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1 Introduction

The goal of DNA computing is to perform computations using biological components rather than traditional
electronic circuits. Molecules can combine to form larger structures if they contain complementary strands
of DNA. These structures, called assemblies, can be interpreted as the output of a program. The inherently
parallel nature of chemical reactions enables this model of computation to simultaneously explore all paths
in a nondeterministic computation tree [Adl94].

In this project, we explore an abstraction of DNA computing called the Tile Assembly Model (TAM)
[Win98], which is known to be Turing complete. The TAM models molecules as a set of square tiles that
self-assemble to tile the plane in a square lattice. A program consists of a finite set of tile types (it is assumed
that there is an unlimited number of tiles of each type available), which may be placed in any location on
the lattice, but not rotated. Once a tile has been placed in the lattice, it cannot be moved or removed. The
program begins with a single seed tile to which other tiles can bond. The program continues running until it
is not possible to add any more tiles to the assembly. The resulting assembly is called a terminal assembly.

Two tiles can bond depending on their types. A tile’s type is determined by the glue on each of its four
sides. Each glue has a particular color and integral strength. A tile may bond with another tile if their
adjacent sides have glues of the same color and strength at least 2. For example, in Figure 1a, tile b can
attach to tile a because the glue that they share has strength 2. Tile c cannot attach because its bottom
glue only has strength 1. In addition to two individual tiles bonding, a tile can bond to an existing assembly
of multiple tiles if the sum of glue strengths of all matching glues is at least 2 (see Figure 1b). Mismatched
glues do not prevent bonding; they simply do not affect the formation of new bonds. Glues may also be null;
a null glue cannot bind two tiles regardless of the strength (a null glue is equivalent to a glue of strength 0).

One way of creating a correct tile set is to simply create a specific set of glues for each position in the
desired terminal assembly. However, this requires an extremely large number of different tile types and glues,
which can be difficult to design in practice. Hence an important concern in designing tile sets is using a

(a) Tile b can attach to tile a, but tile c cannot. (b) Tile d can attach because it has two strength-1 glues.

Figure 1: Basic rules for attachment
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(a) This produces an infinite chain of tile a. (b) Either a or b can attach.

Figure 2: Some tile sets with ambiguous terminal configurations

small number of distinct types of tiles and glues. By repeating glues and tile types, we reduce the complexity
of the system, but it is no longer obvious that a given tile set produces a unique terminal assembly. For
example, the tile set depicted in Figure 2a can form an arbitrarily long chain. Furthermore, since the same
glue can occur on multiple tiles, there may be multiple options for which tile attaches to a particular location
in the assembly. For example, in Figure 2b, either tile a or tile b can attach to the empty space, producing
two different assemblies.

Given that the purpose of a tile set is to produce a unique terminal assembly, it is important to find some
way of verifying that a tile set does in fact achieve this. We consider a set of tiles to be correct if it produces
a unique terminal assembly. Our goal in this project is to develop a program that verifies the correctness
of a tile set. In particular, since tile self-assembly is inherently nondeterministic, our goal is to demonstrate
that for a given tile set and seed, all possible execution paths (sequences of sub-assemblies) yield the same
terminal assembly. We make three contributions towards this goal:

• We augment the imperative programming language to include constructs that represent the components
of the tile assembly system, and we define the semantics for these new elements of the language.

• We use this augmented language to write a program for tile assembly verification. The program is very
general and does not assume a particular tile set or glue set. We determine the semantics of the helper
functions that we define and of the program as a whole.

• We verify the correctness of the tile set for an m× n rectangle using the semantics of our program.

2 Model

We augment the imperative programming language introduced in class to include types related to the tile
assembly problem. The key component in the tile assembly problem is a tile. A tile is a 1× 1 square defined
by the glue on each of its sides. Tiles may not rotate. Each glue has a color and a strength, and two tiles
can join if the glues on their adjacent sides are of the same color and have strength at least 2. A tile may
also join a substructure if the total glue strength between the tile and matching glues on adjacent edges of
the substructure is at least 2. The tiles assemble in a grid, hence we also need a location that indicates a
tile’s position in the grid. Once a tile has been placed at a particular location, it cannot be moved, removed,
or replaced. An assembly of one or more tiles is called a structure. We represent a structure as an array of
tiles indexed by their location. For example, S(0, 0) indicates the tile located at the origin.
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We add new types to the language for tiles, glues, and locations. A location is simply an ordered pair of
x and y coordinates:

Location := (E1, E2)` E1, E2 ∈ Expr.

At each location, there may be a tile, hence one way of representing a tile is by indexing into a structure
at a particular location; a tile can be an array access S(x, y). It is possible that there is no tile at the location
(x, y), in which case the tile is represented by noTile. If there is a tile, it is represented as an ordered 4-tuple
of glues (n, s, e, w), where the first element is the glue on the top edge of the tile, the second is the glue on
the bottom edge of the tile, the third element is the glue on the right edge of the tile, and the fourth element
is the glue on the left edge of the tile. Hence our syntax for tiles is:

Tile := (n, s, e, w) | noTile | S(x, y) n, s, e, w ∈ Glue, x, y ∈ Z.

A glue is an ordered pair of integers, where the first integer indicates the glue’s color, and the second
integer indicates the glue’s strength. The glue color may be null, in which case the glue can never bind two
tiles together regardless of the strength. For ease of usage, we also allow a glue to be indicated by indexing
into a structure using a location and an integer representing the edge of the tile at that location. The syntax
for glues is thus:

Glue := (E1, E2)g | (nullGlue, E2)g | S(E3, E4, E5) Ei ∈ Expr, JE5K ∈ {0, 1, 2, 3},

Finally, we include constructs for sets of tiles and sets of glues:

TileSet := ∅ | {T} | {T} ∪ TS

GlueSet := ∅ | {G} | {G} ∪ GS.

3 Semantics

In this section, we define the semantics for the components that we added to the language. Tiles, glues, and
locations can all be specified syntactically using expressions. Since the semantic meaning of an expression
depends on the state, the semantic meanings of tiles, glues, and locations also depend on the state. Hence
the semantics for each of these constructs is a function that maps from states to some other space.

A location simply maps to a coordinate in Z2:

J·K : Location→ St→ Z2

J(E1, E2)lKν = (JE1Kν, JE2Kν)

A glue also maps to a coordinate in Z2, except that the first coordinate may also be nullGlue:

J·K : Glue→ St→ ({nullGlue} ∪ Z)× Z

J(nullGlue, E2)gKν = (nullGlue, 0)

J(E1, E2)gKν = (JE1Kν, JE2Kν)

JS(E3, E4, E5)Kν =

{
nullGlue if S(E3, E4) = noTile

ν(S)(JE3Kν, JE4Kν, JE5Kν) otherwise

Since a tile is a tuple of glues, a tile maps to (({nullGlue} ∪ Z)× Z)4, plus null for the noTile case:

J·K : Tile→ St→ (({nullGlue} ∪ Z)× Z)4 ∪ null
JnoTileKν = null

J(n, s, e, w)Kν = (JnKν, JsKν, JeKν, JwKν)

JS(E1, E2)Kν = ν(S)(JE1Kν, JE2Kν)
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TileSets and GlueSets are simply sets of their respective types:

J·K : TileSet→ St→ 2{nullGlue}∪Z)×Z)
4∪null

J∅Kν = ∅
J{T}Kν = {JTKν}
J{T} ∪ TSKν = {JTKν} ∪ JTSKν

J·K : GlueSet→ St→ 2({nullGlue}∪Z)×Z

J∅Kν = ∅
J{G}Kν = {JGKν}
J{G} ∪ GSKν = {JGKν} ∪ JGSKν

4 Tile Assembly Program

Here we define a program that verifies whether a tile set results in a specific unique assembly. This function
is given in terms of smaller helper functions, which are defined in Section 4.2.

4.1 The Verification Program

For a given assembly, called assembly, the proof of correctness follows from proving the validity of the
following dynamic logic formula, making use of the notation for nondeterministic programing defined in
class. The precondition init is specific to the tile set. It represents the state in which the seed tile is
present at the origin and all other locations have no tiles. The nondeterministic program assemble acts as
the verifier in that its behavior mimics that of the assembly process. Both of these will be formally defined
later.

init[assemble]ν(S) = assembly

4.2 Helper Functions and their Semantics

We first establish some smaller functions which we use to define assemble. The first two functions, testLoc
and glueCount, determine whether a tile can be placed in a certain location based on the rules of the model.
The nondeterministic function addOne augments the structure by placing a tile if there is some combination
of tile and location that passes the previous tests. Finally, the assemble calls addOne until no more tiles
can be added.

Test Functions First we define a function testLoc : Structure× Location→ {true, false} that tests
whether a given location in the structure is empty:

testLoc : S, (x, y) 7→ (S(x, y) = noTile).

The semantics of testLoc are as follows:

JtestLoc(S(x, y))Kν = JS(x, y) = noTileKν
= {ν : ν(S)(x, y) = null}
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Next, we define a function glueCount : Structure × Location × Tile → N, which calculates the total
strength of matching glues given a tile and a position in the structure.

glueCount :(S, (x, y), ((nv, ns)g, (sv, ss)g, (ev, es)g, (wv, ws)g)) 7→
if S(x− 1, y, 2) = (wv, ws)g and not wv = nullGlue then ws else 0

+if S(x+ 1, y, 3) = (ev, es)g and not ev = nullGlue then es else 0

+if S(x, y + 1, 0) = (sv, ss)g and not sv = nullGlue then ss else 0

+if S(x, y − 1, 1) = (nv, ns)g and not nv = nullGlue then ns else 0

We derive the semantics of glueCount as follows:

JglueCount(S, (x, y), ((nv, ns)g, (sv, ss)g, (ev, es)g, (wv, ws)g)))Kν
= Jif S(x− 1, y, 2) = (wv, ws)g and not wv = nullGlue then ws else 0Kν
+ Jif S(x+ 1, y, 3) = (ev, es)g and not ev = nullGlue then es else 0Kν
+ Jif S(x, y + 1, 0) = (sv, ss)g and not sv = nullGlue then ss else 0Kν
+ Jif S(x, y − 1, 1) = (nv, ns)g and not nv = nullGlue then ns else 0Kν

=

{
JwsKν if ν(S)(Jx− 1Kν, JyKν, 2) = J(wv, ws)gKν and JwvKν 6= nullGlue

0 otherwise

+

{
JesKν if ν(S)(Jx+ 1Kν, JyKν, 3) = J(ev, es)gKν and JevKν 6= nullGlue

0 otherwise

+

{
JssKν if ν(S)(JxKν, Jy + 1Kν, 0) = J(sv, ss)gKν and JsvKν 6= nullGlue

0 otherwise

+

{
JnsKν if ν(S)(JxKν, Jy − 1Kν, 1) = J(nv, ns)gKν and JnvKν 6= nullGlue

0 otherwise

From these two functions we create a test function test : Structure×Location×Tile→ {true, false}
which determines whether a tile can be added to a given location.

test : (S, (x, y), t) 7→ testLoc(S, (x, y)) and glueCount(S, (x, y), t) ≥ 2

Its semantics are as follows:

Jtest(S, (x, y), t)K = JtestLoc(S, (x, y)) and glueCount(S, (x, y), t) ≥ 2K
= JtestLoc(S, (x, y))K ∩ JglueCount(S, (x, y), t) ≥ 2K
= JtestLoc(S, (x, y))K ∩ {ν : JglueCount(S, (x, y), t)K ≥ 2}

Augmenting Functions The following subroutines nondeterministically add entries to the array repre-
senting the structure, which corresponds to the assembly growing with the addition of a new tile. The
subroutine addOne nondeterministically adds a tile to an empty position in the structure array if such an
addition can be made according to the model.

addOne =
⊔
t∈T

⊔
x∈Z
y∈Z

(?test(S, (x, y), t)); S(x, y) := t,
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where t denotes the nondeterministic choice operator to avoid confusion with the traditional set union
operator. Its semantics follow from those defined on nondeterministic programs.

JaddOneK = J
⊔
t∈T

⊔
x∈Z
y∈Z

(?test(S, (x, y), t)); S(x, y) := tK

=
⋃
t∈T

x,y∈Z

J?test(S, (x, y), t))K ◦ JS(x, y) := tK

= JtestLoc(S, (x, y))K ∩ {ν : JglueCount(S, (x, y), t)Kν ≥ 2} ◦ {(ν, ω) : ν = ω except ω(S(x, y) = JtK}
= {(ν, ω) : ν(S(x, y) = null and JglueCount(S, (x, y), t)K ≥ 2 and ν = ω except ω(S)(x, y) = JtK}

4.3 Semantics of the Verifier

Finally, we define the assemble program and its semantics. The assemble program continues to add tiles
to the structure until no further tiles can be added.

assemble = (addOne)∗; (?[addOne]false).

Its semantics are as follows:

JassembleK = J(addOne)∗; (?[addOne]false)K
= JaddOne∗K ◦ J?[addOne]falseK
= JaddOne∗K ◦ {(ν, ν) : ∀ω ∈ St (ν, ω) /∈ JaddOneK}

= J
⊔
`∈N

addOne`K ◦ {(ν, ν) : ∀ω ∈ St (ν, ω) /∈ JaddOneK}

=
⋃
`∈N

JaddOne`K ◦ {(ν, ν) : ∀ω ∈ St (ν, ω) /∈ JaddOneK}

=
⋃
`∈N

⋃
x,y∈Z

⋃
t∈T
{(ν, ω) : ν(S)(x, y) = noTile and ω(S)(x, y) = JtK and ν = ω otherwise

and JglueCount(S, (x, y), t)K ≥ 2}` ◦ {(ν, ν) : ∀ω ∈ St (ν, ω) /∈ JaddOneK}

Finally, we define the precondition init, which is satisfied when the specified seed tile, denoted by seed,
occupies position (0, 0) in the structure array and all other positions are empty.

init ≡ S(0, 0) = seed ∧ (∀x, y (x = 0 ∧ y = 0) ∨ S(x, y) = noTile)

The meaning of init in our semantics follows directly from our definitions.

JinitK = {ν : ν(S)(0, 0) and ∀(x, y) ∈ Z2 \ {(0, 0)}, ν(S)(x, y) = noTile}

5 Proofs

5.1 Terminal Assembly Definition

Our goal in this section is to verify the assembly of an m×n rectangle. We begin by giving a formal definition
of the tile set for this problem and the terminal assembly generated by the tile set.

The terminal assembly is shown in Figure 3. As shown in the figure, there are four types of tiles: the
corner, the horizontal top edge tiles, the vertical left edge tiles, and the fill tiles. There are three types of

6



Figure 3: The terminal assembly Rectm,n

glues: horizontal glues that bind the horizontal top edge tiles, vertical glues that bind the vertical left edge
tiles, and a fill glue.

The corner tile C has null glues on the north and west edges and strength-2 glues on the east and south
edges. This tile is the seed for the m × n rectangle assembly. The horizontal top edge tiles Hx have a null
glue on the north edge, a fill glue on the south edge, and horizontal glues on the east and west edges. The
vertical left edge tiles Vy have a null glue on the west edge, a fill glue on the east edge, and vertical glues
on the north and south edges. The fill tiles F have fill glues on all four edges. These are formally defined as
follows:

C = ((nullGlue, 0), (v1, 2), (h1, 2), (nullGlue, 0))

Vy = ((vy, 2), (vy+1, 2), (g, 1), (nullGue, 0)), 0 < y < m− 1

Vm−1 = ((vm−1, 2), (nullGlue, 0), (g, 1), (nullGlue, 0))

Hx = ((nullGlue, 0), (g, 1), (hx+1, 2), (hx, 2)), 0 < x < n− 1

Hn−1 = ((nullGlue, 0), (g, 1), (nullGlue, 0), (hx, 2))

F = ((g, 1), (g, 1), (g, 1), (g, 1)).

Note that there are actually m− 1 and n− 1 vertical and horizontal tiles respectively, each with a different
pair of glues. This is to ensure that the Vm−1 (respectively, Hn−1) tile is the last tile added to the column
(respectively, row), and that it only is added when the column is of height m (respectively, n). The complete
tile set is:

TS = {C, F} ∪ {Vy : 0 < y < m} ∪ {Hx : 0 < x < n}.

The complete glue set is:

GS = {g} ∪ {vy : 0 < y < m− 1} ∪ {hx : 0 < x < n− 1}.
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We are now ready to define the terminal assembly, which is given by an array Rectm,n, defined as follows:

Rectm,n(0, 0) = C

Rectm,n(0, y) = Vy, 0 < y < m

Rectm,n(x, 0) = Hx, 0 < x < n

Rectm,n(x, y) = F, 0 < y < m and 0 < x < n

Rectm,n(x, y) = noTile, otherwise

5.2 Proofs of Correctness

In this section, we prove that the assemble program correctly assembles an m × n rectangle when seeded
with S(0, 0) = C. This is formalized in Theorem 5.2.

Definition 5.1. We say that the assembly S is a substructure of Rectm,n if for each x, y ∈ Z, either S(x, y) =
noTile or S(x, y) = Rectm,n(x, y). Further, S is called a strict substructure of Rectm,n if it is a substructure
of Rectm,n and there exists some (x, y) ∈ Z2 such that S(x, y) = noTile and Rectm,n(x, y) 6= noTile.

Theorem 5.2. init[assemble(S)]ν(S) = Rectm,n, where init is as defined in Section 4.3 and Rectm,n is
as defined in Section 5.1.

Proof. The following three properties hold:

1. At all times throughout running assemble, the current assembly is a substructure of the terminal
assembly (Theorem 5.3).

2. For any strict substructure of the terminal assembly, a tile can always be added (Lemma 5.4).

3. No tile can be added to the terminal assembly (Lemma 5.5).

The result follows from these three properties.

The remainder of this section is devoted to proving the three properties given in Theorem 5.2.

Theorem 5.3. For all ` ∈ N, for all t ∈ T , and for all ν ∈ JinitK ◦ JaddOne`K, the following hold:

1. ν(S) is a substructure of Rectm,n.

2. JglueCount(S, (x, y), t)Kν < 2 for all (x, y) such that x < 0 or y < 0 and for all (x, y) such that
x+ y > `+ 1

3. ν(S)(x, y) = noTile for all (x, y) such that x+ y > `

4. For every x, y such that ν(S)(x, y) 6= noTile all (a, b) such that 0 ≤ a ≤ x and 0 ≤ b ≤ y have
ν(S)(a, b) = Rectm,n(a, b).

Proof. By induction on `. In the base case ` = 0, ν ∈ JinitK. By definition of init, ν(S)(0, 0) = C and
ν(S)(x, y) = noTile for all (x, y) with x 6= 0 or y 6= 0, so 1 and 3 follow. To prove 2 and 4, we consider five
cases, some of which may overlap.

Case 1: x < −1 or y 6= 0.
Each of ν(S)(x− 1, y), ν(S)(x+ 1, y), ν(S)(x, y− 1), and ν(S)(x, y+ 1) is noTile, so each summand of
JglueCount(S, (x, y), t)Kν = 0 for all t

Case 2: x = −1 and y = 0. Each of ν(S)(x − 1, y), ν(S)(x, y − 1), and ν(S)(x, y + 1) is noTile. The tile
at ν(S)(0, y − 1) = C. Its contribution to the meaning of glueCount is zero because its west glue is
nullGlue. Consequently all summands of JglueCount(S(x, y), t)Kν are 0 for every t.
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Case 3: y < −1 or x 6= 0.
Each of ν(S)(x− 1, y), ν(S)(x+ 1, y), ν(S)(x, y− 1), and ν(S)(x, y+ 1) is noTile, so each summand of
JglueCount(S, (x, y), t)Kν = 0 for each t

Case 4: y = −1 and x = 0 Each of ν(S)(x − 1, y), ν(S)(x, y − 1), and ν(S)(x + 1, y) is noTile. The tile at
ν(S)(x, y + 1) = C. Its contribution to the meaning of glueCount is zero because its north glue is
nullGlue. Consequently all summands of JglueCount(S, (x, y), t)Kν are 0 for every t.

Case 5: x+ y > 1.
Each of ν(S)(x− 1, y), ν(S)(x+ 1, y), ν(S)(x, y− 1), and ν(S)(x, y+ 1) is noTile, so each summand of
JglueCount(S, (x, y), t)Kν = 0 for every t.

Inductively assume the lemma holds for all ν ∈ JinitK◦JaddOne`K. We show that for all (ν, ω) ∈ JaddOneK,
the above conditions are maintained. Recall that for each (ν, ω) ∈ JaddOneK, we have that for some x′, y′,
ν(S)(x′, y′) = noTile, JglueCount(S, (x′, y′), t)Kν ≥ 2, and ν = ω except ω(S)(x′, y′) = JtKν. We consider
the following cases for x′ and y′, the indices of the only changed value in S. By the inductive hypothesis,
neither x′ nor y′ can be negative because JglueCount(S,(x′y′), t)Kν < 2 when x or y is negative. Similarly,
x′ + y′ ≤ `+ 1.

Case 1: x′ = 0.
Based on the induction hypothesis, because ν(S)(x′, y′) = noTile, ν(S)(x′ + 1, y′) = ν(S)(x′ − 1, y′) =
ν(S)(x′, y′ + 1) = noTile. Additionally ν(S)(x′, y′ − 1) is either noTile or Vy′−1. Because a tile t is
being added to the structure, JglueCount(S,(x′, y′), t)Kν ≥ 2. The only t for which this is possible is
t = Vy′ , as the only matching glue appears on the south side of Vy′−1. Consequently, ω(S)(x′, y′) = Vy′

and S remains a substructure of Rectm,n.

For all x, y with y < 0 or x < −1, JglueCount(S,(x, y), t)Kν = JglueCount(S,(x, y), t)Kω, as none of the
neighboring entries are changed.

For all x, y with x = −1 and y ≥ 0, it is apparent that JglueCount(S, (x, y), t)Kν = JglueCount(S, (x, y), t)Kω
when (x, y) 6= (−1, y′). The only entry adjacent to ω(S)(−1, y′) with a value other than noTile is
ω(S)(x′, y′), but since the tile at this location is Vy′ , the glue on its west edge is nullGlue, so it
contributes 0 to the value of JglueCount(S, (−1, y′), t)Kω.

Finally, the only locations for which JglueCount(S, (x, y), t)Kω > JglueCount(S, (x, y), t)Kν are (x, y) =
(1, y′) and (x, y) = (0, y′+1). Since 1+y′ = 0+y′+1 ≤ `+2, the property 2 is preserved. Similarly, the
only location with ω(S)(x, y) 6= ν(S)(x, y) is (x, y) = (0, y′) and by the induction hypothesis, y′ ≤ `+1,
so property 3 is also preserved.

Case 2: y′ = 0.
The case for y′ = 0 is symmetric to case 1.

Case 3: x′ > 0 and y′ > 0. By the induction hypothesis, ν(S) is a substructure of Rectm,n. Due to
property 4, ν(S)(x′ + 1, y′) = ν(S)(x′, y + 1) = noTile. Because a tile was added to S(x′, y′)
JglueCount(S, (x′, y′), t)Kν ≥ 2. The only tile for which this is possible is t = F, as it is the only
tile with glue g on its north and west sides. Consequently ω(S) remains a substructure of Rectm,n.

Because location (x′, y′) is not adjacent to any location with x < 0 or y < 0, JglueCount(S, (x, y), t)Kω =
JglueCount(S, (x, y), t)Kν for all (x, y) with x < 0 or y < 0. The only (x, y) such that JglueCount(S, (x, y), t)Kω >
JglueCount(S, (x, y), t)Kν are (x, y) = (x′ + 1, y′) and (x, y) = (x′, y′ + 1). Since x′ + y′ ≤ ` + 1, both
x′ + 1 + y′ ≤ `+ 2 and x+ y′ + 1 ≤ `+ 2, so property 2 is preserved. Property 3 also follows from the
fact that x′ + y′ ≤ `+ 1 and (x′, y′) is the only (x, y) for which ω(S)(x, y) 6= ν(S)(x, y).

Finally, because F attached at (x′, y′) via glues on its north and west sides, both ν(S)(x′ − 1, y) and
ν(S)(x, y − 1) were not noTile. Applying the induction hypothesis, property 4 is maintained.
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Lemma 5.4. If the assembly is not terminal, then a tile can be added.

Proof. From Theorem 5.3, we know that if the assembly is not terminal, then it is a substructure with the
property described in Theorem 5.3 part 4. Specifically, it has the property that if a tile has been added to
location (x, y), then there are tiles at all locations (x′, y′) with 0 ≤ x′ ≤ x and 0 ≤ y′ ≤ y. There are two
possible forms for such a substructure, and we consider them separately.

Case 1: The substructure is a rectangle; that is, there is only one location (x, y) such that S(x+ 1, y) = noTile

and S(x, y + 1) = noTile. Then either x < n− 1 or y < m− 1. Suppose x < n− 1. Then

JglueCount(S, (x+ 1, y), Hx+1)K = JglueCount(S, (x+ 1, y), ((nullGlue, 0), (g, 1), (hx+2, 2), (hx+1, 2))K
= 2 + 0 + 0 + 0

= 2,

so

Jtest(S, (x+ 1, y), Hx+1)K = JtestLoc(S, (x+ 1, y))K ∩ {ν : JglueCount(S, (x+ 1, y), Hx+1)K ≥ 2}
= JtrueK ∩ JtrueK.

Suppose instead that y < m− 1. Then

JglueCount(S, (x, y + 1), Vy+1)K = JglueCount(S, (x, y + 1), ((vy+1, 2), (vy+2, 2), (g, 1), (nullGlue, 0))K
= 0 + 0 + 0 + 2

= 2,

so

Jtest(S, (x, y + 1), Vy+1)K = JtestLoc(S, (x, y + 1))K ∩ {ν : JglueCount(S, (x, y + 1), Vy+1)K ≥ 2}
= JtrueK ∩ JtrueK
= St.

Hence if the substructure is a rectangle, it is possible to add a tile.

Case 2: The substructure is not a rectangle; that is, there are at least two locations (x1, y1) and (x2, y2) with
x1 > x2 and y1 < y2 such that S(x1 + 1, y1) = noTile and S(x1, y1 + 1) = noTile and S(x2 + 1, y2) =
noTile and S(x2, y2 + 1) = noTile. Then there is some location (x2 + 1, y′), y1 < y′ < y2 where a tile
of type F can be added. We know there is no tile at location (x2 + 1, y2) by definition. If there is a tile
at location (x2 + 1, y2 − 1), then the glue on its south edge must be (g, 1) because the structure is a
substructure of the terminal assembly, and all internal glues in the terminal assembly are (g, 1). So if
S(x2 + 1, y2 − 1) 6= noTile, then

JglueCount(S, (x2 + 1, y2), F)K = JglueCount(S, (x2 + 1, y2), ((g, 1), (g, 1), (g, 1), (g, 1))K
= 1 + 0 + 0 + 1

= 2,

so Jtest(S, (x2 + 1, y2), F)K = St. Hence we can add a tile at location (x2 + 1, y2). If there is no tile at
location (x2 +1, y2−1) but there is a tile at location (x2 +1, y2−2), then we follow the same reasoning
to determine that we can add a tile at location (x2 + 1, y2− 1). Otherwise, we continue vertically until
we find a tile at the location immediately above the location at which we are trying to add a tile. We
know that we will eventually find such a tile because due to Theorem 5.3, we know there is a tile at
location (x2 + 1, y1).

For both types of substructures, we can add a tile. Hence if the current assembly is a substructure of the
terminal assembly, it is possible to add a tile.
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Lemma 5.5. S = Rectm,n[test((x, y), t)]false. That is, no tile can be added to the terminal assembly.

Proof. We consider eight cases for the location (x, y).

Case 1: x < −1 or y < −1 or x > n or y > m. Then S(x − 1, y), S(x + 1, y), S(x, y − 1), and S(x, y + 1) are
all noTile, so JglueCount(S, (x, y), t)K = 0 for all tiles t. Hence a tile cannot be added at any of these
locations.

Case 2: x = −1 and 0 ≤ y < m. Then S(x− 1, y), S(x, y − 1), and S(x, y + 1) are all noTile and so contribute
0 to JglueCount(S, (x, y), t)K. S(x + 1, y) = Vy, but S(x + 1, y, 3) = nullGlue so the contribution to
JglueCount(S, (x, y), t)K is still 0 for all tiles t. Hence the total value of JglueCount(S(x, y), t)K is 0, so
a tile cannot be added.

Case 3: y = −1 and 0 ≤ x < n. Then S(x− 1, y), S(x+ 1, y), and S(x, y − 1) are all noTile and so contribute
0 to JglueCount(S, (x, y), t)K. S(x, y + 1) = Hx, but S(x, y + 1, 0) = nullGlue so the contribution to
JglueCount(S, (x, y), t)K is still 0 for all tiles t. Hence the total value of JglueCount(S, (x, y), t)K is 0,
so a tile cannot be added.

Case 4: x = 0 and y = m. Then S(x+ 1, y), S(x− 1, y), and S(x, y + 1) are all noTile and so contribute 0 to
JglueCount(S, (x, y), t)K for all tiles t. S(x, y−1) = Vm−1, but S(x, y−1, 1) = nullGlue, so the contribu-
tion to JglueCount(S, (x, y), t)K is still 0 for all tiles t. Hence the total value of JglueCount(S, (x, y), t)K
is 0, so a tile cannot be added.

Case 5: x = n and y = 0. Then S(x + 1, y), S(x, y − 1), and S(x, y + 1) are all noTile and so contribute 0 to
JglueCount(S, (x, y), t)K for all tiles t. S(x−1, y) = Hn−1, but S(x−1, y, 2) = nullGlue, so the contribu-
tion to JglueCount(S, (x, y), t)K is still 0 for all tiles t. Hence the total value of JglueCount(S, (x, y), t)K
is 0, so a tile cannot be added.

Case 6: 0 < x < n and y = m. Then S(x−1, y), S(x+1, y), and S(x, y+1) are all noTile and so contribute 0 to
JglueCount(S, (x, y), t)K for all tiles t. S(x, y − 1) = F and so S((x, y − 1), 1) = (g, 1). This contributes
at most 1 to the value of JglueCount(S(x, y), t)K if tile t has glue (g, 1) on its top edge. Hence the value
of JglueCount(S(x, y), t)K is at most 1, which is not enough to bind a tile. So no tile can be added at
location (x, y).

Case 7: x = n and 0 < y < m. Then S(x+ 1, y), S(x, y− 1), and S(x, y+ 1) are all noTile and so contribute 0
to JglueCount(S(x, y), t)K for all tiles t. S(x−1, y) = F and so S((x, y−1), 2) = (g, 1). This contributes
at most 1 to the value of JglueCount(S, (x, y), t)K if tile t has glue (g, 1) on its left edge. Hence the
value of JglueCount(S, (x, y), t)K is at most 1, which is not enough to bind a tile. So no tile can be
added at location (x, y).

Case 8: 0 ≤ x < n and 0 ≤ y < m. Then in the terminal assembly, S(x, y) 6= noTile, so testLoc(S, (x, y))
fails, and a tile cannot be added.

For all locations (x, y), a tile cannot be added at (x, y). Hence no tile can be added to the terminal
assembly.

6 Conclusion

Our work in this project represents a significant step towards verifying the correctness of tile self-assemblies.
We developed a programming language that enables us to represent the components of the tile assembly
problem. We defined a semantics for the new components in our language, then wrote a program to verify the
correctness of a tile set. We determined the semantics of this program and used it to verify the correctness
of a tile set that forms an m× n rectangle.

This is the first step towards verification of a more general class of problems. There are a number of
possible extensions to this work. First, we could use our existing program to verify additional tile sets other
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than the m × n rectangle. More generally, we consider only a particular tile assembly model in which only
a single tile can be added to the assembly at a time. A more general tile assembly model, the 2-Handed
Assembly Model (2HAM) allows two assemblies of multiple tiles to join together. An interesting direction
would be to extend our programming language and results to the 2HAM model. Finally, the tile assembly
model itself is a somewhat restricted model of biological processes. For example, the tile assembly model
assumes that tiles cannot rotate, that all tiles are the same size and shape, and that assembly occurs in a
square lattice on the plane. One could imagine a more general model for DNA computing that lifts some of
these restrictions. Developing a language and semantics for such a model would present many new interesting
challenges.
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