19: Verified Models & Verified Runtime Validation Logical Foundations of Cyber-Physical Systems

André Platzer

Karlsruhe Institute of Technology Department of Informatics

Computer Science Department Carnegie Mellon University

- Learning Objectives
- 2 Fundamental Challenges with Inevitable Models
- 3 Runtime Monitors
- Model Compliance
- Provably Correct Monitor Synthesis
 - Logical State Relations
 - Model Monitors
 - Correct-by-Construction Synthesis
 - Controller Monitors
 - Prediction Monitors
- 6 Summary

- Learning Objectives
- 2 Fundamental Challenges with Inevitable Models
- 3 Runtime Monitors
- Model Compliance
- 6 Provably Correct Monitor Synthesis
 - Logical State Relations
 - Model Monitors
 - Correct-by-Construction Synthesis
 - Controller Monitors
 - Prediction Monitors
- 6 Summary

Learning Objectives

Verified Models & Verified Runtime Validation

proof in a model vs. truth in reality tracing assumptions turning provers upside down correct-by-construction dynamic contracts proofs for CPS implementations

models vs. reality inevitable differences model compliance architectural design

tame CPS complexity runtime validation online monitor prediction vs. run

- Fundamental Challenges with Inevitable Models

- - Logical State Relations
 - Model Monitors

 - Controller Monitors
 - Prediction Monitors

Proposition (System Proved Safe)

 $A \rightarrow [(ctrl; plant)^*]S$

S Right answer to wrong question.

Right answer to wrong question.

- Right answer to wrong question.
- A Proof, so can't forget condition. Except too picky to turn on.

- Right answer to wrong question.
- A Proof, so can't forget condition. Except too picky to turn on.

- Right answer to wrong question.
- A Proof, so can't forget condition. Except too picky to turn on.
- ctrl Control model vs. controller implementation

- S Right answer to wrong question.
- A Proof, so can't forget condition. Except too picky to turn on.
- ctrl Control model vs. controller implementation Abstraction helps scale!

- Right answer to wrong question.
- A Proof, so can't forget condition. Except too picky to turn on.
- ctrl Control model vs. controller implementation Abstraction helps scale!

- Right answer to wrong question.
- A Proof, so can't forget condition. Except too picky to turn on.
- ctrl Control model vs. controller implementation Abstraction helps scale!
- plant Plant model vs. real physics

Proposition (System Proved Safe)

$$A \rightarrow [(ctrl; plant)^*]S$$

All models are wrong but some are useful. G. Box

- Right answer to wrong question.
- A Proof, so can't forget condition. Except too picky to turn on.
- ctrl Control model vs. controller implementation Abstraction helps scale!
- plant Plant model vs. real physics Models are inevitable!

Proposition (System Proved Safe)

 $A \rightarrow [(ctrl; plant)^*]S$

Models Predictions need models!

- Right answer to wrong question.
- A Proof, so can't forget condition. Except too picky to turn on.
- ctrl Control model vs. controller implementation Abstraction helps scale!
- plant Plant model vs. real physics Models are inevitable!

All models are wrong but some are useful. G. Box

 $A \rightarrow [(ctrl; plant)^*]S$

Challenge

Verification results about models only apply if CPS fits to the model

 $A \rightarrow [(ctrl; plant)^*]S$

Challenge

Verification results about models only apply if CPS fits to the model

→ Verifiably correct runtime model validation

Outline

- **Runtime Monitors**
- - Logical State Relations
 - Model Monitors

 - Controller Monitors
 - Prediction Monitors

Proposition (System Proved Safe)

 $A \rightarrow [(ctrl; plant)^*]S$

A Monitor easy if measurable. Veto turns CPS off.

A Monitor easy if measurable. Veto turns CPS off.

- Monitor easy if measurable. Veto turns CPS off.
- Too late to monitor. CPS already unsafe!

Proposition (System Proved Safe) $A \rightarrow [(\textit{ctrl}; \textit{plant})^*]S$ Monitor

- A Monitor easy if measurable. Veto turns CPS off.
- S Too late to monitor. CPS already unsafe!

- A Monitor easy if measurable. Veto turns CPS off.
- Too late to monitor. CPS already unsafe!
- ctr/ Monitor each control decision. Veto overrides decision.

Proposition (System Proved Safe) $A \rightarrow [(ctrl; plant)^*]S$ Monitor

- A Monitor easy if measurable. Veto turns CPS off.
- Too late to monitor. CPS already unsafe!
- ctr/ Monitor each control decision. Veto overrides decision.

- A Monitor easy if measurable. Veto turns CPS off.
- Too late to monitor. CPS already unsafe!
- ctr/ Monitor each control decision. Veto overrides decision.
- *plant* No source code for physics. Observe and compare.

- A Monitor easy if measurable. Veto turns CPS off.
- Too late to monitor. CPS already unsafe!
- ctr/ Monitor each control decision. Veto overrides decision.
- *plant* No source code for physics. Observe and compare. Veto triggers best fallback.

Proposition (System Proved Safe)

 $A \rightarrow [(ctrl; plant)^*]S$

Monitors must be correct

- A Monitor easy if measurable. Veto turns CPS off.
- S Too late to monitor. CPS already unsafe!
- ctr/ Monitor each control decision. Veto overrides decision.
- *plant* No source code for physics. Observe and compare. Veto triggers best fallback.

Proposition (System Proved Safe)

 $A \rightarrow [(ctrl; plant)^*]S$

Monitors must be correct

Monitor Verified runtime validation!

- A Monitor easy if measurable. Veto turns CPS off.
- S Too late to monitor. CPS already unsafe!
- ctr/ Monitor each control decision. Veto overrides decision.
- *plant* No source code for physics. Observe and compare. Veto triggers best fallback.

ModelPlex: Verified Runtime Validation of Models

ModelPlex ensures that verification results about models apply to CPS implementations

ModelPlex: Verified Runtime Validation of Models

ModelPlex ensures that verification results about models apply to CPS implementations

Insights

- Verification results about models transfer to CPS when validating model compliance
- Compliance with model is characterizable in logic
- Compliance formula transformed by proof to monitor
- Correct-by-construction verified runtime model validation

model adequate?

control safe?

until next cycle?

→ Outline

- Learning Objectives
- 2 Fundamental Challenges with Inevitable Models
- 3 Runtime Monitors
- Model Compliance
- Provably Correct Monitor Synthesis
 - Logical State Relations
 - Model Monitors
 - Correct-by-Construction Synthesis
 - Controller Monitors
 - Prediction Monitors
- Summary

Outline

Model Compliance

Is present CPS behavior included in the behavior of the model?

- CPS observed through sensors
- Model describes all possible behavior of CPS between states

Detect non-compliance ASAP to initiate fallback actions while still safe

Model Compliance

Is present CPS behavior included in the behavior of the model?

- CPS observed through sensors
- Model describes all possible behavior of CPS between states

Detect non-compliance ASAP to initiate fallback actions while still safe

Model Compliance

- CPS observed through sensors

Model

Challenge

Model describes behavior. but at runtime we get sampled observations

→ Transform model into observation-monitor

Detect non-compliance ASAP to initiate fallback actions while still safe

$$0 \le x \land x = H \land v = 0 \land g > 0 \land 1 \ge c \ge 0 \rightarrow$$

$$[(\{x'=v,v'=-g\&x\geq 0\};(?x=0;v:=-cv\cup?x\neq 0))^*](0\leq x\wedge x\leq H)$$

$$0 \le x \land x = H \land v = 0 \land g > 0 \land 1 \ge c \ge 0 \rightarrow$$

$$[(\{x'=v,v'=-g\&x\geq 0\};(?x=0;v:=-cv\cup?x\neq 0))^*](0\leq x\wedge x\leq H)$$

Example (Controller Monitor)

control changes (x, v) to (x^+, v^+)

$$0 \le x \land x = H \land v = 0 \land g > 0 \land 1 \ge c \ge 0 \rightarrow$$

$$[(\{x'=v,v'=-g\&x\geq 0\};(?x=0;v:=-cv\cup?x\neq 0))^*](0\leq x\wedge x\leq H)$$

Example (Controller Monitor)

$$(x = 0 \land v^{+} = -cv \lor x > 0 \land v^{+} = v) \land x^{+} = x$$

control changes (x, v) to (x^+, v^+)

$$0 \le x \land x = H \land v = 0 \land g > 0 \land 1 \ge c \ge 0 \rightarrow$$

$$[(\{x'=v,v'=-g\&x\ge0\};(?x=0;v:=-cv\cup?x\ne0))^*](0\le x\land x\le H)$$

Example (Controller Monitor)

$$(x = 0 \land v^{+} = -cv \lor x > 0 \land v^{+} = v) \land x^{+} = x$$

test+domain

$$0 \le x \land x = H \land v = 0 \land g > 0 \land 1 \ge c \ge 0 \rightarrow$$

$$[(\{x'=v,v'=-g\&x\geq 0\};(?x=0;v:=-cv\cup?x\neq 0))^*](0\leq x\wedge x\leq H)$$

Example (Controller Monitor)

$$(x = 0 \land v^{+} = -cv \lor x > 0 \land v^{+} = v) \land x^{+} = x$$

$$0 \le x \land x = H \land v = 0 \land g > 0 \land 1 \ge c \ge 0 \rightarrow$$

$$[(\{x'=v,v'=-g\&x\geq 0\};(?x=0;v:=-cv\cup?x\neq 0))^*](0\leq x\wedge x\leq H)$$

Example (Controller Monitor)

$$(x = 0 \land v^{+} = -cv \lor x > 0 \land v^{+} = v) \land x^{+} = x$$

$$(v^+ = v - gt \wedge x^+ = x + vt - \frac{g}{2}t^2)$$

$$0 \le x \land x = H \land v = 0 \land g > 0 \land 1 \ge c \ge 0 \rightarrow$$

$$[(\{x'=v,v'=-g\&x\geq 0\};(?x=0;v:=-cv\cup?x\neq 0))^*](0\leq x\wedge x\leq H)$$

Example (Controller Monitor)

$$(x = 0 \land v^{+} = -cv \lor x > 0 \land v^{+} = v) \land x^{+} = x$$

$$2g(x^+ - x) = v^2 - (v^+)^2$$

from invariant
$$2gx = 2gH - v^2$$

$$0 \le x \land x = H \land v = 0 \land g > 0 \land 1 \ge c \ge 0 \rightarrow$$

$$[(\{x'=v,v'=-g\&x\ge0\};(?x=0;v:=-cv\cup?x\ne0))^*](0\le x\land x\le H)$$

Example (Controller Monitor)

$$(x = 0 \land v^{+} = -cv \lor x > 0 \land v^{+} = v) \land x^{+} = x$$

Example (Plant Monitor)

$$2g(x^+ - x) = v^2 - (v^+)^2 \wedge v^+ \le v$$

directionality: always falling

$$0 \le x \land x = H \land v = 0 \land g > 0 \land 1 \ge c \ge 0 \rightarrow$$

$$[(\{x'=v,v'=-g\&x\ge0\};(?x=0;v:=-cv\cup?x\ne0))^*](0\le x\land x\le H)$$

Example (Controller Monitor)

$$(x = 0 \land v^{+} = -cv \lor x > 0 \land v^{+} = v) \land x^{+} = x$$

$$2g(x^+ - x) = v^2 - (v^+)^2 \wedge v^+ \le v \wedge x \ge 0 \wedge x^+ \ge 0$$

$$0 \le x \land x = H \land v = 0 \land g > 0 \land 1 \ge c \ge 0 \rightarrow$$

$$[(\{x'=v,v'=-g\&x\geq 0\};(?x=0;v:=-cv\cup?x\neq 0))^*](0\leq x\wedge x\leq H)$$

Example (Controller Monitor)

$$(x = 0 \land v^{+} = -cv \lor x > 0 \land v^{+} = v) \land x^{+} = x$$

Example (Plant Monitor)

$$2g(x^+ - x) = v^2 - (v^+)^2 \wedge v^+ \le v \wedge x \ge 0 \wedge x^+ \ge 0$$

$$0 \le x \land x = H \land v = 0 \land g > 0 \land 1 \ge c \ge 0 \rightarrow$$

$$[\big(\{x'=v,v'=-g\,\&\,x\geq 0\};\big(?x=0;v:=-cv\,\cup\,?x\neq 0\big)\big)^*]\big(0\leq x\wedge x\leq H\big)$$

Example (Controller Monitor)

$$(x = 0 \land v^{+} = -cv \lor x > 0 \land v^{+} = v) \land x^{+} = x$$

Example (Plant Monitor)

$$2g(x^+ - x) = v^2 - (v^+)^2 \wedge v^+ \le v \wedge x \ge 0 \wedge x^+ \ge 0$$

$$x^+ > 0 \land 2g(x^+ - x) = v^2 - (v^+)^2 \land v^+ \le v \land x \ge 0$$

$$\forall x^{+} = 0 \land c^{2}2g(x^{+} - x) = c^{2}v^{2} - (v^{+})^{2} \land v^{+} \ge -cv \land x \ge 0$$

$$0 < x \land x = H \land v = 0 \land q > 0 \land 1 > c > 0 \rightarrow$$

$$[(\{x'=v,v'=-g\&x\geq 0\};(?x=0;v:=-cv\cup?x\neq 0))^*](0\leq x\wedge x\leq H)$$

Example (Controller Monitor)

$$(x = 0 \wedge v^+ = -cv \vee x > 0 \wedge v^+ = v) \wedge x^+ = x$$

Example (Plant Monitor)

$$2g(x^+ - x) = v^2 - (v^+)^2 \wedge v^+ \le v \wedge x \ge 0 \wedge x^+ \ge 0$$

substitute in

$$x^+ > 0 \land 2g(x^+ - x) = v^2 - (v^+)^2 \land v^+ \le v \land x \ge 0$$

$$\forall x^{+} = 0 \land c^{2}2g(x^{+} - x) = c^{2}v^{2} - (v^{+})^{2} \land v^{+} \ge -cv \land x \ge 0$$

$$0 \le x \land x = H \land v = 0 \land g > 0 \land 1 \ge c \ge 0 \rightarrow$$

$$[(\{x'=v,v'=-g\&x\geq 0\};(?x=0;v:=-cv\cup?x\neq 0))^*](0\leq x\wedge x\leq H)$$

Example (Controller Monitor)

$$(x = 0 \land v^{+} = -cv \lor x > 0 \land v^{+} = v) \land x^{+} = x$$

Example (Plant Monitor)

$$2g(x^+ - x) = v^2 - (v^+)^2 \wedge v^+ \le v \wedge x \ge 0 \wedge x^+ \ge 0$$

substitute in

$$x^+ > 0 \land 2g(x^+ - x) = v^2 - (v^+)^2 \land v^+ \le v \land x \ge 0$$

$$\forall x^{+} = 0 \land c^{2}2g(x^{+} - x) = c^{2}v^{2} - (v^{+})^{2} \land v^{+} \ge -cv \land x \ge 0$$

$$0 \le x \land x = H \land v = 0 \land g > 0 \land 1 \ge c \ge 0 \rightarrow$$

$$[(\{x'=v,v'=-g\,\&\,x\geq 0\};(?x=0;v:=-cv\,\cup\,?x\neq 0))^*](0\leq x\,\wedge\,x\leq H)$$

Example (Controller Monitor)

$$(x = 0 \wedge v^+ = -cv \vee x > 0 \wedge v^+ = v) \wedge x^+ = x$$

Example (Plant Monitor)

$$2g(x^+ - x) = v^2 - (v^+)^2 \wedge v^+ \le v \wedge x \ge 0 \wedge x^+ \ge 0$$

substitute in

$$x^+ > 0 \land 2g(x^+ - x) = v^2 - (v^+)^2 \land v^+ \le v \land x \ge 0$$

$$\forall x^{+} = 0 \land c^{2}2g(x^{+} - x) = c^{2}v^{2} - (v^{+})^{2} \land v^{+} \ge -cv \land x \ge 0$$

$$0 \le x \land x = H \land v = 0 \land g > 0 \land 1 \ge c \ge 0 \rightarrow$$

$$[(\{x' = v, v' = -g \& x \ge 0\}; (?x = 0; v := -cv \cup ?x \ne 0))^*](0 \le x \land x \le H)$$

Example (Controller Monitor)

$$(x = 0 \land v^{+} = -cv \lor x > 0 \land v^{+} = v) \land x^{+} = x$$

Example (Plant Monitor)

$$2g(x^+ - x) = v^2 - (v^+)^2 \wedge v^+ \le v \wedge x \ge 0 \wedge x^+ \ge 0$$

$$x^+ > 0 \land 2g(x^+ - x) = v^2 - (v^+)^2 \land v^+ \le v \land x \ge 0$$

$$\forall x^+ = 0 \land c^2 2g(x^+ - x) = c^2 v^2 - (v^+)^2 \land v^+ \ge -cv \land x \ge 0$$

Quantum's Bouncing Ball Monitors

$$0 \le x \land x = H \land v = 0 \land g > 0 \land 1 \ge c \ge 0 \rightarrow$$

$$[(\{x' = v, v' = -g \& x \ge 0\}; (?x = 0; v := -cv \cup ?x \ne 0))^*](0 \le x \land x \le H)$$

$$(x = 0]$$
 Takeaway

Monitors are subtle, in desperate need of correctness proof. What proof implies a safe system if the monitors pass?

 $2g(x^+-1)$

$$x^{+} > 0 \land 2g(x^{+} - x) = v^{2} - (v^{+})^{2} \land v^{+} \le v \land x \ge 0$$

$$\forall x^{+} = 0 \land c^{2}2g(x^{+} - x) = c^{2}v^{2} - (v^{+})^{2} \land v^{+} \ge -cv \land x \ge 0$$

Outline

- **Provably Correct Monitor Synthesis**
 - Logical State Relations
 - Model Monitors
 - Correct-by-Construction Synthesis
 - Controller Monitors
 - Prediction Monitors

When are two states linked through a run of model α ?

Semantical:

$$(\omega, v) \in \llbracket \alpha \rrbracket$$

reachability relation of lpha

Logic reduces CPS safety to runtime monitor with offline proof

↓ Lemma

Logical dL:
$$(\omega, v) \models \langle \alpha \rangle (x = x^+)$$

↑ dL proof

Arithmetical:
$$(\omega, v) \models F(x, x^+)$$

check at runtime (efficient)

dL proof $A o [lpha^*] \mathcal{S}$

dL proof $A o [lpha^*] \mathcal{S}$

dL proof $A o [lpha^*] \mathcal{S}$

dL proof $A
ightarrow [lpha^*] \mathcal{S}$

dL proof $A
ightarrow [lpha^*] \mathcal{S}$

Theorem (Model Monitor Correctness)

(FMSD'16)

System safe as long as monitor satisfied.

dL proof calculus executes models symbolically

Monitor: $F_1(x,x^+) \stackrel{\checkmark}{\vee} F_2(x,x^+)$

dL proof calculus executes models symbolically

 The subgoals that cannot be proved express all the conditions on the relations of variables imposed by the model → prove at runtime

dL proof calculus executes models symbolically

The subgoals that cannot be proved express all the conditions on the

Typical (ctrl; plant)* models can check earlier

Theorem (Controller Monitor Correctness)

(FMSD'16)

Controller safe and in plant bounds as long as monitor satisfied.

prior state
$$x$$
 ω \longrightarrow v \longrightarrow $i+1$ \longrightarrow $i+1$ \longrightarrow $Controller Monitor before actuation posterior state $x^+$$

Offline

Controller Monitor

Immediate detection of unsafe control before actuation

→ Safe execution of unverified implementations
in perfect environments

Arithmetical:

$$(\omega, v) \models F(x, x^+)$$

check at runtime (efficient)

FMSD'16

Controller safe and in plant bounds as long as monitor satisfied.

Safe despite evolution with disturbance?

Safe despite evolution with disturbance?

"Prediction is very difficult, especially if it's about the future." [Nils Bohr]

disturbance
$$t := 0$$
; $(f(x) - \delta \le x' \le f(x) + \delta, t' = 1 \& Q \land t \le \varepsilon)$

Model α

prior state x

Prediction Monitor

before actuation

posterior state x^+

within time ε

disturbance
$$t := 0$$
; $\left(f(x) - \delta \le x' \le f(x) + \delta, \ t' = 1 \& Q \land t \le \varepsilon \right)$

Model α

prior state x

Prediction Monitor before actuation posterior state x^+

states reachable within time ε

Offline

Logical dL:
$$(\omega, v) \models \langle \mathsf{ctrl} \rangle (x = x^+ \land [\mathsf{plant}] J)$$

$$\uparrow \quad \mathsf{dL} \text{ proof}$$
Arithmetical: $(\omega, v) \models F(x, x^+)$
Invariant J implies safety S
(known from safety proof)

disturbance
$$t := 0$$
; $(f(x) - \delta \le x' \le f(x) + \delta, t' = 1 \& Q \land t \le \varepsilon)$

 $\begin{array}{c|c} & \text{Model } \alpha \\ & \text{prior state } x \end{array} \qquad \begin{array}{c|c} & \text{Model } \alpha \\ & \text{ctrl} & \text{plant} \\ & \vdots \\ & \vdots \\ & & \end{array}$

Prediction Monitor with Disturbance

Detect unsafe control before actuation despite disturbance

√→ Safety in realistic environments

Offline

Logical dL:
$$(\omega, v) \models \langle \text{ctrl} \rangle (x = x^+ \land [\text{plant}]J)$$

$$\uparrow \quad \text{dL proof}$$
Arithmetical: $(\omega, v) \models F(x, x^+)$
Invariant J

(known from safety proof)

Outline

- Learning Objectives
- 2 Fundamental Challenges with Inevitable Models
- Runtime Monitors
- 4 Model Compliance
- 5 Provably Correct Monitor Synthesis
 - Logical State Relations
 - Model Monitors
 - Correct-by-Construction Synthesis
 - Controller Monitors
 - Prediction Monitors
- 6 Summary

ModelPlex ensures that proofs transfer to real CPS

- Validate model compliance
- Characterize compliance with model in logic
- Prover transforms compliance formula to executable monitor
- Provably correct runtime model validation by offline + online proof

André Platzer.

Logical Foundations of Cyber-Physical Systems.

Springer, Cham, 2018.

doi:10.1007/978-3-319-63588-0.

Stefan Mitsch and André Platzer.

ModelPlex: Verified runtime validation of verified cyber-physical system models.

Form. Methods Syst. Des., 49(1-2):33-74, 2016.

Special issue of selected papers from RV'14.

doi:10.1007/s10703-016-0241-z.

Stefan Mitsch and André Platzer.

ModelPlex: Verified runtime validation of verified cyber-physical system models.

In Borzoo Bonakdarpour and Scott A. Smolka, editors, *RV*, volume 8734 of *LNCS*, pages 199–214. Springer, 2014.

doi:10.1007/978-3-319-11164-3 17.

André Platzer.

A complete uniform substitution calculus for differential dynamic logic.

J. Autom. Reas., 59(2):219-265, 2017.

doi:10.1007/s10817-016-9385-1.