidable. The

steps needed to compute the induction step of a differential invariant are simple

algebraic computations that can be automated easily.

Differential invariants are always sound. That is, every property that can be veri-

fied using a differential invariance is correct. The converse question is that of com-

pleteness, whether all relevant properties can be verified. It turns out that differential

invariants alone are not complete.

Example 7. x > 0→ [ẋ =−x&true]x > 0 is valid, but x > 0 is not a differential in-

variant of ẋ =−x, not a barrier certificate, and does not qualify as an equational

template either.

More generally, it can be shown that there are properties like Example 7 that are

true but cannot be verified [144], except when using an additional verification tech-

nique known as differential auxiliaries (alias differential ghosts) that adds additional

variables and additional dynamics for verification purposes [144]. Thus, differential

auxiliaries are a fundamental extension that is required for verification.

Search procedures for differential invariants include degree-bounded enumera-

tion and fixed point loops [148]. For completeness guarantees and numerous prov-

ability relationships on classes of differential invariants, see [141, 144]. The case

of equational differential invariants is elaborated in [142], in which case differential

invariants are a necessary and sufficient criterion for invariant functions according

to a corresponding result by Lie.
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Fig. 15 Example of a ver-

ification loop for a hybrid

automaton
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ẋ = θ3

ẋ = θ4
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Theorem 9 (Invariant function characterization). A (polynomial) function p is

an invariant function of ẋ = f (x), i.e. the value of p along all solutions is constant,

iff p = 0 is a differential invariant of ẋ = f (x).

A corresponding necessary and sufficient characterization of all algebraic invariant

equations of algebraic differential equations is possible with a higher-order gener-

alization of equational differential invariants called differential radical invariants

[73].

For hybrid systems, differential invariants are used by allowing separate invari-

ants for the respective locations of the hybrid automaton. Consider the hybrid au-

tomaton in Fig. 15 and, for the moment, suppose that there are no discrete jumps,

i.e., the reset relations are the identity relation. Then, we need to show that starting

in F1 for dynamics ẋ = θ1 will always stay in the region F2. In addition, we need to

show that, when starting in F2 the dynamics ẋ = θ2 will always stay in the region

F3, and so on. That is, in general we need to show that, when starting in Fi, the dy-

namics ẋ = θi will always stay in the region F(i+1)%5. In the presence of non-trivial

discrete jump relations, we also need to show that those jump relations preserve the

respective invariant. That means, we need to show that the jump relation (includ-

ing its guard) will always transform every state within the invariant region Fi of its

source into the invariant region F(i+1)%5 of its target. Finally, we only know that the

reachable states of the hybrid automaton are contained in the respective invariant re-

gions Fi if the automaton also starts in the required invariant region F0 of the initial

location. That is, we need to check that the initial state is contained in F0.

To make this principle concrete, consider a flyable roundabout maneuver for air

traffic control [149], which is a variation of roundabouts that have been proposed

a decade before [175]. Flyable roundabouts follow a hybrid automaton similar to

Fig. 15, but with locations that correspond to the various phases of the roundabout

as depicted schematically in Fig. 16. The aircraft are initially in free flight (free),

then, when a conflict arises, agree on a compatible roundabout collision avoidance

maneuver (agree), approach the roundabout with an entry procedure (entry), follow

the roundabout (circ), and then leave the roundabout (exit), until they are far enough

away to enter free flight again. Such roundabout collision avoidance maneuvers for

aircraft can be verified using differential invariants, see elsewhere [149] for details.
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Fig. 16 Phases of flyable roundabout maneuver and protocol cycle
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DIΩ : properties verifiable using differential invariants built with operators from Ω

Fig. 17 Differential invariance chart: identifies how classes of differential invariants relate to each

other, where the operators in the differential invariants are restricted as indicated in subscript Ω

For an investigation of the theory of differential invariants, we refer to [136, 144,

142, 143, 73]. That line of research studies the theoretical and provability proper-

ties of differential invariants. It identifies a dozen relations either equating or sep-

arating the verification power of various classes of differential invariants (Fig. 17

indicates strict inclusion, equivalence, and incomparability of verification power,

respectively). These relations further imply that the inclusion of Boolean operators

that differential invariants support makes it possible to verify more systems com-

pared to the single polynomial inequalities of barrier certificates or the single poly-

nomial equations of equational templates [144]. The subclass of systems that have

equation systems as invariants, however, already have a single equational invariant

[144]. Differential cuts, differential saturation, and differential auxiliaries have been

identified as fundamental extensions [136, 144]. The surprisingly close relationship

of differential invariants to classical discrete invariants has been explored in the lit-

erature [141]. The relationship of differential invariants to Lie’s seminal work, a

differential operator view, and partial differential equations has been investigated

along with a technique called inverse characteristic method for generating differ-

ential invariants [142]. The generalization of differential radical invariants can be

generated efficiently using symbolic linear algebra [73].

For a generalization of differential invariants to systems with disturbances and

differential-algebraic equations, we refer to the literature [136, 137]. Differential in-
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variants can be generalized to the case of quantified first-order formulas and to dis-

tributed hybrid systems [138]. The approach extends to a relatively complete logic

for hybrid systems [135, 136, 137, 141, 143] and to a relatively complete logic for

distributed hybrid systems [140]. Generalizations to reachability and progress con-

ditions can be found elsewhere [136]. Generalizations to stochastic hybrid systems

with stochastic differential equations have been proposed [139].

7 Verification Tools

Despite the undecidability of the general case, the safety verification problem has

been attacked algorithmically: many of the classical tools (a.o. HYTECH [89],

CheckMate [45], D/DT [19]) and many of the more recent tools (PHAVER [67])

use a symbolic analysis of the hybrid automaton with a forward and/or backward

approach: starting from the initial (resp. unsafe) states, iterate the Post operator

(resp. Pre) until a fixed point is reached and then check emptiness of the intersec-

tion with the unsafe (resp. initial) states. By Theorem 2, those procedures are not

guaranteed to terminate in general. As discussed in Sect. 4, a major issue is scal-

ability, as the computational cost increases sharply with the number of continuous

variables. Performance is achieved by overapproximating the Post operator, and

overapproximation can also be used to force termination of the fixed point proce-

dure. The challenge is to find methods that scale and are still accurate enough to

show safety.

We discuss a selection of hybrid systems verification tools representing differ-

ent classes of approaches that we survey here. A complete overview of all tools is

beyond the scope of this article. We focus on a subset of the verification tools for

which a dedicated tool paper and at least some documentation is available. A more

complete collection of tools can be found on the Web8.

HSolver: Interval Constraint Propagation

HSolver9 [158] is an open-source software package for the formal verification of

safety properties of continuous-time hybrid systems. It allows hybrid systems with

non-linear ordinary differential equations and non-linear jumps assuming a global

compact domain restriction on all variables. Even though HSolver is based on fast

machine-precision floating point arithmetic, it uses sound rounding, and hence the

correctness of its results cannot be hampered by round-off errors. HSolver not

only verifies (unbounded horizon) reachability properties of hybrid systems, but—

in addition—it also computes abstractions of the input system. So, even for input

systems that are unsafe, or for which exhaustive formal verification is too difficult,

8 http://wiki.grasp.upenn.edu/
9 http://hsolver.sourceforge.net/
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it will compute abstractions that can be used by other tools. For example, the ab-

stractions could be used for guiding search for error trajectories of unsafe systems.

HSolver is not optimized for special classes of hybrid systems (e.g., systems such

as linear hybrid automata that have very simple continuous dynamics). Moreover it

does not yet provide mature support for finding counter-examples for unsafe input

systems. The method used by HSolver is abstraction refinement based on interval

constraint propagation [158], which incrementally refines an abstraction of the input

system. Special care is taken to reflect as much information as possible into the

abstraction without increasing its size.

HyTech: The HYbrid TECHnology Tool

HyTech10 [89] was the first tool for reachability analysis of PCDA (Linear Hybrid

Automata). The system is specified as a product of automata that synchronize on

transitions that share the same label. The tool has a simple command language simi-

lar to a basic imperative language, allowing the user to program his own exploration

algorithms. The basic data type represents union of polyhedra associated to each lo-

cation of the product automaton. Operations such as Boolean operations, existential

quantification, emptiness test, and reachability computation (using the Post opera-

tion) are provided. Error traces (counter examples) can be produced in combination

with reachability analysis.

HyTech uses polyhedra with the double description method, which combines

constraint and generator representations. The post operators are those described in

Sect. 4.2 and implemented with exact arithmetic. HyTech can be used for parametric

analysis by viewing parameters as variables with first derivative equal to zero. For

instance, existential quantification on the reachable states can be used to extract a

constraint on the parameters such that a given region is reachable. HyTech has been

used to model check an audio control protocol [99] and a steam boiler [98]. A main

limitation of HyTech lies in its use of standard integer data types, which quickly

leads to integer overflow.

KeYmaera: Logic & Differential Invariants for Compositional Verification

KeYmaera11 [135, 136, 137, 141, 150] is a hybrid verification tool for hybrid sys-

tems that combines deductive, real algebraic, and computer algebraic prover tech-

nologies. It is an automated and interactive theorem prover for a natural specifi-

cation and verification logic for hybrid systems. With this, the verification princi-

ple behind KeYmaera is fundamentally different and complementary to tools like

HyTech [89], PHAVer [67], and SpaceEx [68]. KeYmaera supports differential dy-

namic logic (dL) [135, 137, 141], which is a real-valued first-order dynamic logic

10 http://embedded.eecs.berkeley.edu/research/hytech/
11 http://symbolaris.com/info/KeYmaera.html
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for hybrid programs [135, 137, 141], a program notation for hybrid systems. KeY-

maera also supports hybrid systems with nonlinear discrete jumps, nonlinear differ-

ential equations, differential-algebraic equations, differential inequalities, and sys-

tems with nondeterministic discrete or continuous input.

For automation, KeYmaera implements a number of automatic proof strategies

that decompose the hybrid system symbolically and prove the full system by proving

properties of its parts [137]. This compositional verification principle helps scale

up verification, because KeYmaera verifies large systems by verifying properties

of subsystems (also see assume guarantee reasoning, 13). KeYmaera implements

fixedpoint procedures [148] that compute differential invariants and invariants in

fixedpoint loops, somewhat like classical model checkers compute reachable sets

in fixedpoint loops. KeYmaera is typically more suitable for verifying parametric

hybrid systems than systems with a single numerical state, where simulation is more

appropriate. KeYmaera has been used successfully for verifying case studies in train

control [151], car control [114, 115], air traffic management [149], mobile robotics

[130] and surgical robotics [104]. The KeYmaera approach is described in a book

about Logical Analysis of Hybrid Systems [137]. A comprehensive introduction

is provided in a textbook on the Logical Foundations of Cyber-Physical Systems

[146]. This textbook also explains how the successor tool KeYmaera X12 [72] can

achieve the same from a minimal soundness-critical core [145].

PHAVer: Polyhedral Hybrid Automaton Verifyer

PHAVer13 [67] follows the same basic principles as HyTech. PHAVer is a formal

verification tool for computing reachability and simulation relations of PCDA (Lin-

ear Hybrid Automata) from Sect. 4.2.

PHAVer uses standard operations on polyhedra for the reachability computation

over an infinite time horizon (similar to those used in HyTech), and the algorithm

for computing simulation relations is a straightforward extension of these. Using

unbounded integer arithmetic, the computations are exact and formally sound. In

addition to PCDA reachability, PHAVer can overapproximate piecewise affine dy-

namics on the fly, computing an overapproximation of the reachable states that is

invariant (all trajectories that start within the set stay within the set). While PCDA

are undecidable, PHAVer provides formally sound and precise overapproximation

and widening operators that can force termination at the cost of reduced precision.

These operators also simplify the computed continuous sets and dynamics of the

system, and may result in a considerable speed-up without much loss in precision.

The checking of abstraction and equivalence with simulation relations can be ap-

plied compositionally, and a sound non-circular assume-guarantee rule is imple-

mented [66]. However, since the required exact computations on polyhedra do not

scale well, this approach is limited to very small systems.

12 http://keymaeraX.org/
13 http://www-verimag.imag.fr/˜frehse/phaver_web/index.html
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With its exact computations and controllable overapproximations, PHAVer is

suited for verifying formally stringent properties on small systems with simple dy-

namics, such as communication protocols with drifting clocks or buffer networks.

PHAVer’s disadvantage is that the employed polyhedra computations are generally

exponential in the number of variables, so that scalability is limited. PHAVer has

been used to verify oscillation properties of a voltage controlled oscillator circuit

with 3 state variables [70], and various academic benchmarks with simple dynamics

and up to 14 continuous variables. Since 2011, PHAVer is part of the SpaceEx tool

platform [68].

SpaceEx: State Space Explorer

SpaceEx14 [68] is a tool platform for verifying hybrid systems. It can handle hybrid

automata whose continuous and jump dynamics are piecewise affine with nondeter-

ministic inputs, i.e., PWA from Sect. 4.3. Nondeterministic inputs are particularly

useful for modeling the approximation error when nonlinear systems are brought to

piecewise affine form. SpaceEx comes with a compositional modeling language. It

allows one to specify complex systems in a modular fashion as a network of inter-

acting hybrid automata with templates and nesting. In the SpaceEx model editor,

components are connected in block diagrams known from control theory, and the

evolution of continuous variables is specified by hybrid automata with differential

algebraic equations and inequalities.

Several different algorithms are implemented on the SpaceEx platform, including

an exact algorithm for PCDA and a simulator that can handle nonlinear dynamics.

The main verification algorithms, called LGG [68] and STC [69], combine explicit

set representations (polyhedra), implicit set representations (support functions) and

linear programming to achieve high scalability while maintaining high accuracy.

The reachable states are overapproximated in the form of template polyhedra, which

are polyhedra whose facets are oriented according to a user-provided set of template

directions. The algorithms use adaptive time steps to ensure that the approximation

error in each template direction remains below a given value. Empirical measure-

ments indicate that the complexity of the image computations is linear in the number

of variables, quadratic in the number of template directions, and linear in the number

of time-discretization steps.

The accuracy of the overapproximation can be increased arbitrarily by choosing

smaller time steps and adding more template directions. To attain a given approx-

imation error (in the Hausdorff sense), the number of template directions is worst-

case exponential. In case studies, the developers of SpaceEx observe that a linear

number of user-specified directions, possibly augmented by a small set of critical

directions, often suffices. The LGG and STC algorithms use floating-point compu-

tations that do not formally guarantee soundness. SpaceEx has been used to verify

continuous and hybrid systems with more than 100 continuous variables.

14 http://spaceex.imag.fr/
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ToolboxLS: Level Set Methods

Level set methods are a class of algorithms designed for approximating the solu-

tion of the Hamilton-Jacobi partial differential equation (PDE) [127], which arises

in many fields including optimal control, differential games, and dynamic implicit

surfaces. In particular, dynamic implicit surfaces can be used to compute backward

reachable sets and tubes for nonlinear, nondeterministic, continuous dynamic sys-

tems with control and/or disturbance inputs; in other words, inputs and parameters to

the model can be treated in a worst case and/or best case fashion. The strengths and

weaknesses of the Hamilton-Jacobi PDE formulation of reachability are very sim-

ilar to those of viability theory: it can treat very general dynamics with adversarial

inputs and can represent very general sets, but the known computational algorithms

require resources that grow exponentially with the number of dimensions (number

of variables); for example, in ToolboxLS15 the level set algorithms run on a Carte-

sian grid of the state space. The ToolboxLS algorithms also do not guarantee the

sign of computational errors, but they deliver higher accuracy for a given resolution

than that available from typical sound alternatives.

Because ToolboxLS [128] is designed for dynamic implicit surfaces rather than

specifically for reachability, it does not include a specialized verification interface;

however, it has a 140 page user manual documenting the software and over twenty

complete examples including three reachable set computations. It has been used pri-

marily for reachability of systems with two to four continuous dimensions, including

collision avoidance, quadrotor flips, aerial refueling, automated landing, and glide-

path recapture.
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73. Khalil Ghorbal and André Platzer. Characterizing algebraic invariants by differential radical
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104. Yanni Kouskoulas, David W. Renshaw, André Platzer, and Peter Kazanzides. Certifying the

safe design of a virtual fixture control algorithm for a surgical robot. In Calin Belta and

Franjo Ivancic, editors, HSCC, pages 263–272. ACM, 2013.
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141. André Platzer. The complete proof theory of hybrid systems. In LICS [1], pages 541–550.
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