
Formally Building the Theory of the λ-Calculus

Naman Bharadwaj

May 9, 2015

Abstract

For this project, I explore the use of an interactive theorem prover to
build the foundational theory of the simply typed lambda calculus with
natural numbers. After encoding the simple syntax and type system for
the language, I describe small-step operational semantics, formally define
the complex notions of α-equivalence and substitution, and define the
axiomatic (equational) theory of α-β-η-equivalence.

1 Introduction

My motivation for this project is to develop a better understanding of the power
of modern theorem proving and checking tools in the area of verifying correctness
properties of programs. Next year, I will be working at a financial technology
startup helping to ensure the correctness of critical currency-handling programs.
I hope to be able to use some of the techniques and insights I picked up through
my work on this project.

For this project, I picked up Lean, a new theorem prover being developed
at Microsoft Research and Carnegie Mellon University. It is based on the cal-
culus of inductive constructions, and is, in many respects, similar to Coq. Due
to the ongoing development of both the language and the libraries, the use
of Lean presented challenges involving lack of language features and succinct,
comprehensive documentation (in fact, most of my debugging involved searching
through the Lean source code).

My initial plan for this project was to continue to add polymorphic abstrac-
tion to the language, and verify some simple but concrete programs (such as
basic natural number arithmetic). The development of the foundational the-
ory, however, turned out to be a complex task, especially when learning a new
language concurrently. Thus, I simply completed as much of the foundational
theory as possible before the project deadline.

I will now provide an outline of my experience implementing the theory
in Lean. I will not go into excessive detail, as I also provide the code that
implements what I discuss.

1

2 The Language, Syntax, and Types

The language that I ultimately formalized is just the simply typed lambda
calculus with natural numbers:

τ := nat | τ1 → τ2

c := z | s
e := c | x | λx : τ. e | e1e2

Γ ` z : nat Γ ` s : nat→ nat
x : τ ∈ Γ
Γ ` x : τ

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1
Γ ` e1e2 : τ2

Γ, x : τ1 ` e : τ2
Γ ` λx : τ1. e : τ1 → τ2

The syntax and typing judgement specified above are simple enough to for-
mulate as an inductive type and proposition, respectively. We have yet to clarify
what we mean by Γ, however.

2.1 Typing Contexts

Γ in the typing judgement Γ ` e : τ is a typing context – just a map from
variables to types. So in order to formalize Γ we need to develop tables and
some theory around them (due to the sparseness of the Lean standard library).
Initially, I attempted to encode tables as binary search trees, but quickly aban-
doned that approach due to unnecessary complexity.

Tables mapping values of type τ1 to values of type τ2 in my implementation,
are simply functions of type τ1 → option τ2. Then the judgement above, x : τ ∈
Γ, is just the proposition Γx = option.some τ . In order to be complete, we must
also make sense of Γ, x : τ1. What we really mean here is the (right-biased)
union of the typing context Γ with the singleton context x : τ1.

Table union is just defined as Γ1 ∪ Γ2 = Γ3 iff x : τ ∈ Γ3 ↔ x : τ ∈ Γ2 ∨ (x :
τ ∈ Γ1 ∧ x 6∈ Γ2). Finally, we must show that we can always take the union of
two tables and get back a third; this is done simply by defining a union function
and proving that it is correct w.r.t. the definition of union above.

2.2 Proofs about Types

Next, we can go ahead and formalize some simple proofs about our typing
judgement. First, we may state simple inversion lemmas that allow us to say
something about the structure of τ by looking at the structure of e, assuming
Γ ` e : τ .

The first non-trivial proof is unicity of typing, or injectivity of the typing
judgement. This theorem states that if Γ ` e : τ1 and Γ ` e : τ2, then τ1 = τ2.

2

This proof is straightforward induction over the proofs of the typing judgements;
in each case we must apply the appropriate inversion lemmas.

In one case, however, we need the extra lemma that if Γ1 ∪ Γ2 = Γ3 and
Γ1 ∪Γ2 = Γ4, then Γ3 = Γ4. Unfortunately, this is not true from an intensional
view of function equality (where the algorithm matters, not just the behavior).
One solution here is to define a new equivalence relation on tables and then prove
that you can substitute equivalent tables for each other in certain circumstances.
In order to avoid this complexity, I opted to just use the function extensionality
axiom, which provides a view of functions where (∀x.fx = gx)→ f = g.

2.3 Typechecking

Finally, we define a typechecking function that takes a context Γ and expression
e and outputs a type τ such that Γ ` e : τ . There are two non-trivial proofs here;
the easier of the two is soundness – if the typechecker outputs τ , then in fact,
Γ ` e : τ . The harder one is completeness – if Γ ` e : τ , then the typechecker
will find and output τ . Completeness uses our function extensionality explained
above.

3 Substitution

In order to continue on to semantics, we must now stop and consider the defini-
tion of capture-avoiding substitution. I initially ignored this, in the hopes that
all substituted expressions would be closed terms, but open term substitution
is necessary in order to specify an axiomatic semantics.

Substitution is a complex idea, and depends on the idea of α-equivalence.
Intuitively, α-equivalence captures the idea that it doesn’t matter what we call
a bound variable, as long as all the references to that variable are valid. Unfor-
tunately, α-equivalence itself relies on the ability to replace free occurences of
a variable with another variable, while avoiding variable capture. Thus I define
substitution and α-equivalence mutually inductively, with the extra judgement
x ∈ FV (e) asserting that x appears as a free variable in the expression e:

e =α e
e1 =α e

′
1 e2 =α e

′
2

e1e2 =α e
′
1e

′
2

e1 =α e2 e2 y
x e3

λx : τ. e1 =α λy : τ. e3

x e
x e y e

x y c e
x c

e1 e
x e

′
1 e2 e

x e
′
2

e1e2 e
x e

′
1e

′
2

z 6∈ FV (e) λy : τ. e1 =α λz : τ. e′1 e′1
e
x e

′′
1

λy : τ. e1 e
x λz : τ. e′′1

x ∈ FV (x)
x ∈ FV (e)

x ∈ FV (λy : τ. e)

x ∈ FV (e1)

x ∈ FV (e1e2)

x ∈ FV (e2)

x ∈ FV (e1e2)

3

Note that the substitution judgement is not well-moded. That is, there is
not only one possible substitution of e for x in e1. This is because each α-
equivalence class is infinite in size! In particular, finding an α-conversion in
order to perform a substitution is not a deterministic task.

There are three main theorems of interest, one which can only be proven
after defining our semantics below. First, we want that for every e1, x, e, we
there exists an e′1 such that e1 e

x e
′
1. This involves implementing a substitution

algorithm, which is ultimately very tricky and slow. We state this as an axiom
in order to continue to more interesting things. The second is the substitution
lemma, which states if Γ, x : τ ` e1 : τ1, Γ ` e : τ , and e1 e

x e
′
1, then Γ ` e′1 : τ1.

Finally, we would like to define our operational semantics such that it preserves
the =α relation.

4 Semantics

4.1 Operational

The small-step operational semantics I define are the standard semantics for the
eagerly-evaluated lambda calculus:

c val λx : τ. e val
e val
c e val

e1 → e′1
e1e2 → e′1e2

e1 val e2 → e′2
e1e2 → e1e

′
2

e1 e
x e

′
1

(λx : τ. e1)e→ e′1

The proofs of interest here are progress – if ∅ ` e : τ , then either e val
or ∃e′. e → e′ – and preservation, which simply states that the typing judge-
ment is preserved by the stepping judgement. We can also now prove the the-
orem described in the previous section, that α-equivalent expressions step to
α-equivalent expressions.

4.2 Denotational

We would like to interpret (possibly open) expressions as mathematical objects.
My approach is to instead interpret typed expressions (actually, the typing
judgement). First, we interpret types as simply natural numbers and functions:

JnatK = N
Jτ1 → τ2K = {f | Jτ1K→ Jτ2K}

Next, in order to interpret open terms, we define the concept of a Γ-environment,
a member of JΓK.

JΓK = {f | x : τ ∈ Γ→ f(x) ∈ JτK}

4

Next, we interpret typing judgements Γ ` e : τ as functions of type JΓK →
JτK.

JΓ ` z : natK(f) = 0

JΓ ` s : nat→ natK(f)(x) = x+ 1

JΓ ` x : τK(f) = f(x)

JΓ ` e1e2 : τ2K(f) = JΓ ` e1 : τ1 → τ2K(f)(JΓ ` e2 : τ1K(f))

JΓ ` λx : τ1. e : τ1 → τ2K(f)(v) = JΓ, x : τ1 ` e : τ2K(f ∪ (x 7→ v))

We can now prove that if Γ ` e : τ and e → e′, then JΓ ` e : τK = JΓ ` e′ :
τK. In other words, the denotational semantics are preserved by the small-step
operational semantics described previously.

4.3 Axiomatic

The final step is to introduce the notion of β-η-equivalence, which is our exten-
sional equational theory:

e =β e
e1 e

x e
′
1

(λx : τ. e1)e =β e
′
1

e1 =β e
′
1 e2 =β e

′
2

e1e2 =β e
′
1e

′
2

x 6∈ FV (e)

e =η λx : τ. e x

Along with α-equivalence, we now should have a complete equational theory
of the simply typed lambda calculus with natural numbers. We will let e ≡ e′

mean that e and e′ are α-β-η equivalent. Finally, we should show that JΓ ` e :
τK = JΓ ` e′ : τK iff e ≡ e′ (that this is, in fact, a sound and complete equational
theory).

5 Next Steps

Unfortunately, I did not have time to write as much code as I had originally
planned for (some of the above is not 100% formalized in Lean). I now outline
some ideas for further exploration, that I hope to be able to do:

Verify Some Programs I hope to continue on to do this even after sub-
mission of the project, since the foundations are mostly laid. I would like to
implement standard arithmetic functions, such as addition, multiplication, etc.
and prove them correct with respect to the denotational semantics.

Polymorphic Abstraction My initial intent was to develop the full theory
of System F, including polymorphic abstraction. This makes all the theorems
that I have proven reasonably more complex, and is thus a non-trivial amount
of work.

5

Categorical Semantics Of particular interest to me is to formalize the sim-
ply typed lambda calculus as the internal language of cartesian closed cate-
gories. The standard method (at least, the one that I have seen) of doing so
involves adding explicit product types, τ1 × τ2, to the language. An alterna-
tive approach could be to introduce polymorphism as above, and then encode
τ1 × τ2 as ∀α. (τ1 → τ2 → α) → α. However, it is not entirely clear what the
implications of adding full polymorphism to the language, as the semantics of
polymorphism in category theory is unclear (and this would thus require a good
amount of theoretical work).

IPC Another interesting angle is to develop the full theory of the intuitionistic
propositional calculus by adding binary sums, binary products, and bottom to
the language. We could then proceed to formalize various semantics, such as
the Heyting algebra semantics or Kripke semantics.

6

