
A Short Introduction To Using KeYmaera

Yanni Kouskoulas

17 February, 2012

1 Overview

KeYmaera is a tool that mechanises a subset of differential dynamic logic.
It allows one to write hybrid programs, make logical assertions about these
programs, and then prove or disprove those assertions.

KeYmaera is built on the Key prover, which was designed to be used
to prove properties about Java programs. It also uses a number of other
solving tools, including Mathematica, to do back end manipulation of its
goals and assumptions. These solving tools, as well as the proof rules that
are implemented for differential dynamic logic, must be proved sound and
implemented correctly; the Key prover does not otherwise guarantee the
soundness of the transformations it makes. I.e. if Mathematica has a bug,
KeYmaera’s soundness may suffer.

2 Proving Using KeYmaera

Interacting with KeYmaera involves interleaving the automated proof search,
and manual application of tactics. The automated proof search starts by
clicking the “Start” button, and ends continues until it stops by itself and
asks the user for guidance, or the user stops it by clicking the stop button.
The manual application of tactics requires the user to examine the proof
state, and then, by right-clicking on proof terms or operators in the logic-
state pane, selecting an appropriate tactic to transform either the goals or
assumptions in a way that allows the proof to progress. In many cases,
manual application of a tactic to a term in the proof will bring up a dialog
box in which the user can enter further information about the specifics of the

1



tactic and how it should be applied. The primary way to guide KeYmaera
manually is to apply the “cut” proof rule, which introduces a lemma as an
assumption, after proving it using the current proof state. Other tactics allow
one to manipulate universal quantifiers and implications and other terms on
either side of the sequent.

The language in which the hybrid system is described in many situations
allows the system to automatically apply rules that decompose the system
into its consituent parts. Once the KeYmaera stops or is stopped manually,
the user can apply one or more of its tactics to nudge it in a particular direc-
tion, and then set it off again to search automatically from the modified proof
state. Stylistically, this is somewhat similar to ACL2, with the prover taking
away detailed control in order to automate most of the tedious manipulation.

3 Interacting with KeYmaera’s User Inter-

face

KeYmaera has a simple, intuitive graphical user interface that consists of
three panes, a message area across the bottom of the window, and a button
bar at the top of the window. KeYmaera represents its hybrid programs and
assertions about them in a file with the suffix .key, which borrows syntax
from the Key prover. The main use of the button bar is to load a .key file,
and to start and stop the automatic proof search. The fourth button from
the left, a green folder, will bring up a dialog box that allows you to select a
.key file to load. Once a .key file has been loaded, the theorem to be proven
is displayed in the right pane of the window (the logic-state pane, discussed
below). Pressing the “Start” button begins the automated proof search.

3.1 Proof Pane

The Proof pane has three tabs, and takes up the lower left quadrant of
the screen. The Proof tab, the Hybrid strategy tab, and the Goals tab are
all available. The Hybrid strategy tab shows KeYmaera’s different settings
that determine what back-end mathematics packages and libraries it uses for
different tasks. The Goals tab has a list of current goals to be proven.

The most important tab in this pane is the Proof tab, which displays
the proof steps, so far, with indentation showing the different cases. Some
of these proof steps are complicated tactics over which the user has limited

2



control, e.g. “ODE Solve” or “Eliminate Universal Quantifiers”, tactics that
depend on Mathematica or another back end to solve a differential equation
or manipulate a term by eliminating universal quantifiers and deciding the
truth of the goal. Other proof steps are more predictable in their outcome,
e.g. the cut tactic, that allows a user to insert a specific assumption into
the proof state. Different cases in the proof can be expanded or hidden
by clicking on the box to the left of the tactic that generated them; it will
have a [+] or [–] to indicate whether it has been expanded. Branches of the
proof whose obligations have been discharged are colored green in this view.
Branches that are yet to be done, are colored red. Clicking on a proof step
highlights that line of the proof, and then displays the proof state at that
point in the Logic State pane to the right.

3.2 Logic State Pane

The Logic State pane, on the right-hand side of the window, shows the proof
state at a single point in time. This pane displays a comma-separated set
of assumptions, followed by a token ==>, followed by a comma-separated set
of goals (logical assertions) we wish to prove. One can think of this as a
sequent, with the terms to the left of the ==> being the antecedent set, and
those following it being the succedent set of formulas. The logical assertion
to be proven in many cases also contains a hybrid program, which is also
displayed in this window. As the proof progresses, this sequent undergoes a
number of transformations to show the state of the proof at any given point
in time. When KeYmaera gets “stuck” and needs user guidance, this is the
pane that the user needs to look at to determine what obligations need to be
proved and what assumptions are available.

Using the mouse to hover over a term in the Logic State pane highlights
the term, so one can see the extent of that term according to the precedence
of operators in an expression. Thus, this functionality automatically provides
paren-matching-equivalent functionality.

Right clicking on an operator or term in this window opens a pop-up
menu that has the various tactics available for manipulating that term. If
one is selected and more information is needed, a dialog box opens in which
the appropriate information can be entered. In any case, when a tactic is
manually chosen to manipulate the proof state, its name is entered into the
list of steps in the Logic State pane, with a small rightward pointing hand
to indicate that it was chosen manually. When the user is done manually

3



choosing tactics, he or she can press start to continue the automated proof
search from the current state.

3.3 Task Pane

The Task pane has a list of different theorems that are to be proven. Clicking
on a file name switches the other two panes to the state of that proof and
its current goal. Right clicking on a task in the Task pane pops up a menu
that allows you to abandon the task, removing it from the task list.

4 Tactics

This section contains a sampling of commonly used tactics, so the reader
can get a feeling of how they operate and how they are named. The tactics
KeYmaera lists in the pop-up menu are context dependent; it only lists tactics
that can usefully be applied in that place, so not all tactics are available at
all times. This listing is incomplete, but gives the user a starting point to
help guide KeYmaera.

Tactic Name Initial Proof State After Tactic
induction loop Γ ` [α∗]φ Γ ` ψ

Γ ` ψ → [α]ψ
ψ ` φ

all right Γ ` ∀x,G Γ, x ` G
all left ∀x,Γ ` G Γx′

x ` G
imply right Γ ` A→ B Γ, A ` B
imply left Γ, A→ B ` G Γ ` A

Γ, B ` G
or left Γ, A ∨B ` G Γ, A ` G

Γ, B ` G
and left Γ, A ∧B ` G Γ, A,B ` G
axiom close Γ ` true
hide left Γ, A ` G Γ ` G
hide right Γ ` G,A Γ ` G
cut Γ ` G Γ, C ` G

Γ ` C
The naming scheme is intended to be descriptive of the tactic’s function:

4



the first part of the name (e.g. all, imply) refers to the outermost operator
in the term being transformed, and the second part of the name (i.e. left,
right) refers to which side of the sequent the tactic is designed to be applied.

5 Useful advice for beginning KeYmaera users

• If you manually stop KeYmaera and it is in the middle of the Eliminate
Universal Quantifiers tactic it will produce the message “An exception
occurred during strategy execution. java.lang.IllegalStateException:
Calculation aborted!” In this situation, you should help KeYmaera
along my manipulating the goal to simplify the proof state before con-
tinuing the automatic search.

• Move constraints from the precondition into the enclosing hybrid pro-
gram, because KeYmaera handles constraints in the precondition less
efficiently than assignments in the hybrid program. Too many con-
straints in the precondition, even if they are equalities, can make KeY-
maera unresponsive. This means that you should convert programs
that look like this:

\[ R a \] (

(pre&(a=0)) -> \[prog\](post))

into this

\[R a ; a := 0 \] (

(pre) -> \[prog\](post))

5


