
15-812 Report: Automated Verification of Safety Properties of

Declarative Networking Programs

Lay Kuan Loh

Abstract

Networks are complex systems that are ridden with errors. Such errors can lead to disruption of services,
which may have grave consequences. Verification of networks is key to eliminating errors and building robust
networks. In this paper, we propose an approach to verify networks using declarative networking. In declarative
networking, networks are specified in NDLog, a declarative language.

We focus on analyzing safety properties. We develop a technique to statically analyze NDlog programs. First,
we build a dependency graph of the predicates of NDlog programs; then, we build a summary data structure
called a constraint pool to represent all possible derivations and their associated constraints for predicates in
the program; finally, properties specified in first-order logic are checked on the data structure with the help of
the SMT solver Z3. We proved the correctness of our algorithm.

To evaluate our approach, we built a prototype tool, and showed the effectiveness of the tool in validat-
ing/debugging several SDN applications. We demonstrated that the tool can unveil different problems in the
process of SDN application development, ranging from software bugs, incomplete topological constraints and
incorrect property specification.

Contents

1 Introduction 2

2 Overview 3
2.1 Declarative Networking . 3
2.2 Analysis Overview . 3
2.3 Example Constraint Pool . 5

3 Analyzing Non-recursive Programs 6
3.1 Derivation Pool Construction . 6
3.2 Property Query . 9
3.3 Network Constraints . 12
3.4 Correctness . 12

4 Extension to Recursive Programs 23
4.1 Derivation Pool for Recursive Predicates . 23
4.2 Property Query . 24
4.3 Correctness . 25

5 Case Studies 30
5.1 Verification process . 30
5.2 Ethernet Source Learning . 30
5.3 Firewall . 32
5.4 Load Balancing . 36
5.5 Address Resolution Protocol . 38
5.6 Discussion . 39

6 Related Work 44

7 Conclusion 45

1

1 Introduction

As more and more services are offered over the Internet, ensuring the security and stability of networks has become
increasingly important. Unfortunately, networks are complex systems that are ridden with errors. Such errors can
lead to disruption of services, which may have grave consequences. Verification of networks is key to eliminating
errors and building robust networks.

Much work on network verification has focused on verifying topological-specific network configurations [23,
33, 18, 37]. Practical testing tools for finding undesired behavior in protocol implementation have also been
proposed [25, 16]. With the emerging technology of software-defined networks (SDN), modeling networks as
programmable software has gained unprecedented popularity. Researchers began to apply program verification
techniques to the verification of SDNs [8, 9].

Our goal is to develop a general automated technique that can be applied to network verification. The first step
towards that goal is to find the right abstraction for networks. This paper is based off joint work from [11].

Declarative networking [29] is one of the first research effort to demonstrate that high-level languages can be
used to program networks. In declarative networking, network protocols are written in a declarative language
NDLog, which is a distributed Datalog. Declarative networking techniques have been used in several domains in-
cluding fault tolerance protocols [45], cloud computing [3], sensor networks [13], overlay network compositions [34],
anonymity systems [44], mobile ad-hoc networks [36, 27], wireless channel selection [26], network configuration man-
agement [12], and forensic analysis [55, 53, 54]. An open-source declarative networking system called RapidNet [43]
has been integrated with the ns-3 [39] simulator, so protocols can be tested. It has also been shown that network
verification can be carried out using the declarative network framework [48, 47, 10]. In summary, NDLog is a great
intermediary language for bridging the gap between network specification, verification, and implementation, so we
use NDLog as our specification language for networks.

Unfortunately, all of the verification tools related to NDLog require manual proofs, which makes verification
very labor intensive. What is worse is that when the proofs cannot be constructed, it is nontrivial to find out what
went wrong.

Either there are bugs in the program, or the invariants used in the proofs are not correct. There is little
tool support for identifying problems under these circumstances. In this paper, we develop an automated static
analysis technique to analyze the safety properties of NDLog programs. When properties do not hold, our tool
provides a concrete counterexample to further aid program debugging. The properties that we are interested in
include invariants of the network and desirable behavior of nodes in the network. For instance, we would like
to know if every forward entry corresponds to a route announcement packet, or if a successfully delivered packet
indicates proper forwarding table setup in the switches that the packet traverses. One observation we have is that
a large fragment of the interesting properties of networks can be expressed in a simple fragment of first-order logic.
Leveraging this limited expressive power, we are able to develop static analysis for NDLog programs.

Our static analysis examines the structure of the NDLog program and builds a summary data structure for all
derivations of that program. Properties specified in the restricted format of first-order logic are checked on the
summary data structure with the help of the SMT solver Z3 [50]. The challenge is how to deal with recursive
programs. For such programs, the number of possible derivations for recursive predicates is infinite. We use a
concise representation for recursive predicates, so all possible derivations can be finitely represented. To evaluate
our analysis, we built a prototype tool, and verified several safety properties of a number of SDN controller programs,
where the SDN’s controller program and switch logic are specified in NDLog.

This paper makes the following technical contributions.

• We developed algorithms for automatically analyzing a class of safety properties of NDLog programs.

• We proved the correctness of our algorithms.

• We implemented a prototype tool and verified a number of safety properties of SDN controller programs.

The rest of this paper is organized as follows. In Section 2, we review declarative networks and NDLog, and
describe our analysis at a high-level. Then, we explain our algorithm for non-recursive programs in Section 3. Next,
we extend the algorithm to handle recursive programs in Section 4. The case studies are described in Section 5.
We discuss related work in Section 6 and then conclude.

2

2 Overview

We first review declarative networking and NDLog through examples. Then, we present an overview of our analysis.

2.1 Declarative Networking

Declarative networks are specified using Network Datalog (NDLog), which is a distributed recursive query language
used for querying network graphs. Declarative queries are a natural and compact way to implement a variety
of routing protocols and (overlay) networks. For example, traditional routing protocols such as path vector and
distance-vector protocols can be expressed in a few lines of code [31], and the Chord distributed hash table in 47
lines of code [30]. When compiled and executed, these perform efficiently relative to imperative implementations.

NDLog is based on Datalog [42]. A Datalog program consists of a set of declarative rules. Each rule has the
form p :- q1, q2, ..., qn., which can be read informally as “q1 and q2 and ... and qn implies p”. Here, p is
the head of the rule, and q1, q2,...,qn is a list of literals that constitutes the body of the rule. Literals are either
predicates with attributes (which are bound to variables or constants), or Boolean expressions that involve function
symbols (including arithmetic) applied to attributes, which we call constraints.

Datalog rules can refer to one another in a mutually recursive fashion. Commas are interpreted as logical
conjunctions. The names of predicates, function symbols, and constants begin with a lowercase letter, while
variable names begin with an uppercase letter. The following example NDLog program computes full reachability
between any pair of nodes. In the runtime, derived predicates are stored as tuples in database tables, so we use
predicate and tuple interchangeably for the rest of this paper.

Reachable:
d1 reachable(@X,Y,C) :- link(@X,Y,C).

d2 reachable(@X,Y,C) :- link(@X,Z,C1),

reachable(@Z,Y,C2), C=C1+C2.

d3 reachable(@X,Y,C) :- reachable(@X,Z,C1),

link(@Z,Y,C2), C=C1+C2.

The program Reachable takes as input link(@X,Y,C) tuples, where each tuple corresponds to a copy of an entry
in the neighbor table, and represents an edge from the node itself (X) to one of its neighbors (Y) of cost C. NDLog
supports a location specifier in each predicate, expressed with @ symbol followed by an attribute. This attribute is
used to denote the source location of each corresponding tuple. For example, link tuples are stored based on the
value of the X field. The program Reachable derives reachable(@X,Y,C) tuples, where each tuple represents the
fact that X has a path to reach Y with cost C. Rule d1 derives reachable tuples from direct links. Rule d2 and d3

compute transitive reachability: if there exists a link from X to Z with cost C1, and Z knows about a path to Y with
cost C2, then transitively, X can reach Y with cost C1+C2. Rule d3 is similar to d2

As our driving example, we will use the following non-recursive set of rules that compute one, two, and three
hop reachability information within a network. Notice that there is an error in rule r2, where onehop X Z C1 should
be onehop Z Y C1. This program cannot derive three-hop paths.

ThreeHops:
r1 onehop(@X,Y,C) :- link(@X,Y,C).

r2 twohops(@X,Z,C) :- link(@X,Z,C1), onehop(@X,Z,C2),

C = C1+C2.

r3 threehops(@X,Y,C) :- onehop(@X,Z,C1),

twohops(@Z,Y,C2), C=C1+C2.

r4 threehops(@X,Y,C) :- twohops(@X,Z,C1),

onehop(@Z,Y,C2), C=C1+C2.

2.2 Analysis Overview

The static analysis mainly consists of two processes: a process that summarizes all derivations of predicates in an
auxiliary data structure, which we call a derivation pool, and a process that queries properties on the derivation pool.
NDLog programs are represented abstractly as dependency graphs. Recursive programs are more complicated than
non-recursive programs, so we explain the algorithms for non-recursive programs first, before we discuss extensions
to support recursive programs. The dependency graph and the properties to be checked are of the same form for
both recursive and non-recursive programs. Next, we formally define the dependency graph and the format of the
properties.

3

Dependency graph We build dependency graphs for NDLog programs. A dependency graph has two types of
nodes, predicate nodes, denoted Np, and rule nodes, denoted Nr . Each predicate node corresponds to a tuple in
the program. A predicate node consists of a unique ID for the node, the name of the predicate and its type, and a
tag indicating whether the predicate is on a cycle in the graph. The tag cyc means that the node is on a cycle and
ncyc means the opposite.

Each rule node corresponds to a rule in the program. A rule node consists of a unique ID, the head of the rule,
the body of the rule, which is a list of predicates, and the constraints. The edges, denoted E, are directional. Each
edge points either from a rule node to the predicate node which is the head of that rule node, or from a predicate
node to a rule node where the predicate is in the rule body.

Predicate type τ ::= Pred | bt ⊃ τ
Dependency graph G ::= (Np List,Nr List,E List)
Predicate node Np ::= (nID , p : τ, cyc) | (nID , p : τ, ncyc)
Rule node Nr ::= (rID , hd , body , c)
Edge E ::= (rID ,nID) | (nID , rID)
Rule head hd ::= p(~x)
Rule body body ::= p1(~x1), · · · , pn(~xn)
Rule constraints c ::= e1 bop e2 | c1 ∧ c2 | c1 ∨ c2 | ∃x.c

To make variable substitutions easier, each predicate takes unique variables as arguments. For instance, the
following two NDLog rules are equivalent, but we use r1 as the normal form.

r1: p(x,y) :- q(x1), s(y1), x1=y1, x=x1, y=y1.

r2: p(x,y) :- q(x), s(y), x=y.

The dependency graph for ThreeHops is shown in Figure 1, where boxes represent nodes in the graph and
arrows represent edges in the graph.

link: (int, int, int) →!pred!

onehop: (int, int, int) →!pred!

twohops: (int, int, int) →!pred!

threehops (int, int, int) →!pred!

r1; head: onehop x y z; body: link a b c!
constraints: x=a, y=b, z=c!

r2; head: twohop x y z; !
body: link a b c, onehop a’ b’ c’!
constraints: x=a, y=b’, z=c+c’ a=b’, b=b’!

r3; head: threehops x y z; !
body: onehop a b c, twohops a’ b’ c’!
constraints: x=a, y=b’, z=c+c’, b=a’!

r4; head: threehops x y z; !
body: twohops a b c, onehop a’ b’ c’!
constraints: x=a, y=b’, z=c+c’, b=a’!

Figure 1: Dependency graph for ThreeHops (buggy)

Properties We focus on safety properties, which state that bad things haven’t happened yet. We use trace-based
semantics of NDLog [40, 10]. The advantage of trace-based semantics over fixed point semantics is that the order
in which predicates are derived can be clearly specified using traces. Fixed point semantics only care about what
are derivable in the end, and are not precise enough to capture transient faults that appear only in the middle of
the execution of network protocols.

To make it possible for automated analysis, we restrict the form of the properties to be the following.
ϕ = ∀ ~x1, p1(~x1) ∧ ∀ ~x2, p2(~x2) · · · ∀ ~xk, pk(~xk) ∧ cp(~x1, · · · ~xk)

⊃ ∃~y1q1(~y1) ∧ · · · ∧ ∃ ~ymqm(~ym) ∧ cq(~x1, · · · ~xk, ~y1, · · · ~xm)

4

The meaning of the property is the following: if all of the predicates pi are derivable, and their arguments satisfy
constraint cp, then each of the predicate qj must be in one of the derivations of pi, and the constraint cq must be
true. We implicitly require qis to be derived before pis. A lot of the correctness properties can be specified using
formulas of this form. For instance, we can specify the following three properties of our ThreeHops program:

Q1: ∀x, y, z, threehops x y z ⊃ ∃x′, z′, twohops x x′ z′

Q2: ∀x, y, z, threehops x y z
⊃ ∃x1, x2, z1, z2, z3, link x x1 z1 ∧ link x1 x2 z2

∧ link x2 y z3

Q3: ∃x, y, z, threehops x y z

Q1 states that to derive threehops x y z, it is necessary to derive twohops x x′ z′, for some x′ and z′. Q1 does
not hold because there are two ways to derive threehops and one of them does not contain such twohops tuple as a
sub-derivation. Q2 states that to derive a threehops tuple, three links connecting those two nodes are necessary. Q2
should hold. Q3 states that threehops tuple is derivable for some x, y, and z.

2.3 Example Constraint Pool

A simplified derivation pool for onehop, twohops, and threehops is shown below. To ease presentation, we rewrite the
derivation pool using equality constraints. onehop has only one derivation, using rule r1. A derivation D is a tuple
consisting of four fields: the name of the last rule in the derivation; the conclusion of the derivation; the constraint
associated with this derivation; and the list of derivations of the premises of the last rule. We instantiate the rules
with concrete variables. The constraint in D is true, denoted >; as there is no constraint in r1. The predicate
twohops also has only one derivation, using r2. The premises of r2 are link and onehop. Since link is a base tuple, we
simply represent its derivation as the tuple itself. The sub-derivation of onehop is the same as in the previous case.
The constraint for deriving onehop is the conjunction of three constraints: c1 is the constraint for deriving onehop,
c2 for the base tuple link, and c3 the rule constraint of rule r2. Here c2 is true, because no constraint is imposed
on base tuples.

onehop

D: (r1, onehop x1 x2 x3, {link x1 x2 x3})
c = >

twohops

D: (r2, twohops x1 x2 x3

{link x1 x2 y3, (r1, onehop x1 x2 z3, {link x1 x2 z3}})
c = > ∧ > ∧ x3 = y3 + y3

threehops

D1: (r3, threehops x1 x2 x3,
{(r1, onehop x1, y2, y3, {link x1 y2 y3})
(r2, twohops y2 x2 s3,
{link y2 x2 t3, (r1, onehop y2 x2 u3, {link y2 x2 u3})})})

c = > ∧ > ∧ > ∧ s3 = t3 + u3 ∧ x3 = y3 + s3

D2: (r4, threehops x1 x2 x3,
{(r2, twohops x1 y1 s3,
{link x1 y1 t3, (r1, onehop x1 y1 u3, {link x1 y1 u3}})

(r1, onehop y1, x2, y3, {link y1 x2 y3})})
c = > ∧ > ∧ > ∧ s3 = t3 + u3 ∧ c5 = x3 = y3 + s3

Tuple threehops has two derivations, one uses r3, the other uses r4. Both derivations contain sub-derivations of
onehop and twohops. The constraints for deriving threehops include constraint for deriving twohops, onehop, and the
rule constraint of r3 (r4).

5

3 Analyzing Non-recursive Programs

In this section, we first explain how to compute the derivation pool for a non-recursive NDLog program. Then, we
show how to check property properties. Next, we show how to incorporate network constraints into our property
checking algorithm. Finally, we prove the correctness of our algorithm.

3.1 Derivation Pool Construction

For a non-recursive program, its derivation pool maps each predicate to the set of all derivation trees rooted at
that predicate. It is formally defined as follows.

Derivation pool dpool ::= · | dpool , (nID , p:τ) 7→ ∆
Entries ∆ ::= · |∆, (c,D)
Derivation D ::= (BT, p(~x)) | (rID , p(~x),D List)

We write dpool to denote derivation pools. We write ∆ to denote lists of pairs of a constraint and a derivation tree,
denoted D. At a high-level, D can be instantiated to be a valid derivation of p(~t) using rules in the program, if c
is satisfiable. A derivation tree, D, is inductively defined. The base tuples, denoted (BT, p(~x)), are the leaf nodes.
A non-leaf node consists of the unique rule ID of the last rule of the derivation, the conclusion of that rule (p(~x)),
and the list of derivation trees for the body predicates of that rule (D List).

Figure 2 and 3 present the main functions used for constructing a derivation pool from a dependency graph.
The top-level function GenDPool is defined in Figure 2. This function follows the topological order of the nodes
in the dependency graph G.

We keep track of a working set P , which is the set of nodes whose derivations can be summarized currently. We
also keep track of the set of edges that the function has not traversed yet. The function terminates when all of the
edges in the dependency graph have been traversed and the derivations for all of the predicates in the dependency
graph are built. In the body of GenDPool, we remove one predicate node p from P , and build all derivations
for it. A base tuple’s only possible derivation is one with itself as the leaf node. The constraint associated with
this derivation is the trivial true constraint > (Line 8). When p is not a base tuple, derivations for tuples that
p’s derivations depend on have been stored in dpool . The GenDs function constructs derivations for p given the
dependency graph and the current derivation pool (explained later).

After the derivations for a predicate p are constructed, outgoing edges from p are removed (Line 13), so predicates
that depend on p can be processed in later iterations. Function RemoveEdges removes outgoing edges from p,
and outgoing edges from rule nodes that now do not have incoming edges. This may result in predicates enqueued
into P for the next iteration of processing.

6

1: function GenDPool(G)
2: E ← G’s edges
3: P ← G’s predicate nodes that have no incoming edges
4: while E 6= empty || P 6= empty do
5: remove (nID , p : τ) from P
6: ~x← fresh(p : τ)
7: if p is a base tuple then
8: dpool← dpool [(nID , p) 7→ {(>, (BT, p(~x)))}]
9: else

10: d← GenDs(G, dpool , (nID , p:τ))
11: dpool← dpool ∪ d
12: (* done processing p, remove edges *)
13: P,E ←removeEdges(P , E, G, nID)
14: end while
15: end function
16:

17: function removeEdges(P , E, G, nID)
18: remove outgoing edges of nID from E
19: for each rID with no edges of form (, rID) in E do
20: remove edges (rID , nID) from E
21: for each (nID , p : τ) with no incoming edges in E do
22: add (nID , p : τ) to P

23: end function

Figure 2: Construct derivation pools for non-recursive programs

7

1: function GenDs(G, dpool , (nID , p : τ))
2: ∆← {}
3: for each rule with ID rID where (rID ,nID) in G do
4: ∆← ∆∪GenDRule(G, dpool , (nID , p : τ),rID)

return ∆
5: end function
6:

7: function GenDRule(G, dpool , (nID , p:τ), rID)
8: (p(~y), Q, c)← G(rID)
9: (* Q = (q1, q2, · · · , qm)

10: D is the list of list of derivations for (q1, q2, · · · , qm) *)
11: D ← List.map (LookUp dpool) Q
12: D′ ←List.FoldRight MergeDLL D nil

13: ~x← fresh(p(~y))
14: return List.Map (completeD c rID p(~y) ~x) D′

15: end function
16:

17: function MergeD(dci, dc2i)
18: (* dc2i is a derivations for qn to qi+1

19: dci is a possible derivation of qi *)
20: (σ2i, c2i, d2i)← dc2i
21: (ci, di)← dci
22: (* σi substitutes new vars in qi for old ones *)
23: (σi, c

′
i, d
′
i)← fresh(ci, di)

24: return (σi ∪ σ2i, c
′
i ∧ c2i, d′i :: d2i)

25: end function
26:

27: function LookUp(dpool , q(~x))
28: return List.Map (extractD ~x) dpool(q)
29: end function
30:

31: function extractD(~x, (c, d))
32: (rID , p(~y), d l)← d
33: return (~y/~x, c, d)
34: end function
35:

36: function completeD(cr, rID , p(~y), ~x, d)
37: (σ, c, d l)← d
38: return ((c ∧ cr)σ[~x/~y], (rID , p(~x), d l))
39: end function

Figure 3: Generate derivation pool for one predicate

8

1: function MergeDLL(dcli, dcl2i)
2: (* dcl2i is the list of derivations for qn, qn−1, · · · , qi
3: dcli is the list of derivation of body tuple qi *)
4: a← List.map (MergeDL dcl2i) dcli
5: return List.flatten(a)
6: end function
7:

8: function MergeDL(dcl2i, dci)
9: (* dcl2i is the list of derivations for qn, qn−1, · · · , qi

10: dci is a possible derivation of body tuple qi *)
11: return List.map (MergeD dci) dcl2i
12: end function

Figure 4: List merge functions

Function GenDs (Figure 3) takes the dependency graph, the derivation pool that has been constructed so far,
and a predicate p, as arguments, and returns all derivation pool entries for p. The body of GenDs calls GenDRule
to construct derivations for each rule that derives p. The function GenDRule makes use of List map and fold
operations to construct all possible derivations of p from a rule of the form r : p(~x):-q1(~y1), ..., qn(~yn), c. dpool
has already stored all possible derivations for each qi. We need to compute all combinations of the derivations
for qis. The LookUp function on line 11 collects the list of derivations for one body tuple and the list map
function returns the list of derivations for all body tuples. More precisely, the LookUp function returns a list of
tuples of the form (σ, c, d), where d is a derivation, c is the constraint associated with that derivation, and σ is a
variable substitution. The domain of σ is qi’s arguments in the rule node, and the range of σ is qi’s arguments
in the conclusion of the derivations. We need these substitutions because we alpha-rename the derivations. The
constraint in the rule node needs to use the correct variables. Line 12 uses list fold operation to generate all
possible derivations. Function MergeDLL and MergeDL in Figure 4 are helper functions to generate the list
of derivations. Function MergeD is the function that takes as arguments, the list of derivations from qm to qi+1

and one derivation for qi, and prepends the derivation for qi to the list of derivations from qm up to qi. Here, the
substitutions need to be merged and the resulting constraint is the conjunction of the two constraints. Finally on
line 14, function completed generates a well-formed derivation for p using the rule ID and the list of derivations
for qis. The constraint associated with this derivation of p is the conjunction of constraints for the derivation of qi
and the constraint in the rule body. The substitutions are applied to the constraint c, because all derivations are
alpha-renamed and use fresh variables.

3.2 Property Query

Figure 5 shows the property query algorithm for non-recursive programs. The top-level function CkProp takes
the derivation pool and the property as arguments. One line 3, we separate the property into the list of predicates
to the left of the implication (P), the constraint to the left of the implication (cp), the list of predicates to the
right of the implication (Q), and the constraint to the right of the implication cq. Next, similar to the derivation
pool construction, we construct all possible combinations of the derivations of all the pis in P between lines 5 to
9. We omit the definition of MergeDerivation, as it is similar to MergeDLL. The only difference is that we do
not need to alpha-rename the derivations. Next, we check that for each possible derivation of pis in D, all of qis
appear in the derivation, and the constraint cq holds (lines 10 to 14) using function CkPropD. If for all possible
derivations of pis, we can always find derivations of qis such that the constraint cq holds, ϕ holds (line 14).

9

1: function CkProp(dpool , ϕ)
2: (* P is p1 · · · pn and Q is q1 · · · qm *)
3: (P, cp, Q, cq)← ϕ
4: (* get the list of list of derivations for p1, · · · , pn *)
5: L← LookUp(dpool , P)
6: (* combine all possible derivations for p1 · · · pn
7: Each entry in D also include substitutions that replace
8: free variables in pi with the variable in the derivation *)
9: D ←MergeDerivation L

10: for each (σ, c, d) in D do
11: z ←CkPropD(c, cpσ, d, Q, cqσ)
12: if z = invalid(d, σr) then
13: return invalid(d, σr)

14: return valid
15: end function
16:

17: function CkPropD(cd, cp, d, Q, cq)
18: if Check sat cd ∧ cp = (sat, σp) then
19: (* find all occurrences of q in d *)
20: Σ←List.map (Unify d) Q
21: if nil ∈ Σ then
22: (* some qi does not appear in d *)
23: return Invalid(d,σp)
24: else
25: (* find all possible combinations for q1...qm
26: Σq is a list of substitutions each σ in Σq is a
27: substitution for variables in one occurrence
28: of q1 to qm in d for variables that appear in Q *)
29: Σq ←MergeLL Σ
30: for each σq ∈ Σq do
31: if Check sat cd∧cp∧¬cqσq = (sat,σc) then
32: continue
33: else
34: return valid
35: (* None of the combinations of q works *)
36: return invalid(d,σp)

37: else
38: return valid
39: end function

Figure 5: Property query

10

1: function CkPropDC(cd, cp, d, Q, cq, B, cb)
2: if Check sat cd ∧ cp = true then
3: (* find all occurrences of b
4: Σb is a list of list of substitutions *)
5: Σb ←List.map (Unify d) B
6: (* Σ′b is a list of substitutions. Each substitution *)
7: (* in Σ′b corresponds to one combination of bis in d *)
8: Σ′b ←MergeLL Σb

9: (* c′b is the conjunction of cbσi, where σi ∈ Σ′b *)
10: c′b ←Conj(Σ′b, cb)
11: (* find all occurrences of q in d *)
12: Σ←List.map (Unify d) Q
13: if nil∈ Σ then
14: (* check network constraints *)
15: if Check sat cd ∧ cp ∧ (c′b) = (sat, σc) then
16: return invalid(dσc)
17: else
18: (* network constraints are not met *)
19: return valid
20: else
21: Σ1 ←MergeLL Σ
22: (* find all possible combinations for q1...qm
23: Σ1 is a list of substitutions each σ in Σ1 is a
24: substitution for variables in one occurrence
25: of q1 to qm in d for variables that appear in Q *)
26: for each σ ∈ Σ1 do
27: if Check sat cd ∧ cp ∧ ¬cqσ = (sat,σq) then
28: continue
29: else
30: c← cd∧cp∧cqσ∧(c′b)
31: if Check sat c = (sat, σc) then
32: (* network constraints are met *)
33: return valid
34: (* None of the combinations of q works.
35: Next, check network constraints *)
36: if Check sat cd ∧ cp ∧ (c′b) = (sat, σc) then
37: return invalid(dσc)
38: else
39: (* network constraints are not met *)
40: return valid
41: else
42: return valid
43: end function

Figure 6: Property query with network constraints

The function CkPropD checks that in the list of derivations d, with constraints cd, whether all the predicates
in Q appear in d, and cq is true. On Line 18, we first check whether all the pis are derivable and constraint cp is
satisfiable. If the conjunction of the derivation constraint cd and cp is not satisfiable, then the precedent of ϕ is
false, so ϕ is trivially true for that derivation. So, we return valid in the else branch (line 38). If the conjunction
is satisfiable, then there are substitutions for variables so that all the pis are derivable and the constraint cp is
satisfiable. Next, we need to check whether all qis are derivable. On line 20, function Unify identifies a list of
occurrences of qi in the derivation d. That is, for each qi(~yi) appearing in d, Unify returns the list of substitutions:
(~y1/~x)::(~y2/~x) · · · ::(~yn/~x)::nil, where ~x is qi’s arguments in ϕ. The list map function returns the list of the list of
occurrences for all the qis in Q. We call it “UNIFY” because we unify the variables that are qi’s arguments in ϕ
with qi’s arguments in the derivation d. This substitution will be applied to constraint cq later. If some qi does

11

not appear in d, then Unify will return an empty list nil. Therefore, on line 21, we check whether each qi will
appear at least once in d. If it is not the case, then we return invalid with the current derivation and one satisfying
substitution that makes pis true for constructing a counterexample. Otherwise, we check whether the constraint
cq can be satisfied. Before doing so, on line 25, we first compute the list of all possible combinations of occurrences
of qis. Again, this function is similar to MergeDLL and we omit the details. Now on line 30 for each possible
appearance of qis in d, Σq is a list of substitutions, each of which, when applied to cq, makes cq use the same
variables as those in the derivation. We ask whether the negation of cq together with the derivation constraint
and the constraint on the arguments of pis are satisfiable. If this is not satisfiable, then we know that there exists
a substitution for variables so that the property ϕ holds. Otherwise, we return the derivation and the satisfying
substitution that makes pis and qis derivable, but cq false for counterexample construction.

3.3 Network Constraints

Sometimes, the network being analyzed has some constraints, for instance, every node in the network has only
one outgoing link. We call these constraints network constraints. Our property query algorithm needs to take into
consideration, these network constraints. If we ignore these constraints, the counterexample generated by the tool
may not be useful as the counterexample could violate the network constraints.

Network constraints that our analysis can handle have similar form as the properties: ∀ ~x1.b1(~x1) ∧ ...∀ ~xk.bk(~xk) ⊃
c, where, bi is a base tuple. Figure 6 shows the algorithm for checking properties on networks with constraints.
For ease of explanation, we explain the case with only one network constraint. Extending the algorithm to handle
multiple constraints is straightforward.

The top-level function CkPropC is almost the same as CkProp, except that it takes a network constraint
(ϕnet) as an additional argument and uses the function CkPropDC, which additionally checks network constraints
compared to CkPropD. The function CkPropDC takes as additional arguments, a list base tuples B and the
constraint cb in the network constraint. In the body of CkPropDC, we first check whether the constraint on pis
is satisfiable. If it is not, then this derivation does not violate the property we are checking. Next, between lines
3 to 10, we find all occurrences of the base tuples in the constraint ϕnet . We find all possible combinations of
substitutions for arguments of these base tuples as they appear in the derivation d. For each occurrence of the base
tuples, the constraint cb needs to be true, so we compute the conjunction of all the cbs. To given an example, if
the constraint is ∀b(x) ⊃ x > 0. If d has two occurrences of b, b(y) and b(z), then c′b = y > 0∧z > 0.

Next, we collect the list of the occurrences of qis, the same as before. If some qis do not appear in d (line 13),
we additionally check whether this derivation d satisfies the network constraint (line 15). If it is the case, then we
find a counterexample. Otherwise, d does not violate the property being checked.

Then, we compute the combination of all possible occurrences of qis (line 21) as usual. For each substitution
that makes all qis appear in d, we check whether cq is satisfiable. On lines 30 to 33, cq is satisfiable, so we need
check that the network constraint is satisfied. If this is the case, d satisfies the property being checked. Otherwise,
we have to try the next substitution that makes all qis appear in d. On line 34, we finished the loop and cq is not
satisfiable for any of the substitutions that make qis appear in d. Again, we check the network constraints on d,
and report an error only if d satisfies the network constraint.

3.4 Correctness

We first prove that our derivation pool construction is correct. Lemma 1 states that an entry for a predicate p in
the derivation pool maps to a valid derivation of p if the constraints of that derivation is satisfiable; and that if a
predicate p is derivable, then there must be a corresponding entry in the derivation pool. The semantics of NDLog
programs are bottom up, so a set of base tuples B is needed to start the execution of the program. We write σ′ ≥ σ
to mean that σ′ extends σ. B refers to the base tuples of prog.

Lemma 1 (Correctness of derivation pool construction).
GenDPool(prog) = dpool

1. If prog, B � d′:p(~t) then exists σ and (c(~xc), d(~xd):p(~x)) ∈ dpool(p) s.t. d(~xd)σ = d′ and � c(~xc)σ.

2. If (c(~xc), d(~xd):p(~x)) ∈ dpool(p) and � c(~xc)σ, then exists B, σ′ s.t. σ′ ≥ σ and prog, B � d(~xd)σ′:p(~x)σ′.

Proof. 1. Proof by induction on the structure of the derivation d′.

Base case: d′ = (BT, p(~t))

12

Since p is a base tuple, By Line 7 of Function GenDPool, its entry in dpool is given by
(>, (BT, p(~x))) ∈ dpool(p)

By Line 6 of Function GenDPool,
~x are fresh variables for the arguments of p

Let σ = ~t/~x, then

(BT, p(~x))σ = (BT, p(~t)) and
� >σ

Inductive case: d′ = (rID , p(~t), (d′1:q1(~t1))::...::(d′n:qn(~tn))::nil)

rID has form p(u) :- q1(u1),...,qn(un),c(u1,...,un)

c is a constraint that may comprise the arguments of p, q1, . . . , qn
It would be more accurate to write c(~tc) where ~tc ⊆ {~t, ~t1, · · · , ~tn};
However we write c(~t, ~t1, · · · , ~tn) for clarity in later parts of the proof

(1) � c(~t, ~t1, · · · , ~tn)

By assumption,

prog, B � (rID , p(~t), (d′1:q1(~t1))::...::(d′n:qn(~tn))::nil):p(~t)
Therefore for 1 ≤ i ≤ n,

(2) prog, B � d′i:qi(~ti)

By the Inductive Hypothesis,

(3) ∃σi where σi = [~tdi/ ~xdi] such that
(ci(~xci), di(~xdi):qi(~xi)) ∈ dpool(qi),

(di(~xdi):qi(~xi))σi = d′i:qi(~ti),
� ci(~xci)σi

(4) ~xci ⊆ ~xdi, ~xi ⊆ ~xdi, ~xi ⊆ ~xci
(5) ~ti ⊆ ~tdi.

By Freshness Lemma (Lemma 2),
(6) ~x, ~xd1, . . . , ~xdn are fresh

By GenDPool,
(7) (c(~z, ~z1, · · · , ~zn) ∧

∧n
i=1 ci(~zci), (rID , p(~z), d1(~zd1):q1(~z1)::...::dn(~zdn):qn(~zn)::nil)) ∈ dpool(p)

(8) ~zi ⊆ ~zdi, ~zci ⊆ ~zdi, ~zi ⊆ ~zci
By Freshness Lemma (Lemma 2),
i 6= j → ~zdi ∩ ~zdj = ∅

By (3), (4), (5), (6), (7), (8), we can define
(9) σ =

⊔n
i=1[~xdi/ ~zdi]σi

=
⊔n

i=1[~xdi/ ~zdi][~tdi/ ~xdi]

=
⊔n

i=1[~tdi/ ~zdi]
where ~z ⊆ { ~zd1, . . . , ~zdn}

Using (7) where (c(~z, ~z1, · · · , ~zn) ∧
∧n

i=1 ci(~zci), (rID , p(~z), d1(~zd1):q1(~z1)::...::dn(~zdn):qn(~zn)::nil)) ∈ dpool(p)
And (8), we know that ~zci ⊆ ~zdi, thus

(10) c(~z, ~z1, · · · , ~zn)σ

= c(~z, ~z1, · · · , ~zn)
⊔n

i=1[~tdi/ ~zdi]

= c(~t, ~t1, · · · , ~tn)

By (1), � c(~t, ~t1, · · · , ~tn)
Therefore by (10),

(11) � c(~z, ~z1, · · · , ~zn)σ

By (3), � ci(~xci)σi, (where σi = [~tdi/ ~xdi]).
By (9), σ =

⊔n
i=1[~xdi/ ~zdi]σi

(12) ci(~zci)σ = ci(~zci)
⊔n

i=1[~tdi/ ~zdi] = ci(~tci)

13

By (12),
(13) �

∧n
i=1 ci(~zci)σ

By (8), σ =
⊔n

i=1[~tdi/ ~zdi]

By (8), σ =
⊔n

i=1[~tdi/ ~zdi]
By (11) and (13), we get

(14) � (c(~z, ~z1, ..., ~zn) ∧
∧n

i=1 ci(~zci))σ

By (3), (di(~xdi):qi(~xi))σi = d′i:qi(~ti)
(15) (di(~zdi):qi(~zi))σ

= (di(~zdi):qi(~zi))
⊔n

i=1[~tdi/ ~zdi]

= d′i:qi(~ti)

By (7) and (12),
(rID , p(~z), d1(~zd1):q1(~z1)::...::dn(~zdn):qn(~zn)::nil))σ
= (rID , p(~t), d′1:q1(~t1)::...::d′n:qn(~tn)::nil))

2. Proof by the structure of d

Base Case (>, (BT, p(~x))) ∈ dpool(p))
Define B = {p(~x)}.
Choose σ = {}
Then there exists σ′ = [~t/~x] where σ′ ≥ σ, such that

prog, B � (BT, p(~x))σ′:p(~x)σ′

Which is equivalent to prog, B � (BT, p(~t)):p(~t)

Inductive case
(cp(~xcp), (rID , p(~x), ((d1(~xd1):q1(~x1))::...::(dn(~xdn):qn(~xn))::nil)):p(~x)) ∈ dpool(p)
where ~xi ⊆ ~xdi, ~xcp are variables to be determined
Given (cp(~xcp), (rID , p(~x), ((d1(~xd1):q1(~x1))::...::(dn(~xdn):qn(~xn))::nil)):p(~x)) ∈ dpool(p)

(1) For 1 ≤ i ≤ n, (ci(~zci), di(~zdi):qi(~zi)) ∈ dpool(qi)
where ~zi ⊆ ~zdi, ~zci ⊆ ~zdi, ~zi ⊆ ~zdi

By Freshness Lemma (Lemma 2)
i 6= j → ~zdi ∩ ~zdj = ∅

By GenDPool,
(2) cp(~zcp) = cr(~z, ~z1, . . . , ~zn) ∧

∧n
i=1 ci(~zci)

where ~zi ⊆ ~zci, ~zi ⊆ ~zdi, ~zci ⊆ ~zdi
rID has form p(u) :- q1(u1),...,qn(un),c(u1,...,un)

c is a constraint that may comprise the arguments of p, q1, . . . , qn
It would be more accurate to write cr(~tc) where ~tc ⊆ {~t, ~t1, · · · , ~tn},
However we write cr(~t, ~t1, · · · , ~tn) for clarity in later parts of the proof
By [Freshness Lemma],

(3) ~zd1, . . . , ~zdn are fresh variables

By assumption, there is some σ such that
(4) � cp(~zcp)σ

Rewrite (4) to get
(5) � (cr(~z, ~z1, . . . , ~zn) ∧

∧n
i=1 ci(~zci))σ

By Line 13 of function GenDRule
(6) ~x are fresh variables for the arguments of p

Using (6), we can define

(7) σ =
⊔n

i=1[~tdi/ ~zdi]

where ~ti ⊆ ~tdi, ~ti ⊆ ~tci, ~tci ⊆ ~tdi

14

and ~z ⊆ { ~zd1, . . . , ~zdn}

By (5), � (cr(~z, ~z1, . . . , ~zn) ∧
∧n

i=1 ci(~zci))σ,
Using conjunction elimination,

(8) � ci(~zci))σ
By σ as in (7),

(9) ci(~zci)σ

= ci(~zci)
⊔n

i=1[~tdi/ ~zdi]

= ci(~tci)
By (9), we can choose

(10) σi = [~tci/ ~zci] such that
� ci(~zci)σi

By Induction Hypothesis, for 1 ≤ i ≤ n,
(11) exists Bi, σ

′
i where σ′i ≥ σi, such that

prog, Bi � di(~zdi)σ′i:qi(~zi)σ
′
i

By Freshness Lemma (Lemma 2),
(12) (i 6= j)→ (~zdi ∩ ~zdj = ∅)

By (12),
(13) (i 6= j)→ (dom(σ′i) ∩ dom(σ′j) = ∅)

By (13), we can define
σ′ =

⊔n
i=1[~xdi/ ~zdi]σ

′
i

By construction,
σ′ ≥ σ

By (11), for 1 ≤ i ≤ n, prog, Bi � di(~zdi)σ′i:qi(~zi)σ
′
i, therefore

(14) prog,
⋃n

i=1Bi � (d1(~xd1):q1(~x1)):: . . . ::(dn(~xdn):qn(~xn))::nil)σ′

By applying the rule rID to (14), we construct
prog,

⋃n
i=1Bi � dpσ′:p(~x)σ′

where dp = (rID , p(~x), (d1(~xd1):q1(~x1)):: . . . ::(dn(~xdn):qn(~xn))::nil)

Lemma 2 (Freshness). If (c, d:p(~x)) ∈ dpool(p), then the variables in (c, d:p(~x)) are fresh.

Proof.

By Induction on the structure of d

Base Case: (c, (BT, p(~x)):p(~x)) ∈ dpool(p)
By Line 8 of GenDPool,

(c, (BT, p(~x)) ∈ dpool
By Line 6 of GenDPool

There are fresh variables ~x for the arguments of p
c = > has no variables

Therefore the variables in (c, (BT, p(~x)):p(~x)) are fresh.

Inductive Case:
(cp, (rID , p(~z), (d1(~zd1):q1(~z1)):: . . . ::(dn(~zdn):qn(~zn))::nil):p(~z)) ∈ dpool(p)

By Functions GenDPool and GenDRule,
(1) cp(~z, ~zc1, . . . , ~zcn) = cr(~z, ~z1, . . . , ~zn) ∧

∧n
i=1 ci(~zci)

where cr is the constraint for rID
and ~zi ⊆ ~zci

By I.H., for all 1 ≤ i ≤ n,

15

(2) (ci(~xci), di(~xdi):qi(~xi)) ∈ dpool(qi)
where ~xci ⊆ ~xdi, and ~xi ⊆ ~xdi.
Where ~xdi are fresh variables

By Function MergeD (Line 23), for all 1 ≤ i ≤ n,
exists σi where σi = [~zdi/ ~xdi] such that
(3) ci(~xci)σi = ci(~zci)
(4) (di(~xdi):qi(~xi))σi = di(~zdi):qi(~zi)
where ~zci ⊆ ~zdi, ~zi ⊆ ~zdi
and ~zdi is fresh

Therefore
(i 6= j) ⊃ (σi t σi = ∅)

Line 12 of Function GenDRule uses Functions MergeDLL and MergeD
returns a list of possible combinations of derivations of q1, . . . , qn with of form

(5) (
⊔n

i=1 σi,
∧n

i=1 ci(~zci), d1(~zd1):q1(~z1):: . . . ::dn(~zdn):qn(~zn)::nil)
By (3) and (4),⊔n

i=1 σi substitutes new variables ~zdi for old ones ~xdi∧n
i=1 ci(~zci) is composed of fresh variables

d1(~zd1):q1(~z1):: . . . ::dn(~zdn):qn(~zn)::nil is also composed of fresh variables
By (5) we can define

(6) σ =
⊔n

i=1 σi
The derivation of p is

(7) ((cr(~x, ~x1, . . . , ~xn) ∧
∧n

i=1 ci(~zci))σ, (rID , p(~z), d1(~zd1):q1(~z1):: . . . ::dn(~zdn):qn(~zn)::nil))
By (6) and (7)

All the variables in (cr(~z, ~z1, . . . , ~zn) ∧
∧n

i=1 ci(~zci), (rID , p(~z), d1(~zd1):q1(~z1):: . . . ::dn(~zdn):qn(~zn)::nil)) are fresh

Using the result of Lemma 1, we prove our property checking algorithm is correct with regard to the formula
semantics.

Theorem 3 (Correctness of property query).

ϕ = ∀ ~x1.p1(~x1) ∧ ∀ ~x2.p2(~x2) ∧ · · · ∧ ∀ ~xn.pn(~xn) ∧ cp(~x1, · · · , ~xn) ⊃
∃~y1.q1(~y1) ∧ · · · ∧ ∃ ~ym.qm(~ym) ∧ cq(~x1, · · · , ~xn, ~y1, · · · , ~xm)

DPool(prog) = dpool

Note that it would be more accurate to write
cp(~xcp), where ~xcp ⊆ ~x1, . . . , ~xn and
cq(~xcq), where ~xcq ⊆ ~x1, . . . , ~xn, ~y1, . . . , ~ym

However we write cp(~x1, · · · , ~xn) and cq(~x1, · · · , ~xn, ~y1, · · · , ~xm) for reasons of clarity when performing substitutions

1. prog, B 2 ϕ implies CkProp(dpool , ϕ) = invalid(d, σ), dσ is a list of derivations for p1(~t1), · · · , pn(~tn) and
either the derivations do not contain every qis, or for every combination of q1 to qm, cq is not satisfiable.

2. CkProp(dpool , ϕ) = invalid(d, σ) implies exists B s.t. prog, B 2 ϕ.

Proof. Proof of 1.

By assumption prog, B 2 ϕ
which is equivalent to
prog, B 2 ∀ ~x1.p1(~x1) ∧ ∀ ~x2.p2(~x2) ∧ · · · ∧ ∀ ~xn.pk(~xn) ∧ cp(~x1, · · · , ~xn) ⊃

∃~y1.q1(~y1) ∧ · · · ∧ ∃ ~ym.qm(~ym) ∧ cq(~x1, · · · , ~xn, ~y1, · · · , ~xm)
By semantics of ⊃ this means that

(1) prog, B � ∀ ~x1.p1(~x1) ∧ ∀ ~x2.p2(~x2) ∧ · · · ∧ ∀ ~xn.pn(~xn) ∧ cp(~x1, · · · , ~xn)
(2) prog, B 2 ∃~y1.q1(~y1) ∧ · · · ∧ ∃ ~ym.qm(~ym) ∧ cq(~x1, · · · , ~xn, ~y1, · · · , ~xm)

16

By (1), and assuming that x1, . . . , xn are unique variables,
there exists substitution

(3) σp =
⊔n

i=1[~ti/~xi] such that
(4) prog, B � (p1(~x1) ∧ · · · ∧ pn(~xn) ∧ cp(~x1, · · · , ~xn))σp

which is equal to prog, B � p1(~t1) ∧ · · · ∧ pn(~tn) ∧ cp(~t1, · · · , ~tn)

By (2),
(5) @σ ≥ σp such that prog, B � (q1(~y1) ∧ · · · ∧ qm(~ym) ∧ cq(~x1, · · · , ~xn, ~y1, · · · , ~ym))σ

By Correctness of Derivation Pool (Lemma 1),
Given that � pi(~xi)σp, for 1 ≤ i ≤ n,

(6) exists σi such that
(ci(~uci), di(~udi):pi(~ui)) ∈ dpool(pi),
� ci(~uci)σi
di(~udi)σi is a proof of pi(~ui)σi

(7) ~ui ⊆ ~udi, ~uci ⊆ ~udi, ~ui ⊆ ~uci
By Freshness Lemma (Lemma 2)

(8) ud1, . . . , udn are fresh variables
By (6) and (7)

(9) σi = [~tdi/ ~udi] for some constant ~tdi
By (3),
~ti ⊆ ~tdi,

The algorithm returns valid under two cases

subcase 1:

@σ such that prog, B � (cp(~x1, · · · , ~xn) ∧
∧n

i=1 cpi(uci))σ
Failed the check on Line 18 of CkPropD and return “valid” on Line 38

However, we can construct such a σ
By (4), prog, B � (p1(~x1) ∧ · · · ∧ pn(~xn) ∧ cp(~x1, · · · , ~xn))σp

(10) prog, B � cp(~x1, · · · , ~xn)σp
By (9), σi = [~tdi/ ~udi]
By (6), for each 1 ≤ i ≤ n,

(11) � cpi(~uci)σi

Using (10) and (11), we can define
(12) σ = σp t

⊔n
i=1 σi

Therefore
(13) prog, B � (cp(~x1, · · · , ~xn) ∧

∧n
i=1 cpi(uci))σ

and (13) contradicts the assumption of this subcase

subcase 2:

Every element in D in CkProp is “invalid” in CkPropD
(14) The unification on Line 20 of CkPropD is successful

By (14), for each 1 ≤ j ≤ m, there exists 1 ≤ k ≤ n such that

qj(zj) ∈ d′k:pk(~tk)
By CkPropD,

(7) cp(~x1, . . . , ~xn) ∧
∧n

i=1 cpi(~uci) ∧ ¬cq(~x1, . . . , ~xn, ~y1, . . . , ~ym) is unsat

By (7),
there exists a substitution σ′ such that

(8) prog, B � cq(~x1, . . . , ~xn, ~y1, . . . , ~ym)σ′

17

By (10), prog, B � cp(~x1, · · · , ~xn)σp
By (8) and (10),

(9) σ′ ≥ σp

By (8) and (9),
(10) exists σ′ ≥ σp such that prog, B � (q1(~y1) ∧ · · · ∧ qm(~ym) ∧ cq(~x1, . . . , ~xn, ~y1, . . . , ~ym))σ′

Recall that (5) means that
@σ ≥ σp such that prog, B � (q1(~y1) ∧ · · · ∧ qm(~ym) ∧ cq(~x1, · · · , ~xn, ~y1, · · · , ~ym))σ

(10) contradicts (5)

Proof of 2.

By assumption, CkProp returns invalid, hence
(1) prog, B 2 ∀ ~x1.p1(~x1) ∧ ∀ ~x2.p2(~x2) ∧ · · · ∧ ∀ ~xn.pk(~xn) ∧ cp(~x1, · · · , ~xn) ⊃

∃~y1.q1(~y1) ∧ · · · ∧ ∃ ~ym.qm(~ym) ∧ cq(~x1, · · · , ~xn, ~y1, · · · , ~xm)
Therefore

(2) prog, B � ∀ ~x1.p1(~x1) ∧ ∀ ~x2.p2(~x2) ∧ · · · ∧ ∀ ~xn.pk(~xn) ∧ cp(~x1, · · · , ~xn)
(3) prog, B 2 ∃~y1.q1(~y1) ∧ · · · ∧ ∃ ~ym.qm(~ym) ∧ cq(~x1, · · · , ~xn, ~y1, · · · , ~xm)

By (2) and Correctness of Derivation Pool (Lemma 1),
there exists a substitution σp such that
(4) prog, B � (p1(~x1) ∧ . . . ∧ pn(~xn) ∧ cp(~x1, · · · , ~xn))σp

subcase 1:
The test on line 21 of CkPropD fails
Some qi in q1, . . . , qm is not found in the derivations of p1, . . . , pn, thus

(5) prog, B 2 ∃~yi.q1(~yi)
Given (5), this implies that

(6) prog, B 2 ∃~y1.q1(~y1) ∧ · · · ∧ ∃ ~ym.qm(~ym) ∧ cq(~x1, · · · , ~xn, ~y1, · · · , ~xm)
By (6), the consequent of ϕ is invalid
Since the antecedent of ϕ is assumed to be valid, therefore

prog, B 2 ϕ

subcase 2:
for every unification of qi

(7) cp(~x1, · · · , ~xn) ∧
∧n

i=1 cpi(~uci) ∧ ¬cq(~x1, · · · , ~xn, ~y1, · · · , ~xm)σp is satisfiable
By (7), cq(~x1, · · · , ~xn, ~y1, · · · , ~xm) is unsat, so

(8) prog, B 2 ∃~y1.q1(~y1) ∧ · · · ∧ ∃ ~ym.qm(~ym) ∧ cq(~x1, · · · , ~xn, ~y1, · · · , ~xm)
By (8), the consequent of ϕ is invalid
Since the antecedent of ϕ is assumed to be valid, therefore

prog, B 2 ϕ

When network constraints are provided, we prove that the property checking algorithm is correct with regard
to the network constraints on base tuples.

Theorem 4 (Correctness of property query with constraints).

ϕ = ∀ ~x1.p1(~x1) ∧ ∀ ~x2.p2(~x2) ∧ . . . ∧ ∀ ~xn.pn(~xn) ∧ cp(~x1, . . . , ~xn) ⊃
∃~y1.q1(~y1) ∧ ∃~y2.q2(~y2) ∧ . . . ∧ ∃ ~ym.qm(~ym) ∧ cq(~x1, . . . , ~xn, ~y1, . . . , ~xm)

ϕnet = ∀~z1.b1(~z1) ∧ . . . ∧ ∀ ~zk.bk(~zk) ⊃ cnet(~z1, . . . , ~zk)
Where b1, . . . , bk are base tuples.

It would be more accurate to write
cp(~xp) where ~xp ⊆ { ~x1, . . . , ~xn}
cq(~yq) where ~yq ⊆ { ~x1, . . . , ~xn, ~y1, . . . , ~xm}
cnet(~znet) where ~znet ⊆ {~z1, . . . , ~zk}

18

However we write cp(~x1, . . . , ~xn), cq(~x1, . . . , ~xn, ~y1, . . . , ~xm), and cnet(~z1, . . . , ~zk)
for clarity in substitutions

GenDPool(prog) = dpool,

1. B � ϕnet and prog, B 2 ϕ implies CkPropC(dpool , ϕnet , ϕ) = invalid(d, σ), dσ is a list of derivations for
p1(~t1), ..., pn(~tn) and either the derivations do not contain every qis, or for every combination of q1 to qm, cq
is not satisfiable.

2. CkPropC(dpool , ϕnet , ϕ) = invalid(d) implies exists B s.t. prog, B 2 ϕ and B � ϕnet .

Proof. Proof of 1.

By assumption,
prog, B 2 ϕ

which is equivalent to
prog, B 2 ∀ ~x1.p1(~x1) ∧ ∀ ~x2.p2(~x2) ∧ . . . ∧ ∀ ~xn.pk(~xn) ∧ cp(~x1, . . . , ~xn) ⊃

∃~y1.q1(~y1) ∧ . . . ∧ ∃ ~ym.qm(~ym) ∧ cq(~x1, . . . , ~xn, ~y1, . . . , ~xm)
By semantics of ⊃ this means that

(1) prog, B � ∀ ~x1.p1(~x1) ∧ ∀ ~x2.p2(~x2) ∧ . . . ∧ ∀ ~xn.pn(~xn) ∧ cp(~x1, · · · , ~xn)
(2) prog, B 2 ∃~y1.q1(~y1) ∧ . . . ∧ ∃ ~ym.qm(~ym) ∧ cq(~x1, . . . , ~xn, ~y1, . . . , ~xm)

By (1), and assuming that x, x1, . . . , xn are fresh variables,
there exists substitution σp
where σp = [~t/~x] t

⊔n
i=1[~ti/~xi] such that

(3) prog, B � (p1(~x1) ∧ . . . ∧ pn(~xn) ∧ cp(~x1, . . . , ~xn))σp
(4) @σ ≥ σp s.t. prog, B � (q1(~y1) ∧ . . . ∧ qm(~ym) ∧ cq(~x1, . . . , ~xn, ~y1, . . . , ~ym))σ

By Correctness of Derivation Pool (Lemma 1),
Given that by (3), prog, B � (p1(~x1) ∧ . . . ∧ pn(~xn) ∧ cp(~x1, . . . , ~xn))σp
for i ∈ {1, 2, . . . , n}

(5) exists σi = [~tdi/ ~zdi] such that
(ci(~zci), di(~zdi):pi(~zi)) ∈ dpool(pi)
� ci(~zi)σi,
diσp is a derivation of pi(~zi)σp
where ~zi ⊆ ~zci, ~zi ⊆ ~zdi, ~zci ⊆ ~zci
and ~ti ⊆ ~tci, ~ti ⊆ ~tdi, ~tci ⊆ ~tci

By Freshness Lemma 2,
~zd1, . . . , ~zdn are fresh

By assumption,
� ϕnet

Which is equivalent to
� ∀~z1.b1(~z1) ∧ . . . ∧ ∀ ~zk.bk(~zk) ⊃ cnet(~z1, . . . , ~zk)

Therefore by semantics,
(6) � ∀~z1.b1(~z1) ∧ . . . ∧ ∀ ~zk.bk(~zk)
� cnet(~z1, . . . , ~zk)

By (6), there is some σnet such that
� (b1(~z1) ∧ . . . ∧ bk(~zk))σnet

Therefore
(7) � cnet(~z1, . . . , ~zk)σnet

The algorithm returns valid under several cases

subcase 1: Line 42 of CkPropDC returns “valid” each time
cp(~x1, . . . , ~xn) ∧

∧n
i=1 ci(~xci) is unsat

We show a contradiction
By (3),

19

prog, B � (p1(~x1) ∧ . . . ∧ pn(~xn) ∧ cp(~x1, . . . , ~xn))σp
Using conjunction elimination, we have prog, B � cp(~x1, . . . , ~xn)σp

By (5), for i ∈ {1, 2, . . . , n},
� ci(~xci)σi[dom(σi)/ ~zdi]

is equal to � c(~xci)[~tdi/ ~xdi][~xdi/ ~zdi]
is equal to � c(~xci)[~tdi/ ~xdi]
is equal to � c(~tci)

Combining the two, we get
σ = σp ∪

⊔n
i=1 σi[dom(σi)/ ~zdi]

We have a satisfying substitution
(cp(~x1, . . . , ~xn) ∧

∧n
i=1 ci(~xci))σ

Which is equal to cp(~t1, . . . , ~tn) ∧
∧n

i=1 ci(~tci)

subcase 2: Line 33 of CkPropDC returns “valid” each time
By Line 21 of CkPropDC,

(8) Each q1, . . . , qm has some dk(~xdk) : pk(~xk) such that
qj(yj) ∈ dk(~xdk)

By Line 27 of CkPropDC,
(9) cp(~x1, . . . , ~xn) ∧

∧n
i=1 ci(~xci) ∧ ¬cq(~x1, . . . , ~xn, ~y1, . . . , ~ym) is unsat

By Line 30 of CkPropDC,

(10) cp(~x1, . . . , ~xn) ∧
∧n

i=1 ci(~xci) ∧ ¬cq(~x1, . . . , ~xn, ~y1, . . . , ~ym) ∧
∧k

i=1 cnet(~z1, . . . , ~zk)

In this case there exists a substitution σ̄ =
⋃n

i=1[~ti/~xi] ∪
⋃m

i=1[~ti/~yi] such that
(11) prog, B � (q1(~y1) ∧ . . . ∧ qm(~ym) ∧ cq(~x1, . . . , ~xn, ~y1, . . . , ~ym))σ̄

By subcase 1, we know that there is some σ ≥ σp such that (cp(~x1, . . . , ~xn) ∧
∧n

i=1 ci(~xci))σ

Let σ′ = σ ∪ σ̄
Then σ′ ≥ σp is a satisfying substitution for cp(~x1, . . . , ~xn) ∧

∧n
i=1 ci(~xci) ∧ ¬cq(~x1, . . . , ~xn, ~y1, . . . , ~ym)

we arrive at a contradiction of (9)

subcase 3: Line 19 of CkPropDC returns “valid” each time

Since the test on Line 13 of CkPropDC passes, therefore
Some qi does not appear in d

The test on Line 15 of CkPropDC fails, therefore

(12) cp(~x1, . . . , ~xn) ∧
∧n

i=1 ci(~xci) ∧
∧k

i=1 cnet(~z1, . . . , ~zk) is unsat

We can derive a σ′′′ which satisfies (12)
By (3), σ satisfies cp(~x1, . . . , ~xn)
By (5),

⊔n
i=1 σi[dom(σi)/ ~zdi] satisfies

∧n
i=1 ci(~xci)

By (7), � cnet(~z1, . . . , ~zk)σnet
Define σ′′′ = σ ∪

⊔n
i=1 σi[dom(σi)/ ~zdi] ∪ σnet

Then � (cp(~x1, . . . , ~xn) ∧
∧n

i=1 ci(~xci) ∧
∧k

i=1 cnet(~z1, . . . , ~zk))σ′′′

which is a contradiction of (12)

subcase 4: Line 19 of CkPropDC returns “valid” each time
By Line 2 of CkPropDC,

There is some σp such that � (cp(~x1, . . . , ~xn) ∧
∧n

i=1 ci(~xci))σp
By Line 36 of CkPropDC,

there is no σ(4) such that

(13) � (cp(~x1, . . . , ~xn) ∧
∧n

i=1 ci(~xci) ∧
∧k

i=1 cnet(~z1, . . . , ~zk))σ(4)

By (7), � cnet(~z1, . . . , ~zk)σnet
We can construct σ(4) by taking
σ(4) = σp ∪ σnet

20

Which contradicts (13)

Proof of 2.

By assumption
CkProp returns invalid

By CkProp and Correctness of Derivation Pool (Lemma 1),
(1) there exists substitution σp such that

prog, B � (p1(~x1) ∧ . . . ∧ pn(~xn) ∧ cp(~x1, . . . , ~xn))σp

subcase 1: Line 19 returns “valid”
(2) one of qi is not found in the derivation d

The test on Line 15 of CkPropDC fails, thus

(3) cp(~x1, . . . , ~xn) ∧
∧n

i=1 ci(~xci) ∧
∧k

i=1 cnet(~z1, . . . , ~zk) is sat

By (2),
there is no σq such that
(4) prog, B � (q1(~y1) ∧ . . . ∧ qm(~ym) ∧ cq(~x1, . . . , ~xn, ~y1, . . . , ~ym))σq

By (3),
There is some σp such that

(5) � (cp(~x1, . . . , ~xn) ∧
∧n

i=1 ci(~xci) ∧
∧k

i=1 cnet(~z1, . . . , ~zk))σp
By conjunction elimination of (5),

(6) � (cp(~x1, . . . , ~xn) ∧
∧n

i=1 ci(~xci))σp

By conjunction elimination of (5),

(7) �
∧k

i=1 cnet(~z1, . . . , ~zk)σp
By (7),

(8) � (b1(~z1) ∧ · · · ∧ bk(~zk) ⊃
∧k

i=1 cnet(~z1, . . . , ~zk)σp
By (8),

exists B such that
B � ϕnet

By (4), (6), (8),
prog, B 2 ϕ

subcase 2: Line 37 of CkPropDC returns “invalid”

The test on Line 13 of CkPropDC passed
Every unification of qi is found in derivation d

The test on Line 27 of CkPropDC passed
(8)

∧n
i=1 ci(~xci) ∧ cp(~x1, . . . , ~xn) ∧ ¬cq(~x1, . . . , ~xn, ~y1, . . . , ~ym) is sat

The test on Line 36 of CkPropDC passed

(9)
∧n

i=1 ci(~xci) ∧ cp(~x1, . . . , ~xn) ∧
∧k

i=1 cnet(~z1, . . . , ~zk is sat
By (9),

There is some σb such that∧n
i=1 ci(~xci) ∧ cp(~x1, . . . , ~xn) ∧

∧k
i=1 cnet(~z1, . . . , ~zk is sat

By conjunction elimination,

(10) � (
∧k

i=1 cnet(~z1, . . . , ~zk))σb
By (10),

(11) � (b1(~z1) ∧ · · · ∧ bk(~zk) ⊃
∧k

i=1 cnet(~z1, . . . , ~zk))σb
By (10) and (11),

exists B such that
(12) B � ϕnet

21

By (8),
(13) There is no σp such that � cqσp
(14) There is some σp such that � (

∧n
i=1 ci(~xci) ∧ cp(~x1, . . . , ~xn))σp

By (12), (13), (14),
prog, B 2 ϕ

22

1: function GenDs(G, dpool , (nID , p : τ))
2: ∆← {}
3: for each rule with ID rID where (rID ,nID) in G do
4: ∆← ∆∪GenDRule(G, dpool , (nID , p : τ),rID)

5: if (nID , p : τ) is on a cycle then
6: (* gather all constraints *)
7: (~x, c)← Ex DisJ(∆)
8: if A(nID , p : τ) = cA then
9: (* check annotation *)

10: if Check sat ¬(cA[~x/fv(cA)]⇔ c) then
11: return annotation error

12: else
13: return (cA,∆)

14: else
15: return (c,∆)

16: else
17: return ∆
18: end function
19:

20: function LookUp(dpool , q(~x))
21: if q ∈ A then
22: (~y, cA)← A(q)
23: return (~y/~x, cA, (rec, q(~y)) :: nil)
24: else
25: if dpool(q) = ∆ then
26: return List.Map (extractD ~x) ∆
27: elsedpool(q) = (c,∆)
28: ~y ← fv(∆)
29: return (~y/~x, c, (rec, q(~y)) :: nil)

30: end function

Figure 7: Construct derivation pools for recursive programs

4 Extension to Recursive Programs

The dependency graph for a recursive program contains cycles. The derivation pool construction algorithm pre-
sented in Figure 2 does not work for recursive programs because it relies on the topological order of nodes in the
dependency graph. We need to augment our data structures and algorithms to handle recursive programs.

4.1 Derivation Pool for Recursive Predicates

When p is recursively defined, dpool maps p to a pair (c,∆), where ∆ has the same meaning as before. The
additional constraint c is an invariant of p: c is satisfiable if and only if p is derivable.

Constraint pool dpool ::= · · · | dpool , (nID , p:τ) 7→ (c,∆)
Derivation D ::= · · · | (rec, p(~x))
Annotation A ::= · |A, (nID , p:τ) 7→ (~x, c)

Derivation trees include a new leaf node (rec, p(~x)), where p appears on a cycle in the dependency graph. This leaf
node is a place holder for the derivation of the recursive predicate p.

We write A to denote annotations for recursive predicates. It is provided by the user. A maps a predicate p to
a pair (~x, c), where ~x is the arguments of p and c is the constraint which is satisfiable if and only if p is derivable.

23

1: function RemoveEdges(P , E, G)
2: remove outgoing edges of nID from E
3: for each rID with no edges of form (, rID) in E do
4: remove edges (rID , nID) from E
5: if (nID , p : τ) has no incoming edges in E then
6: add (nID , p : τ) to P

7: if every (nID ′, q : τ ′) s.t. (nID ′, rID), (rID ,nID) ∈ E, (nID ′, q : τ ′) in A then
8: add (nID , p : τ) to P

9: end function
10:

11: function Ex Disj(∆)
12: if ∆ = nil then return ({},>)
13: else
14: ((c1, (rID , p(~y), d l)),∆′)← ∆
15: (, c2)←Ex Disj(∆′,Γ)
16: return (~y, ∃(fv(c1)\~y).c1 ∨ c2)

17: end function

Figure 8: Helper functions for constructing derivation pool entries for recursive predicates

The structure of the derivation pool construction remains the same. We highlight the changes in Figure 7. The
main difference is that now when a cycle is reached, the annotations are used to break the cycle. The working
set P , which contains the set of nodes that can be processed next, includes not only predicate nodes that do not
have incoming edges, but also include nodes that depend on only body tuples that have annotations. Consider the
following scenario: Rule r1 derives p and has two body tuples q1 and q2. Let’s assume that there is no edge from
q1 to r1, as q1 has been processed and q2 has an annotation in A. In this case, we will place p in the working set.
The above mentioned change is encoded in the new RemoveEdges function (lines 7-8) in Figure 7.

The second change is in constructing derivation pool entries for a predicate p. In the non-recursive case, each
derivation tree of a predicate p corresponds to the application of a rule to the list of derivation trees for the body
tuples of that rule. In the recursive case, if one of the body tuples, say q, is on a cycle, when we process p, q’s
entries in dpool have not been constructed. However, the constraint under which q can be derived is given in the
annotation A. In this case, we use (rec, q(~x)) as a place holder for derivations for q, and use the constraint in
A as the constraint for this derivation. The change is reflected in the LookUp function for collecting possible
derivations of the body predicates (lines 21-23).

Finally, annotations need to be verified. The GenDs function checks the correctness of the annotations after
all the predicates have been processed (lines 5-15). For a recursive predicate, the derivation pool maps it to a
summary constraint and a list of possible derivations (a pair (c,∆)). The requirement of the summary constraint
for p is that it has to be satisfiable if and only if there is at least one derivation for the recursive predicate p. That
is, this summary constraint has to be logically equivalent to the disjunction of the constraints associated with all
possible derivations of p in ∆. We consider two cases for a predicate on a cycle of the dependency graph: (1) there
is an annotation for it in A and (2) there is no annotation. For both cases, we need to collect all the possible
constraints for deriving p from ∆. Function EX Disj in Figure 8 computes the disjunction of constraints in ∆.
Each constraint is existentially quantified over the arguments that do not appear in p. For case (1), we need to
check that the annotation is logically equivalent to the disjunction of the constraints for all possible derivations of
p (Lines 20). If this is the case, then the annotated constraint together with ∆ is returned; otherwise, an error is
returned, indicating that the invariant doesn’t hold. For case (2), we return the disjunctive formula returned by
EX Disj (Lines 15). When p is not recursive, only ∆ is returned (line 17).

4.2 Property Query

We use the same property query algorithm for non-recursive program. This obviously has limitations, because the
derivations of recursive predicates are not expanded. The imprecision of the analysis comes from the following two
sources. The first is that derivations represented as (rec, p(~x)) may contain predicates needed by the antecedent
of the property (the qis in ϕ). Without expanding these derivations, the algorithm may report that ϕ is violated
because qis cannot be found, even though this is not the case in reality. The second is that network constraints
cannot be accurately checked. When we find a suitable derivation d that contains all the qis such that cq holds,

24

checking the network constraints on d requires us to expand (rec, p(~x))s in d. The algorithm may report that the
property holds, even though, the witness it finds does not satisfy the network constraints. Similarly, when the
algorithm reports that the property does not hold, the counterexample may not satisfy the network constraints.
For the analysis to be precise, we would need annotations for recursive predicates to provide invariants for recursive
predicates. Our case studies do not require annotations. Expanding the algorithm to handle recursive predicates
precisely remains our future work.

1: function CkPropC(dpool , ϕnet , ϕ)
2: (* P is p1 · · · pn and Q is q1 · · · qm *)
3: (P, cp, Q, cq)← ϕ
4: (* B is b1 · · · bn, where bis are base tuples *)
5: (B, cb)← ϕnet

6: (* get the list of list of derivations for p1, · · · , pn *)
7: L← LookUp(dpool , P)
8: (* combine all possible derivations for p1 · · · pn
9: Each entry in D also include substitutions that replace

10: free variables in pi with the variable in the derivation *)
11: D ←MergeDerivation L
12: for each (σ, c, d) in D do
13: z ←CkPropDC(c,cpσ, d, Q, cqσ, B, cbσ)
14: if z = invalid(d) then
15: return invalid(d)

16: return valid
17: end function

Figure 9: Top-level property function with network constraints

4.3 Correctness

Similar to the non-recursive case, we prove the correctness of derivation pool construction and the query algorithm.
Because derivations of recursive predicates are summarized as (rec, p(~x)), the correctness of the derivation pool
construction needs to consider the unrolling of (rec, p(~x)). First, we define a relation dpool ` d, σ k d

′, σ′ to mean
that a derivation d with the substitution σ can be expanded using derivations in dpool to another derivation d′ of
depth k and a new substitution σ′.

σ′ ≥ σ
dpool ` (BT, p(~x)), σ 0 (BT, p(~x)), σ′

∀j ∈ [1, n], dpool ` dj , σ k d
′
j , σ
′

dpool ` (rID , p(~x), d1 :: · · · dn :: nil), σ k+1 (rID , p(~x), d′1 :: · · · d′n :: nil), σ′

dpool(p) = (c,∆) (ci, dpi) ∈ ∆ � ciσ
′

dpool ` dpi, σ′ k d
′
pi, σ

′′

dpool ` (rec, p(~x)), σ k d
′
pi, σ

′′

The first rule applies to the base tuples. Here, no unrolling is needed and the depth of the derivation is 0. The
second rule unrolls the premises of a derivation d. The depth of d′ is k + 1. The last rule is the key rule that
unrolls the derivation of recursive predicate p ((rec, p(~x))) using one of the possible derivations of p from ∆. Here,
the unrolling can only use the derivation in ∆, whose constraint can be satisfied.

Lemma 5 shows that the derivation pool construction algorithm is correct with respect to an unrolling of the
derivation. If a predicate p is derivable, then the derivation pool should have an entry for p that can be unrolled
into that derivation. In the other direction, for every entry in the derivation pool, it either unrolls into a finite
derivation, or can be further unrolled. This lemma allows the unrolling to be infinite.

Lemma 5 (Correctness of derivation pool construction (recursive)).
GenDPool(prog,A) = dpool
where rid p(u) :- q1(u1),...,qn(un),c(u1,...,un)

25

1. If prog, B � d:p(~t)

(a) either p is not on a cycle in the dependency graph and exists σ and (c, d′ : p(~x)) ∈ dpool(p) s.t. dpool `
d′, σ |d| d1, σ, d = d1σ and � cσ.

(b) or p is on a cycle in the dependency graph and exists σ s.t. dpool ` (rec, p(~x)), σ |d| d1, σ, d1σ = d
and � cpσ.

2. (a) If (c, d:p(~x)) ∈ dpool(p) and � cσ, then ∀n, ∃m, m ≤ n, dpool ` d, σ m d′, σ′, either d′ does not
contain (rec, q(~y)), and exists B, s.t. prog, B � d′σ′ : p(~x)σ′ or d′ contains (rec, q(~y)), and replacing all
of the (rec, q(~y)) derivations with a derivation of qσ′ in d′ results in a derivation for p(~x)σ′

(b) If (cp,∆ : p(~x)) ∈ dpool(p) and � cpσ then ∀n, ∃m, m ≤ n, dpool ` (rec, p(~x)), σ m d′, σ′, either
d′ does not contain (rec, q(~y)), and exists B, s.t. prog, B � d′σ′ : p(~x)σ′ or d′ contains (rec, q(~y)), and
replacing all of the (rec, q(~y)) derivation with a derivations of qσ′ in d′ results in a derivation for p(~x)σ′

Proof.
1. Proof by induction of the structure of d

Base case: d = (BT, p(~t))

Case (a): p is not on a cycle in G
By Line 8 of GenDPool,

(>, (BT, p(~x))) ∈ dpool(p)
By Line 6 of GenDPool,
~x are fresh variables for the arguments of p

Choose σ = {}
Choose σ′ = [~t/~x]
Since σ′ ≥ σ

dpool ` ((BT, p(~x)), σ) 0 ((BT, p(~x)), σ′)

(BT, p(~t)) = (BT, p(~x))σ′

� >σ′

Case (b): p is not on a cycle since it is a base tuple

Inductive case: d = (rID , p(~t), (d1:q1(~t1)):: . . . ::(dn:qn(~tn))::nil)

It would be more accurate to write c(~tc) where ~tc ⊆ {~t, ~t1, · · · , ~tn}
However, we write c(~t, ~t1, · · · , ~tn) for clarity when performing substitutions

(1) � c(~t, ~t1, · · · , ~tn)

By Inductive Hypothesis, for each di:qi(~ti), where 1 ≤ i ≤ n,

(2) exists σi where σi = [~tdi/ ~xdi] such that
either (ci(~xci), d

′
i(~xdi):qi(~xi)) ∈ dpool(qi), (d′i(~xdi), σi) k (d′i(~xdi), σi), d

′
i(~xdi)σi = di, � ci(~xci)σi

or (ci(~xci),∆i(~x∆i):qi(~xi)) ∈ dpool(qi), ((rec, qi(~xi)), σi) k (d′i(~xdi), σi), d
′
i(~xdi)σi = di, � ci(~xci)σi

where ~xi ⊆ ~xdi, ~xi ⊆ ~xci, ~xci ⊆ ~xdi, ~xdi ⊆ ~x∆i

and ~ti ⊆ ~tdi
By Freshness Lemma (Lemma 2),

(3) ~zd1, . . . , ~xdn is fresh

By GenDPool, GenDRule function
(4) (c(~z, ~z1, . . . , ~zn) ∧

∧n
i=1 ci(~zci), (rID , p(~z), d′1(~zd1):q1(~z1):: . . . ::d′n(~zdn):qn(~zn)::nil)) ∈ dpool

will be returned as a possible derivation of p
where ~zi ⊆ ~zdi, ~zi ⊆ ~zci, ~zci ⊆ ~zdi
and ~z ⊆ { ~zd1, . . . , ~zdn}
and d′i is (rec, qi(~zi)) if qi is on a cycle

By Freshness Lemma (Lemma 2),
(5) ~zd1, . . . , ~zdn is fresh

26

By (3) and (5), we know that xdi and zdi are fresh.
Define

(6) σ =
⊔n

i=1 σi[dom(σi)/ ~zdi]

=
⊔n

i=1[~tdi/ ~xdi][dom([~tdi/ ~xdi])/ ~zdi]

=
⊔n

i=1[~tdi/ ~xdi][~xdi/ ~zdi]

=
⊔n

i=1[~tdi/ ~zdi]
where ~z ⊆ { ~zd1, . . . , ~zdn}

By (1), we know that � c(~t, ~t1, ..., ~tn)

By (6), we have σ =
⊔n

i=1[~tdi/ ~zdi]
(7) � c(~z, ~z1, ..., ~zn)σ

By (2), we know that � ci(~xci)σi
By (6), we have σ =

⊔n
i=1[~tdi/ ~zdi]

(8)
∧n

i=1 ci(~zi)σ
(9) (d′i(~zdi), σ) k (d′i(~zdi), σ)

By (7) and (8),
(10) � (c(~z, ~z1, . . . , ~zn) ∧

∧n
i=1 ci(~zi))σ

Assume p is not on a cycle
By the definition of

(11) dpool ` (d′1(~zd1):q1(~z1):: . . . ::d′n(~zdn):qn(~zn)::nil, σ) k+1 (d′1(~zd1):q1(~z1):: . . . ::d′n(~zdn):qn(~zn)::nil, σ)
By (9), (10), (11),

the conclusion holds

Now assume p is on a cycle
By Function LookUp,

(12) dpool(p) = (cp(~zp),∆p(~z∆p))
By (4),

(c(~z, ~z1, . . . , ~zn) ∧
∧n

i=1 ci(~zci), (rID , p(~z), d′1(~zd1):q1(~z1):: . . . ::d′n(~zdn):qn(~zn)::nil)) ∈ ∆p(~z∆p)
Using (2),
Applying the last rule,

(13) dpool ` ((rec, p(~z)), σ) k (d′1(~zd1):q1(~z1):: . . . ::d′n(~zdn):qn(~zn)::nil, σ)
By the above,

the conclusion holds

2. Proof by induction on n.

Base case n = 0
trivially true since base tuples are not on cycles by definition

Inductive case n = k + 1

Subcase (a)
(cp(~zp), (rID , p(~z), (d′1:q1(~z1)):: . . . ::(d′n:qn(~zn))::nil : p(~z))) ∈ dpool(p)
where ~zi ⊆ ~zdi, ~zi ⊆ ~zci, ~zci ⊆ ~zdi

By GenDPool and GenDRule function, for 1 ≤ i ≤ n,
(1) (ci(xci), d

′
i(xdi):qi(~xi)) ∈ dpool(qi),

or (ci(xci),∆i(~x∆i):qi(~xi)) ∈ dpool(qi)
where ~xi ⊆ ~xdi, ~xi ⊆ ~xci, ~xci ⊆ ~xdi, ~xdi ⊆ ~x∆i

By Freshness Lemma (2),
~xd1, . . . , ~zdn are fresh

By GenDPool,
(2) cp(~zp) = cr(~z, ~z1, . . . , ~zn) ∧

∧n
i=1 ci(~zci)

It would be more accurate to write c(~zc) where ~zc ⊆ {~z, ~z1, · · · , ~zn}

27

However, we write c(~z, ~z1, · · · , ~zn) for clarity when performing substitutions
By Freshness Lemma (2)
~z, ~zc1, . . . , ~zcn are fresh

By assumption,
� cp(~zp)σ
which is equal to saying that
(3) � c(~z, ~z1, · · · , ~zn)σ

By (1) and (3), for 1 ≤ i ≤ n,
� ci(~xci)[~zdi/ ~xdi]σ

By Inductive Hypothesis, for 1 ≤ i ≤ n,
either (I) di does not contain any rec nodes

exists Bi such that
(4) prog, Bi � d′i(~xdi)σi:qi(~xi)σi

Applying the the second rule of ,
(5) prog,

⋃n
i=1(Biσ) � (d′1(~xd1):: . . . ::d′n(~xdi)::nil)σ:p(~x)σ

Therefore

By Inductive Hypothesis, for 1 ≤ i ≤ n,
or (II) {dj1 , . . . , djw} ⊂ {d1, . . . , dk} contain a rec node

there exists (6) dpool ` ((rec, qj`(yj`)), σ) k (d′j`(~yd`), σ)
For elements in {d1, . . . , dk}\{dj1 , . . . , djw},

(7) exists Bi such that prog, Bi � d′i(~ydi)σi:qi(~yi)σi
Applying the the second rule of , and using (6) and (7),

dpool ` ((rec, p(~x)), σ) k+1 (d′1(~xd1):: . . . ::d′n(~xdn)::nil, σ)

Subcase (b) (cp(~zp),∆(~z∆p)) ∈ dpool(p)

By Assumption,
(8) � cp(~zp)σ

By GenDPool,
(9) cp(~zp) = cr(~z, ~z1, . . . , ~zn) ∧

∧n
i=1 ci(~zci)

where ~zi ⊆ ~zci
It would be more accurate to write c(~zc) where ~zc ⊆ {~z, ~z1, · · · , ~zn}

However, we write c(~z, ~z1, · · · , ~zn) for clarity when performing substitutions
By Freshness Lemma (2)

~zc1, . . . , ~zcn are fresh
Therefore we can define

(10) σ =
⊔n

i=1[~tci/ ~zci]
By (8) and (9), we have

(11) � cr(~t, ~t1, . . . , ~tn) ∧
∧n

i=1 ci(~tci)

By GenDs checks summary constraint for recursive predicate on Line 5
(12) exists σ′ ≥ σ

where σ′ =
⊔n

i=1[~tdi/ ~zdi]
(ci(~zci), d

′
i(~zdi)) ∈ ∆(~z∆p) and

� ci(~zci)σ′

For each 1 ≤ i ≤ n,
Apply I.H. on k,

(13) d′i(~xdi)σ
′ is a derivation of p(~xi)σ

′

Apply the second rule of k to (13) to obtain
(14) dpool ` ((rID , p(~z), d′1(~zd1):: . . . ::d′n(~zdn)::nil), σ′) k+1 ((rID , p(~z), d′1(~zd1):: . . . ::d′n(~zdn)::nil), σ′)

28

Apply the last rule of k to (14)
(15) dpool ` ((BT, p(~z)), σ′) k+1 ((rID , p(~z), d′1(~zd1):: . . . ::d′n(~zdn)::nil), σ′)
The conclusion holds.

As we discussed in Section 4.2, we cannot show a general correctness theorem without annotations for recursive
predicates. We can only prove the soundness of the algorithm when there is no network constraint.

Lemma 6 (Soundness of property query).
ϕ = ∀ ~x1, p1(~x1) ∧ ∀ ~x2, p2(~x2) · · · ∀ ~xk, pk(~xk) ∧ cp(~x1, · · · ~xk) ⊃

∃~y1q1(~y1) ∧ · · · ∧ ∃ ~ymqm(~ym) ∧ cq(~x1, · · · ~xk ~y1, · · · ~xm) GenDPool(prog,A) = dpool, CkProp(dpool , ϕ) =
yes implies prog � ϕ.

29

5 Case Studies

In this section, we conduct case studies of our tool by applying it to software-defined networking (SDN), an emerging
networking technique that allows network administrators to program the network through well-defined interfaces
(e.g. OpenFlow protocol [35]). SDNs intentionally separate the control plane and the data plane of the network.

A centralized controller is introduced to monitor and manage the whole network. The controller provides an
abstraction of the network to network administrators, and establishes connections with underlying switches.

Recently, declarative programming languages have been introduced to SDN to write controller applications that
configure the network [37]. Like any program, these applications are not guaranteed to be bug-free. We show
the effectiveness of our tool in validating/debugging several SDN applications. We demonstrate that the tool can
unveil different problems in the process of SDN application development, ranging from software bugs, incomplete
topological constraints and incorrect property specification. All verifications in our case study are completed within
one second.

5.1 Verification process

We first provide a high-level description of the verification process. When analyzing a property, the user is expected
to provide three types of inputs: (1) formal specification of the property in accordance with the format requirement
of our framework; (2) formal specification of initial network constraints, such as topological constraints and switch
default setup; and (3) formal specification of invariants on recursive tuples.

Out tool accepts the above user specifications along with the NDLog program as inputs. It first checks the
correctness of the invariants on recursive tuples. After invariants are validated, the tool runs the main algorithm
for verification, and outputs either “True” if the property holds, or “False” if the property is not valid. For invalid
properties, the tool also generates a concrete counter example to help the programmer debug the program.

5.2 Ethernet Source Learning

The first case study we consider is Ethernet source learning, which allows switches in a network to remember
the location of end hosts through incoming packets. More specifically, three kinds of entities are deployed in the
network: (1) end hosts (servers or desktops) at the edge of the network that send packets to the network through
connected switches, (2) switches that forward a packet if the packet matches a flow entry in the forwarding table,
or relay the packet to the controller for further instruction if there is a table miss, and (3) a controller that
connects to all switches in the network. The controller learns the position of an end host through packets relayed
from a switch, and installs a corresponding flow entry in the switch for future forwarding.

Figure 11 presents then NDLog encoding of Ethernet Source Learning (progESL). Table 1 lists the safety
properties for the program that we looked for.

Encoding In a typical scenario, an end host initiates a packet and sends it to the switch it connects (rh1). The
switch recursively looks up its forwarding table to match against the received packet (rs1, rs2). If a flow entry
matches the packet, the packet is forwarded to the port indicated by the “Action” part of the entry (rs3). Otherwise,
the switch wraps the packet in an OpenFlow message, and relays it to the controller for further instruction (rs5).
On receiving the OpenFlow message, the controller first extracts the location information of the source address in
the packet (the OpenFlow message registers incoming port for each packet), and installs a flow entry matching the
source address in the switch (rc1). The controller then instructs the switch to broadcast the mis-matched packet
to all its neighbors other than the upstream neighbor who sent the packet (rc2). Rules rs5 and rs6 specify the
reaction of the switch corresponding to Rules rc1 and rc2 respectively — the switch either inserts a flow entry into
the forwarding table (rs5) or broadcasts the packet (rs6) as instructed.

Network constraints We inject the following basic network constraints when verifying properties. The con-
straints enforce the topology on which we run Ethernet source learning. We demand that an end host always
initiates packets using its own address as source, and the switch it connects to cannot be the source or the desti-
nation (constraints on initPacket). In addition, the controller cannot share addresses with switches (constraints on
ofconn). And a switch cannot have a link to itself (constraints on single swToHst). Also, each switch should have
only one link connecting the neighbor host, and no two hosts can connect to the same port of a switch (constraints
on any two swToHsts). The network constraints are given below.

30

Property Property description Formal Specification Result

ϕESL1
If the switch has a routing entry for a
host with MAC address A, it has re-
ceived a packet sourced from that host
in the past.

∀Switch,Mac,OutPort ,Priority ,
flowEntry(Switch,Mac,OutPort ,Priority)
∧Mac = A ⊃
∃Nei ,DstMac,

packet(Switch,Nei ,Mac,DstMac)

true

ϕESL2
If an EndHost has received a packet that
is not destined for its MAC address, then
the switch does not have a routing entry
for that EndHost’s MAC address.

∀EndHost ,Switch,SrcMac,DstMac, InPort ,
OPort ,Outport ,Mac,Priority ,

packet(EndHost ,Switch,SrcMac,DstMac)
∧swToHst(Switch,EndHost ,OPort)
∧flowEntry(Switch,Mac,Outport ,Priority)
∧DstMac 6= EndHost ⊃
Mac 6= DstMac

false

ϕESL3 If EndHost has received a packet des-
tined for it, then the switch has a flow
entry for the EndHost.

∀EndHost ,Switch,SrcMac,DstMac,OPort ,
packet(EndHost ,Switch,SrcMac,DstMac)
∧swToHst(Switch,EndHost ,OPort)
∧DstMac = EndHost ⊃
∃Switch ′,Mac,Outport ,Priority ,

flowEntry(Switch ′,Mac,Outport ,Priority)
∧Switch ′ = Switch ∧Mac = DstMac

false

ϕESL4
If the switch has a flowEntry for a host
with mac address Mac, then there has
been a flow table miss in the past for
that particular host

∀Switch,Mac,Outport ,Priority ,
flowEntry(Switch,Mac,Outport ,Priority) ⊃
∃Switch ′,SrcMac,DstMac, InPort ,Priority ,

matchingPacket(Switch ′,SrcMac,DstMac,
InPort ,Priority ′)

∧Switch ′ = Switch ∧ SrcMac = Mac
∧InPort = Outport ∧ Priority ′ = 0

true

Table 1: Results of checking safety properties of progESL on our tool

ϕESL
net1 initPacket(Host, Switch, Src,Dst) ⊃

Host 6= Switch ∧ Host = Src ∧
Host 6= Dst ∧ Switch 6= Dst.

ϕESL
net2 ofconn(Controller, Switch) ⊃

Controller 6= Switch.
ϕESL
net3 swToHst(Switch,Host, Port) ⊃

Switch 6= Host ∧ Switch 6= Port ∧ Host 6= Port.
ϕESL
net4 swToHst(Switch1, Host1, Port1) ∧

swToHst(Switch2, Host2, Port2) ⊃
(Switch1 = Switch2 ∧ Host1 = Host2 ⊃
Port1 = Port2) ∧

(Switch1 = Switch2 ∧ Port1 = Port2 ⊃
Host1 = Host2).

Verification results We verify a number of properties that are expected to hold in a network running the
Ethernet Source Learning program. We discuss two properties that generate counter examples in detail. A summary
of all the properties we verified can be found in Table 9.

The first property specifies that whenever an end host receives a packet not destined to it, the switch it connects
have no matching flow entry for the destination address in the packet. Formally:

31

∀EndHost ,Switch,SrcMac,DstMac, InPort ,
OPort ,Outport ,Mac,Priority ,

packet(EndHost ,Switch,SrcMac,DstMac)
∧swToHst(Switch,EndHost ,OPort)
∧flowEntry(Switch,Mac,Outport ,Priority)
∧DstMac 6= EndHost ⊃

Mac 6= DstMac

Though this property is seemingly true, our tool returns a negative answer, along with a counterexample shown
in Figure 12. The counter example reveals a scenario where an endhost (H4) receives a broadcast packet destined
to another machine (H3) (Execution trace (1) in Figure 12), but the switch it connects to (S1) has a flowEntry
that matches the destination MAC address in the packet (Execution trace (2) in Figure 12).

In the counter example, switch S1 receives a packet 〈Src : H6, Dst : H3〉 through port 2 from the upstream
switch S2 (1). Since S1 does not have a flow entry for the destination address H3, it relays the packet wrapped
in an OpenFlow message (i.e. ofPacket) to the controller C1(2). The controller then instructs S1 to broadcast
the packet to all neighbors except S2 (3). However, before Server H4 receives the broadcast packet, a new packet
〈Src : H3, Dst : H4〉 could reach switch S1(4), triggering an ofPacket message to the controller (5). The controller
would then set up a new flow entry at switch S1, matching on destination H3 (6 , 7). It is possible that due to
network delay, server H4 receives its copy of the broadcast packet just now(8). Therefore, the execution trace
generates packet (H4,S1,H6,H3), swToHst (S1,H4,1) (i.e. the link between S1 and H4), and flowEntry (S1,H3,2,1),
with Mac == DstMac (H3 = H3).

Our tool also generates a counterexample for another seemingly correct property. This second property specifies
that whenever an end host receives a packet destined to it, the switch it connects to has a flowEntry matching the
end host’s MAC address. Formally:

∀EndHost ,Switch,SrcMac,DstMac,OPort ,
packet(EndHost ,Switch,SrcMac,DstMac)
∧swToHst(Switch,EndHost ,OPort)
∧DstMac = EndHost ⊃

∃Switch ′,Mac,Outport ,Priority ,
flowEntry(Switch ′,Mac,Outport ,Priority)
∧Switch ′ = Switch ∧Mac = DstMac

The generated counter example shown in Figure 14 shows that a packet could reach the correct destination by
means of broadcast — a corner case that can be easily missed with manual inspection. In the counter example,
switch S1 receives a packet destined to server H4(1). Since there is no flow entry in the forwarding table to match
the destination address, switch S1 informs the controller of the received packet (2), and further broadcasts the
packet under the controller’s instruction (3). In this way, server H4 does receive a packet destined to it (4). but
switch S1 does not have a flow entry matching H4.

With further inspection, we found that the above counter examples, in essence, are attributed to incorrect
specification of network properties, rather than bugs in the programs. In the first case, a stricter property would
specify that a received broadcast message indicates an earlier table miss. While in the second one, the property
fails to consider the possibility of specific broadcast messages in the execution. We further discuss the implication
of these counter examples with another counter example produced in the firewall case study.

5.3 Firewall

We also use our tool to verify properties of a stateful firewall. A stateful firewall is usually deployed at the edge of
a corporate network to filter untrusted packets from the Internet. Compared to a stateless firewall, which makes
decision purely based on specific fields of a packet, a stateful firewall allows richer access control depending on flow
history. For example, the firewall can allow traffic from an outside end host to reach machines inside the local
domain only if the communication was initiated by the internal machines. We implement a SDN-based stateful
firewall, which can set up filtering policies under the instruction of the controller. The controller registers traffic
traversal information and installs appropriate filtering entries.

Our firewall case study is based on a program from [8] that has been modified slightly to test our counterexample
genration process. We present our NDLog implementation of the program (progWeakFW) in Figure 13. Key tuples
generated at each node executing the program are listed in Table 4. We summarize the program in Table 5. The
firewall forwards traffic from trusted hosts in the local domain without interference (r1), and also notifies the
controller of the destination address in the packet (r2). When the firewall receives a packet from the Internet,

32

Predicate Description
ofconn(@Controller ,Switch) Controller is able to communicate with Switch
ofPacket(@Controller ,Switch, InPort ,

SrcMac,DstMac)
Switch does not have a hit in its flow entry table for a packet that
appeared on it, send by host with mac address SrcMac, to target host
with mac address DstMac. Therefore, Switch forwarded the packet
to Controller to ask it how to proceed.

flowMod(@Switch,SrcMac, InPort) Controller generates and sends this tuple to switch Switch to allow it
to install host with mac address SrcMac into its flow entry table.

matchingPacket(@Switch,SrcMac,DstMac,
InPort ,Priority)

A packet that appeared on switch Switch via port InPort , from host
with mac address SrcMac, with target host of mac address DstMac,
and priority Priority

packet(@OutNei ,Switch,SrcMac,DstMac) OutNei received a packet from Switch that was sent by a host with
mac address SrcMac to a target host with mac address DstMac

swToHst(@Switch,OutNei ,OutPort) Switch is connected to OutNei via port OutPort
hstToSw(@Host ,Switch,OutPort) Host is connected to switch Switch via port OutPort
maxPriority(@Switch,TopPriority) packets arriving on Switch have a priority of at most TopPriority ,

where a larger priority number indicates greater urgency
initPacket(@Host ,Switch,SrcMac,DstMac) Host with mac address SrcMac sends out a packet to a target host

with mac address DstMac to Switch
recvPacket(@Host ,SrcMac,DstMac) Host with mac address DstMac has received a packet address to it,

which was sent out by host with mac address SrcMac

Table 2: Predicates in ϕESL

it relays the packet to the controller for further decision (r4). If the source address was once registered at the
controller, the controller would install a flow entry in the firewall (r5), allowing packets of the same flow to access
the internal domain in the future (r3).

This is realized as follows. Two types of hosts are connected to a switch: (i) trusted hosts (within the orga-
nization) via port 1; and (ii) untrusted hosts (outside the organization) via port 2. Packets from trusted hosts
are always forwarded to untrusted hosts. Packets from untrusted hosts are forwarded to trusted hosts only if the
source host has previously received a packet from a trusted host. The auxiliary relation tr records the trusted hosts
for each switch. We use bold font to denote OpenFlow commands. The program is executed in an infinite loop
with two type of events: pktIn events that are annotated with commands, and pktFlow events whose semantics is
determined by the current content of the flow table [8].

We check the property ϕWeakFW (shown below), which states that the destination of a packet received by an
trusted machine must be trusted by the controller. Our tool finds a counterexample for it.

∀Host ,Port ,Src,SrcPort ,Switch,
pktReceived(Host ,Port ,Src,SrcPort ,Switch) ⊃
∃Controller ,

trustedControllerMemory(Controller ,Switch,Src)

The network constraints for this modified version of firewall are shown below. They are the same as those given
in firewall, but with an additional link tuple.

33

Role Rule Summary
rc1 Controller installs a flow entry on the switch to match on the source address of the incoming

packet
Controller rc2 Controller instructs the switch to broadcast the unmatching packet to all neighbors except

the upstream neighbor
rs1 Receives a new packet and starts address look-up in the local flow table
rs2 Recursively matches the packet with each flow entry
rs3 If a matching is found for the packet, forwards the packet accordingly

Switch rs4 If no flow entry matches the packet, relays the packet to the controller for further inspection
rs5 Updates the local flow table under the instruction of the controller
rs6 Broadcasts a packet under the instruction of the controller

End Host rh1 Initializes a packet and sends it to the connected switch
rh2 Receives a packet from the connected switch

Table 3: Summary of ϕESL encoding

ϕWeakFW
net1 connection(Switch, Controller) ⊃

Switch 6= Controller
ϕWeakFW
net2 pktIn(Switch,Src,SrcPort ,Dst) ⊃

Switch 6= Src ∧ Switch 6= SrcPort
∧Switch 6= Dst ∧ Src 6= SrcPort
∧Src 6= Dst ∧ SrcPort 6= Dst

ϕWeakFW
net3 pktIn(Switch1 ,Src1 ,SrcPort1 ,Dst1)

∧ pktIn(Switch2 ,Src2 ,SrcPort2 ,Dst2)
∧ Switch1 6= Switch2 ∧ Src1 = Src2 ⊃

SrcPort1 = SrcPort2
ϕWeakFW
net4 link(Switch,Dst ,PortDst) ⊃

Switch 6= Dst ∧ Switch 6= PortDst
∧ Dst 6= PortDst

ϕWeakFW
net5 link(Switch1 ,Dst1 ,PortDst1)

∧ link(Switch2 ,Dst2 ,PortDst2) ⊃
(Switch1 = Switch2 ∧ Dst1 = Dst2
⊃ PortDst1 = PortDst2)

∧ (Switch1 = Switch2 ∧ PortDst1 = PortDst2
⊃ Dst1 = Dst2)

34

#define TRUSTED_PORT 1

#define UNTRUSTED_PORT 2

/* a packet from a trusted host via TRUSTED_PORT

* appeared on switch without a forwarding rule

* Forward packets from all trusted sources

*/

r1 pktReceived(@Dst, Uport, Src, Tport, Switch) :-

pktIn(@Switch, Src, Tport, Dst),

link(@Switch, Dst, Uport),

Tport == TRUSTED_PORT.

r2 trustedControllerMemory(@Controller,

Switch, Dst) :-

pktIn(@Switch, Src, Tport, Dst),

connection(@Switch, Controller),

Tport == TRUSTED_PORT.

/*

* a packet from with a forwarding rule appears

* on the switch Forward according to the rule

* The packet may be from a trusted/untrusted source

*/

r3 pktReceived(@Dst, PortDst, Src,

PortSrc, Switch) :-

pktIn(@Switch, Src, PortSrc, Dst),

link(@Switch, Dst, PortDst),

perFlowRule(@Switch, Src, PortSrc, Dst).

/*

* Packet from untrusted host appeared on

* switch Send it to the controller to check

* if it is trusted

*/

r4 pktFromSwitch(@Controller, Switch,

Src, Uport, Dst) :-

pktIn(@Switch, Src, Uport, Dst),

connection(@Switch, Controller),

Uport == UNTRUSTED_PORT.

r5 perFlowRule(@Switch, Src, Uport, Dst) :-

pktFromSwitch(@Controller, Switch, Src, Uport, Dst),

trustedControllerMemory(@Controller, Switch, Src),

Uport == UNTRUSTED_PORT,

Tport := TRUSTED_PORT.

Figure 13: NDLog implementation of progWeakFW

Verification results We verify a number of properties about the stateful firewall. We discuss one example here;
the property specifies that source destinations of all packets reaching internal machines are trusted by the controller:

ϕWeakFW =
∀Host ,Port ,Src,SrcPort ,Switch,

pktReceived(Host ,Port ,Src,SrcPort ,Switch) ⊃
∃Controller ,

trustedControllerMemory(@Controller ,Switch,Src)
Surprisingly, our tool gives a counterexample for this property (Figure 15), which depicts the scenario that an
internal machine H3 sends a packet to another internal machine H4 in the same domain through the firewall F1.
Because the controller C1 never registers local machines, the property is violated.

In spite of its simplicity, we find the counterexample interesting, because it can be interpreted in different ways;
each corresponds to a different approach to fixing the problem. The counterexample can be viewed as a revelation
of a program bug. The programmer can add a patch to the program and re-verify the property over the updated
program. Alternatively, the counterexample could be linked to incomplete specification of network constraints that
internal machines should never send internal traffic to the firewall. The fix would then be to insert extra constraints
over base tuples of the program. In addition, the problem could also stem from the property specification, since

35

Predicate Description
pktReceived(@Dst ,DstPort ,Src,SrcPort ,Switch) Dst has received a packet via the Switch through port

DstPort , that was originally send by host Src through
port SrcPort

pktIn(@Switch,Src,SrcPort ,Dst) A packet sent by host Src through port SrcPort with tar-
get host Dst appeared on the switch

trustedControllerMemory(@Controller ,Switch,Host) Controller stores a link between Switch an (untrusted)
Host .

connection(@Switch,Controller) There is a connection between Switch and Controller
perFlowRule(@Switch,Src,SrcPort ,Dst ,DstPort) Switch stores in its memory that untrusted host Src is

allowed to send packets to trusted host Dst
pktFromSwitch(@Controller ,Switch,Src,SrcPort ,Dst) Switch asks Controller to check if untrusted host Src is

allow to send a packet to host Dst
link(@Switch,Dst ,PortDst) Switch is linked to Dst via PortDst

Table 4: Tuples for progWeakFW

Rule Summary
r1 a packet from a trusted host, with a destination host whose trustworthiness is unknown, appeared

on switch without a forwarding rule. Forward the packet to the destination host regardless.
r2 A packet from a trusted host appeared on switch without a forwarding rule. Insert the target host

Dst of the packet into trusted controller memory.
r3 A packet from with a forwarding rule appears on the switch, which forwards it according to its

flow table
r4 A packet from an untrusted host appeared on switch, which sends it to the controller to check if

it can forward the packet to its intended destination
r5 Controller checks a packet originally sent by an untrusted host, found that there is a previous link

between that untrusted host and the switch, and tells the switch that it can forward the packet
by inserting a per flow rule into the switch for that untrusted host

Table 5: Summary of progWeakFW encoding

users may only care about traffic from outside the domain. In this case, we can change the property specification,
to specify that if a packet is from an external machine, then the source address must be registered at the controller
before. In real deployment, it is up to the programmer to decide which interpretation is most appropriate.

5.4 Load Balancing

The third case study we examine is load balancing. When receiving packets to a specific network service (e.g.
web page requests), a typical load balancer splits the packets on different network paths to balance traffic load.
The strategies for load balancing are various, e.g. static configuration or congestion-based adjustment. In our
case study, we implement a load balancer which load balances traffic towards a specific destination address, and
determines the path of a packet based on the hash value of its source address.

Figure 17 presents our implementation of load balancer implemented in NDLog (progLB). Key tuples generated
at each node executing the program are listed in Table 7. We summarize the program in Table 6.

When the load balancer receives a packet, it first inspects its destination address. If the destination address
matches the address that the load balancer is responsible for, the load balancer would generate a hash value of the
source destination of the packet (r1). The hash value is used to select the server to which the packet should be
routed. The load balancer replaces the original destination address in the packet with the address of the selected
server, and forwards the packet to the server (r2). In addition, the load balancer has a default rule that forwards
traffic not destined to the designated address without interference (r3).

We demonstrate that the load balancer could potentially break flow affinity property (i.e. packets received on
different servers cannot share the same source address). When a machine is connected to two load balancers and
sends packets of the same flow to both of the load balancers, one of the flow will match on the default rule of a
load balancer and may potentially be directed to a different server. The property we are trying to check is:

36

Event Rule Summary
Initialize Packets r1 A load balancer receives a packet that a client has sent out.
A packet appearing on a load bal-
ancer is destined to the load bal-
ancer’s designated server

r2 A load balancer has received a packet to be sent to its designated
destination. It hashes the source and uses that result modulo the
number of servers to get a number corresponding to a server.

r3 The load balancer matches the integer obtained by hashing to obtain
a server to send the packet to.

Packet appearing on a load bal-
ancer is not to be sent to its desig-
nated server

r4 The load balancer forwards the packet directly to the destination as
prescribed by the packet.

Table 6: Summary of progLB encoding

∀Server1 ,Server2 ,Src1 ,Src2 ,
recvPacket(Server1 ,Src1 ,ServiceAddr)
∧recvPacket(Server2 ,Src2 ,ServiceAddr)
∧Server1 6= Server2 ⊃

Src1 6= Src2

A counterexample is shown in figure 16.

LB1
Service: W9

initPacket
Source: H4,
Destination:W9,
LoadBalancer:LB1

recvPacket
Destination: W8,
Source: H4,
Service: W9

①
②

④

LB2
Service: W10

initPacket
Source: H4,
Destination:W9,
LoadBalancer:LB2

③

recvPacket
Destination: W9,
Source: H4,
Service: W9

H4

w8

w9

Figure 16: A counter example for property ϕLB

The network constraints are the following:

ϕLB
net1 initPacket(v1, v2, v3) ⊃

v1 6= v2 ∧ v2 6= v3 ∧ v1 6= v3
ϕLB
net2 designated(v4, v5) ⊃

v4 6= v5
ϕLB
net3 designated(v9, v10) ∧ designated(v11, v12)

∧ v9 = v11 ⊃
v10 = v12

ϕLB
net4 serverMapping(v6, v7, v8) ⊃

v6 6= v7 ∧ v7 6= v8 ∧ v6 6= v8

ϕLB
net5 serverMapping(v13, v14, v15)

∧ serverMapping(v16, v17, v18)
∧ v13 = v16 ∧ v14 = v17 ⊃
v15 = v18

ϕLB
net6 serverMapping(v13, v14, v15)

∧ serverMapping(v16, v17, v18)
∧ v13 = v16 ∧ v15 = v18 ⊃
v14 = v17

37

initPacket(@Client ,Server ,LoadBalancer) Client sends out a packet to LoadBalancer with intended
destination Server .

packet(@LoadBalancer ,Client ,Server) LoadBalancer received a packet from Client that has des-
tination Server

designated(@LoadBalancer ,DesignatedDst) For packets arriving on LoadBalancer with destination ad-
dress DesignatedDst , LoadBalancer determines it path of
a packet based on the hash value of its source address.

hashed(@LoadBalancer ,Client ,ServerNum,Server) LoadBalancer had received a packet whose destination
address matches the address that it is responsible for.
LoadBalancer generates a hash value of the source address
of Client to obtain an integer ServerNum. ServerNum is
uniquely mapped to Server , to which the packet is to be
routed.

serverMapping(@LoadBalancer ,Server ,ServerNum) LoadBalancer stores the bijective mappings of each desti-
nation server to a unique number, ServerNum

recvPacket(@Server ,Client ,ServiceAddr) Server has received a packet from source Client via
LoadBalancer .

Table 7: Tuples for progLB

Verification result The property that we verify for load balancing is called flow affinity, that is, if two servers
receives packets requesting the same service—which means the packets share the same initial destination address—
the source addresses of the packets must be different.

The property does not hold in the given protocol specification, and a counterexample is given by our tool. In
the counterexample, two load balancers responsible for different network service could co-exist in the network, and
if a server sends packets to both load-balancers, requesting the same service, it is possible that the packets are
routed to different servers.

Similar to the case in the firewall, the programmer can fix the counter example of the load balancer by patching
the program, adding network assumption (e.g. assuming no server is connected to two load-balancers), or changing
property specification (e.g. “load-balanced packets that are forwarded out of different ports of the load balancer
do not share the same source address”).

5.5 Address Resolution Protocol

The final case study we focus on is the Address Resolution Protocol (ARP) in an Ethernet network. End hosts
use ARP to request the destination MAC address corresponding to an IP address they want to communicate to.
Traditionally, the ARP requests are broadcast through the domain. In our case study, we replace the broadcast
with a centralized controller that answers ARP requests.

Figure 18 presents an implementation of our NDLog encoding of SDN-based ARP (progARP). Key tuples
generated at each node executing the program are listed in Table 10. We summarize the program in Table 8.

In a typical execution, an end host initiates an ARP request and broadcasts it to the network (rh1). When a
switch receives the packet, it informs the controller of the ARP request (rs1). The controller first remembers the
location of the requested end host (rc1). Then it registers the mapping between the source IP address and source
MAC address as indicated in the request for future address resolution (rc2, rc3). After this, the controller looks up
the destination IP address in the mapping table (rc4). If the mapping is found, the controller generates an ARP
reply message, and instructs the relaying switch to sends back the message (rc5). The switch will reply to the end
host as instructed (rs2), so that the end host gets the correct destination MAC address and finishes ARP (rh2).

The purpose of Address Resolution Protocol (ARP) is to find out the MAC address of a device in a Local Area
Network (LAN). When a source device want to communicate with another device, source device checks its Address
Resolution Protocol (ARP) cache to find it already has a resolved MAC Address of the destination device. If it is
there, it will use that MAC Address for communication. If ARP resolution is not there in local cache, the source
machine will generate an Address Resolution Protocol (ARP) request message and broadcast it to the LAN. The
message is received by each device on the LAN since it is a broadcast. Each device compare the Target Protocol
Address (IPv4 Address of the machine to which the source is trying to communicate) with its own Protocol Address
(IPv4 Address). Those who do not match will drop the packet without any action.

38

Role Rule Summary
Host rh1 Host sends an ARP request to a switch that is directly connected to it

rh2 Host receives an ARP reply from the connected switch and stores the message
Controller rc1 Receives an ARP request and registers the location of the source address

rc2 Receives an ARP request and extracts core information related to address resolution
rc3 Record the mapping between source IP address and source MAC address
rc4 Looks up destination IP address of the ARP request in the local ARP cache,

and generates an ARP reply packet to answer to request
rc5 Wraps the ARP reply packet inside an OpenFlow message

instructing the switch to relay the ARP reply back to the requesting host
Switch rs1 Receives an ARP request message and relays it to the controller for address resolution

rs2 Follows the controller’s instruction and relays the ARP reply back to the requesting host

Table 8: Summary of progARP encoding

Property Property description Formal Specification Result

ϕARP1
If any controller sends an ARP re-
sponse for IP address IPA, then
some end host had sent a broad-
cast ARP request message for IPA.

∀Controller , IPA,MacA,DstIP ,DstMac,
arpReplyCtl(Controller , IPA,MacA,DstIP ,DstMac) ⊃
∃Qmac,

arpRequest(Host ,DstIp,DstMac, IPA,Qmac)
∧ Qmac = 255

true

ϕARP2 If any controller has a map be-
tween IP address IPA and MAC
address MacA, then host A has
sent a broadcast ARP request.

∀Controller , IPA,MacA,
arpMapping(Controller , IPA,MacA) ⊃
∃Host ,SrcIP ,SrcMac,DstIP ,DstMac,

arpReply(Host , IPA,MacA,DstIp,DstMac)
∧ DstMac = 255

true

Table 9: Results of checking safety properties of progARP on our tool

Verification results We verify a number of safety properties on ARP, and all these properties prove to be true.
The detailed results can be found in Table 9.

5.6 Discussion

We conclude the case studies by briefly discussing the experience and insights that we obtain when performing the
case studies.

Cause of property violation The counter examples we discuss above reveal a common pattern: when a predi-
cate in the program has multiple derivations, proving properties over the predicate becomes harder. The situation is
even worse when a property involves multiple predicates, each with multiple derivations. The increased complexity
of predicate derivations makes it error-prone for human programmers to write correct programs or specify correct
properties, and serves as the core cause of property violation. Naturally, the fixes we proposed for counter examples
generally fall into two categories: (1) enriching the property specification to include the missing derivations, or (2)
changing the program to remove the uncovered derivations.

Iterative application development Another observation is that reasonable network assumption (e.g. topolog-
ical constraints) helps prune scenarios that would not appear in actual executions, and generate insightful counter
examples. For example, a counter example may suggest a topology where a switch has a link to itself. A pro-
grammer may start with trivial network assumptions and let the tool guide the exploration of corner cases and
gradually add (implicit) network assumptions that are not obvious to the programmer. In fact, our tool enables
the programmer to iteratively develop applications. The generated counter examples could help the programmer
understand (1) applicable domain of the program (feedback of missing network constraints); (2) implementation
correctness (feedback of bugs in the program); and/or (3) expected behavior of the program (feedback of incorrect

39

Predicate Description
packet(@Switch,Host ,DstMac,DstIp,SrcMac

SrcIp,Arptype)
Switch has received an ARP message of Arptype
(Request/Reply) from Host . The message is from
(SrcMac,SrcIp) to (DstMac,DstIp).

packetIn(@Controller ,Switch, InPort ,DstMac,DstIp
SrcMac,SrcIp,Arptype)

Initializes the packet above.

linkHst(@Host ,Switch,Port) Host is connected to Switch via Port
linkSwc(@Switch,Host , InPort) Switch is connected to Host via InPort
arpRequest(@Host ,SrcIp,SrcMac,DstIp,DstMac) An ARP request message at @Host , querying the corre-

sponding MAC address of DstIp, SrcIp and SrcMac rep-
resent the IP address and MAC address of Host . DstMac
uses broadcast address in Ethernet.

hostPos(@Controller ,SrcIp,Switch, InPort) The controller registers the information that the host with
Source IP SrcIp is connected the port InPort of Switch.

ofconnCtl(@Controller ,Switch) Controller has a connection to Switch
arpMapping(@Controller ,SrcIp,SrcMac) Controller remembers that the host of IP address SrcIp

has the MAC address SrcMac.
arpReqCtl(@Controller ,SrcIp,SrcMac,DstIp,DstMac) An ARP request message at Controller, querying the cor-

responding MAC address of DstIp, from the host with IP
address SrcIp and MAC address SrcMac.

arpReplyCtl(@Controller ,DstIp,DstMac,SrcIp,SrcMac) An ARP reply message answering SrcMac of SrcIp to the
host with IP address DstIp and MAC address DstMac,

packetOut(@Switch,Controller ,Port ,DstMac,DstIp,
SrcMac,SrcIp,Arptype)

An OpenFlow message sent from Controller to Switch, to
send an ARP packet of type Arptype from SrcIp,SrcMac
to DstIp,DstMac

flowEntry(@Switch,Arptype,Prio,Actions) A flow entry of priority Prio at Switch that applies Actions
to packets of type Arptype.

Table 10: Tuples for progARP

property specification). After the programmer fix the problem, s/he can redo the verification repeatedly until the
specified property holds.

40

/*Controller program*/

/*Install rules on switch*/

rc1 flowMod(@Switch, SrcMac, InPort) :-

ofconn(@Controller, Switch),

ofPacket(@Controller, Switch, InPort, SrcMac, DstMac).

/*Instruct the switch to send out the unmatching packet*/

rc2 broadcast(@Switch, InPort, SrcMac, DstMac) :-

ofconn(@Controller, Switch),

ofPacket(@Controller, Switch, InPort, SrcMac, DstMac).

/*Switch program*/

/*Query the controller when receiving unknown packets */

rs1 matchingPacket(@Switch, SrcMac, DstMac, InPort, TopPriority) :-

packet(@Switch, Nei, SrcMac, DstMac),

swToHst(@Switch, Nei, InPort),

maxPriority(@Switch, TopPriority).

/*Recursively matching flow entries*/

rs2 matchingPacket(@Switch, SrcMac, DstMac, InPort, NextPriority) :-

matchingPacket(@Switch, SrcMac, DstMac, InPort, Priority),

flowEntry(@Switch, MacAdd, OutPort, Priority),

Priority > 0,

DstMac != MacAdd,

NextPriority := Priority - 1.

/*A hit in flow table, forward the packet accordingly*/

rs3 packet(@OutNei, Switch, SrcMac, DstMac) :-

matchingPacket(@Switch, SrcMac, DstMac, InPort, Priority),

flowEntry(@Switch, MacAdd, OutPort, Priority),

swToHst(@Switch, OutNei, OutPort),

Priority > 0,

DstMac == MacAdd.

/*If no flow matches, send the packet to the controller*/

rs4 ofPacket(@Controller, Switch, InPort, SrcMac, DstMac) :-

ofconn(@Switch, Controller),

matchingPacket(@Switch, SrcMac, DstMac, InPort, Priority),

Priority == 0.

/*Insert a flow entry into forwarding table*/

/*(TODO): We assume all flow entries are independent, which is not general*/

rs5 flowEntry(@Switch, DstMac, OutPort, Priority) :-

flowMod(@Switch, DstMac, OutPort),

ofconn(@Switch, Controller),

maxPriority(@Switch, TopPriority),

Priority := TopPriority + 1.

/*TODO: should be a_MAX<Priority> in the head tuple*/

rs6 maxPriority(@Switch, Priority) :-

flowEntry(@Switch, DstMac, OutPort, Priority).

/*Following the controller’s instruction, send out the packet as broadcast*/

rs7 packet(@OutNei, Switch, SrcMac, DstMac) :-

broadcast(@Switch, InPort, SrcMac, DstMac),

swToHst(@Switch, OutNei, OutPort),

OutPort != InPort.

/*Host program*/

/*Packet initialization*/

rh1 packet(@Switch, Host, SrcMac, DstMac) :-

initPacket(@Host, Switch, SrcMac, DstMac),

hstToSw(@Host, Switch, OutPort).

/*Receive a packet*/

rh2 recvPacket(@Host, SrcMac, DstMac) :-

packet(@Host, Switch, SrcMac, DstMac),

hstToSw(@Host, Switch, InPort).

Figure 11: NDLog implementation of progESL

41

C1

S1 H4 2 1

packet
NextHop:S1,
PrevHop:S2,
Source: H6,
Destination:H3

S2

ofPacket
Switch:S1,
Controller:C1,
InPort:2,
Source: H6,
Destination:H3

broadcast
Switch: S1,
Controller: C1,
InPort: 2,
Source: H6,
Destination:H3

packet
NextHop:H4,
PrevHop:S1,
Source: H6,
Destination:H3

①
② ③

⑧

Execution Trace (1)

packet
NextHop:S1,
PrevHop:S2,
Source: H3,
Destination:H4

ofPacket
Switch:S1,
Controller:C1,
InPort:2,
Source: H3,
Destination:H4

flowMod
Switch: S1,
Match: H3,
Port: 2

⑤
⑥

⑦

flowEntry
Switch: S1,
Match: H3,
Port: 2,
Priority: 1

④
C1

S1 H4 2 1 S2

Execution Trace (2)

Figure 12: A counter example for property ϕESL2

packet
NextHop:S1,
PrevHop:S2,
Source: H6,
Destination:H4)

ofPacket
Switch:S1,
Controller:C1,
InPort:2,
Source: H6,
Destination:H4

broadcast
Switch: S1,
Controller: C1,
InPort: 2,
Source: H6,
Destination:H4

packet
NextHop:H4,
PrevHop:S1,
Source: H6,
Destination:H4

①
② ③

④

C1

S1 H4 2 1 S2

Figure 14: A counter example for property ϕESL3

pktIn
Firewall: F1,
Source: H3,
InPort: 2(Trust),
Destination:H4

pktReceived
Destination: H4,
OutPort: 1(Trust),
Source: H3,
InPort:2,
Firewall: F1

①
②

Internet

?

C1

F1 H4 2 1 H3

Figure 15: A counter example for property ϕWeakFW

/* total number of possible servers that the

* load balancers can send a packet to */

#define NUM_SERVERS 5

/* Initialize Packets*/

r1 packet(@LoadBalancer, Client, Server) :-

initPacket(@Client, Server, LoadBalancer).

/* Packet appearing on LoadBalancer is to be

* sent to its designated server */

r2 hashed(@LoadBalancer, Client, ServerNum, Server) :-

packet(@LoadBalancer, Client, Server),

designated(@LoadBalancer, DesignatedDst),

DesignatedDst == Server,

Value := f_hashIp(Client),

ServerNum := 1+f_modulo(Value, NumServers),

NumServers := NUM_SERVERS.

r3 recvPacket(@Server, Client, ServiceAddr) :-

hashed(@LoadBalancer, Client, ServerNum, ServiceAddr),

serverMapping(@LoadBalancer, Server, ServerNum).

/* Packet appearing on LoadBalancer is NOT to be

* sent to its designated server */

r4 recvPacket(@Server, Client, Server) :-

packet(@LoadBalancer, Client, Server),

designated(@LoadBalancer, DesignatedDst),

Server != DesignatedDst,

ServiceAddr := Server.

Figure 17: NDLog implementation of progLB

42

/* constants */

#define BROADCAST "ff:ff:ff:ff:ff"

#define ALL_PORT 0

#define ARP_TYPE "ARP"

#define IPV4_TYPE "IPV4"

#define CONTROLLER "controller"

#define ARP_REQUEST 1

#define ARP_REPLY 2

#define ARP_PRIO 1

/* Host program */

// Send ARP request to directly connected switch

rh1 packet(@Switch, Host, DstMac, DstIp, SrcMac, SrcIp, Arptype) :-

linkHst(@Host, Switch, Port),

arpRequest(@Host, SrcIp, SrcMac, DstIp, DstMac),

Host == SrcIP, Arptype := ARP_REQUEST, DstMac == BROADCAST.

// Received packet from switch and extract ARP reply packets

rh2 arpReply(@Host, SrcIp, SrcMac, DstIp, DstMac) :-

linkHst(@Host, Switch, Port),

packet(@Host, Switch, DstMac, DstIp, SrcMac, SrcIp, Arptype),

Arptype == ARP_REPLY, Type == ARP_TYPE, DstMac == Host.

/* Controller program */

// Register host position

rc1 hostPos(@Controller, SrcIp, Switch, InPort) :-

ofconnCtl(@Controller, Switch),

packetIn(@Controller, Switch, InPort, DstMac, DstIp, SrcMac, SrcIp, Arptype),

Arptype == ARP_REQUEST, DstMac == BROADCAST.

// Recover ARP request

rc2 arpReqCtl(@Controller, SrcIp, SrcMac, DstIp, DstMac) :-

packetIn(@Controller, Switch, InPort, DstMac, DstIp, SrcMac, SrcIp, Arptype),

ofconnCtl(@Controller, Switch), Arptype == ARP_REQUEST.

// Learn ARP mapping

rc3 arpMapping(@Controller, SrcIp, SrcMac) :-

arpReqCtl(@Controller, SrcIp, SrcMac, DstIp, DstMac).

// Generate ARP reply

rc4 arpReplyCtl(@Controller, DstIp, Mac, SrcIp, SrcMac) :-

arpReqCtl(@Controller, SrcIp, SrcMac, DstIp, DstMac),

arpMapping(@Controller, DstIp, Mac).

// Send out packet_out message

rc5 packetOut(@Switch, Controller, Port, DstMac, DstIp, SrcMac, SrcIp, Arptype) :-

arpReplyCtl(@Controller, SrcIp, SrcMac, DstIp, DstMac),

ofconnCtl(@Controller, Switch),

hostPos(@Controller, DstIp, Switch, Port), Arptype := ARP_REPLY.

/*Switch program*/

rs1 packetIn(@Controller, Switch, InPort, DstMac, DstIp, SrcMac, SrcIp, Arptype) :-

ofconnSwc(@Switch, Controller),

packet(@Switch, Host, DstMac, DstIp, SrcMac, SrcIp, Arptype),

linkSwc(@Switch, Host, InPort),

flowEntry(@Switch, Arptype, Prio, Actions),

Prio == ARP_PRIO, Actions == CONTROLLER, DstMac == BROADCAST.

rs2 packet(@Host, Switch, DstMac, DstIp, SrcMac, SrcIp, Arptype) :-

packetOut(@Switch, Controller, OutPort, DstMac, DstIp, SrcMac, SrcIp, Arptype),

linkSwc(@Switch, Host, OutPort), Arptype == ARP_REPLY.

Figure 18: NDLog implementation of progARP

43

6 Related Work

Network verification. In recent years, formal verification has received much attention in the network community.
There has been a cloud of prior work on network verification focusing on several different aspects. One aspect is the
verification of network configurations, where the proposed solutions detect network configuration errors either 1)
through static analysis of the configuration file [18, 2, 17, 38, 49], or 2) by analyzing snapshots of the data plane—
reflecting the aggregate impact of all configurations—during system execution [23, 22, 33, 51]. These solutions rely
heavily on application-specific network models and property specifications, which limits its adoption in more general
scenarios. The second aspect is to leverage proof-based and model-checking techniques to verify the correctness
of both the design and implementation of network protocols [48, 19, 25, 16, 47]. Such solutions often demand
participation of system administrators during the verification phase, and require domain-specific expertise. The
third aspect focuses on security properties, such as origin and route authenticity properties, in secure networking
protocols that use cryptographic primitives [5, 6, 14, 10, 52].

Most closely related to ours is the work on verifying network protocol design using declarative networking [48,
47, 10]. The general approach of the prior work share similarities with the one of ours—both model the network
behavior using trace semantics, and properties are specified and verified on the trace-based model. However, the
proposed solution in this paper enables automated static analysis of safety properties and generates counterexamples
for debugging purposes, whereas the prior work relies on manual proofs and therefore can handle a richer set of
properties.

SDN verification. One special case of network verification is SDN verification [8, 9, 24, 1, 21, 41, 46]. For
example, VeriCon [8] defines its own special language for modeling SDN controller and switches [8]. A hoare-
logic is developed on this language to prove properties of SDN controllers. The proof obligations are translated
to constraints and solved by the SMT solver. NICE is a testing tool for SDN controllers written in Python [9].
NICE combines symbolic execution of the controller programs with state-exploration-based model checking. An
alternative approach is to verify network configurations generated by SDN controllers in realtime, instead of verifying
the protocols directly [24, 33]. For instance, Anteater reduced SDN data plane verification into SAT problems so
that SAT solvers can solve them effectively in practice [33].

All of these tools are specially designed to analyze SDN controllers or dataplanes. We use NDLog as the
intermediary language for modeling network protocols and software-defined networks. Modeling and verifying
SDN controllers is one example application of our analysis; the analysis applies straightforwardly to other network
protocols as well. On the other hand, in the current state, we can only check simple safety properties, while VeriCon
and NICE can handle more expressive properties.

Verification of declarative programs. Declarative languages have been proposed to model systems in a variety
of domains such as networks, mobile agent planning, and algorithms for graph structures (e.g., Network Datalog
(Ndlog) [28], MELD [7], Linear Meld [15], Netlog [20], DAHL [32], Dedalus [4]). However, there has been few work
on analyzing low-level correctness properties of declarative programs. Notably, Wang et al. [47, 48] developed a
proof system for proving correctness properties of networking protocols specified in NDlog, where programs are
translated into equivalent first-order logic axioms, that is, all the body tuples are derivable if and only if the head
tuple is derivable.

44

7 Conclusion

In this paper, we presented an automated approach to analyzing and debugging network protocols using declarative
networking. By focusing on a specific class of safety properties, we are able to analyze NDLog programs with few
annotations. Our algorithm reduces property checking to constraint solving that can be automatically checked by
the SMT solver Z3. We prove the correctness of our algorithms and implement a prototype tool on top of RapidNet,
a compilation and execution framework for NDLog. As our case studies, we analyzed a number of real-world SDN
network protocols and their safety properties. The case study demonstrated that, when a given safety property is
violated, our tool can also provide meaning counterexamples to help debug the protocol specification.

Future Work Currently, our tool can only check for safety properties where “bad things haven’t happened yet”.
We want to extend it to be able to check for liveness properties, where “Something good eventually happens”.Since
we already derive the provenance for head tuples of NDLog rules, another potential area to be explored is provenance
related topics.

45

References

[1] Ehab Al-Shaer and Saeed Al-Haj. Flowchecker: Configuration analysis and verification of federated openflow
infrastructures. In SafeConfig, 2010.

[2] Ehab Al-Shaer and Hazem Hamed. Discovery of policy anomalies in distributed firewalls. In INFOCOM, 2004.

[3] Peter Alvaro, Tyson Condie, Neil Conway, Khaled Elmeleegy, Joseph M. Hellerstein, and Russell Sears. Boom
analytics: Exploring data-centric, declarative programming for the cloud. In Eurosys, 2010.

[4] Peter Alvaro, William Marczak, Neil Conway, Joseph M. Hellerstein, David Maier, and Russell C Sears.
Dedalus: Datalog in time and space. Technical Report UCB/EECS-2009-173, EECS Department, University
of California, Berkeley, Dec 2009.

[5] Mathilde Arnaud, Véronique Cortier, and Stéphanie Delaune. Modeling and verifying ad hoc routing protocols.
In CSF, 2010.

[6] Mathilde Arnaud, Véronique Cortier, and Stéphanie Delaune. Deciding security for protocols with recursive
tests. In CADE, 2011.

[7] Michael P. Ashley-Rollman, Seth Copen Goldstein, Peter Lee, Todd C. Mowry, and Padmanabhan Pillai.
Meld: A declarative approach to programming ensembles. In IROS, 2007.

[8] Thomas Ball, Nikolaj Bjørner, Aaron Gember, Shachar Itzhaky, Aleksandr Karbyshev, Mooly Sagiv, Michael
Schapira, and Asaf Valadarsky. Vericon: Towards verifying controller programs in software-defined networks.
In PLDI, 2014.

[9] Marco Canini, Daniele Venzano, Peter Peresini, Dejan Kostic, and Jennifer Rexford. A nice way to test
openflow applications. In NSDI, 2012.

[10] Chen Chen, Limin Jia, Hao Xu, Cheng Luo, Wenchao Zhou, and Boon Thau Loo. A program logic for verifying
secure routing protocols. In FORTE, 2014.

[11] Chen Chen, Lay Kuan Loh, Limin Jia, Wenchao Zhou, and Boon Thau Loo. Automated verification of safety
properties of declarative networking programs. Submitted to PPDP, 2015.

[12] Xu Chen, Yun Mao, Z. Morley Mao, and Jacobus van der Merwe. Declarative Configuration Management for
Complex and Dynamic Networks. In Co-NEXT, 2010.

[13] David Chiyuan Chu, Lucian Popa, Arsalan Tavakoli, Joseph M. Hellerstein, Philip Levis, Scott Shenker, and
Ion Stoica. The Design and Implementation of a Declarative Sensor Network System. In SenSys, 2007.

[14] Véronique Cortier, Jan Degrieck, and Stéphanie Delaune. Analysing routing protocols: four nodes topologies
are sufficient. In POST, 2012.

[15] Flávio Cruz, Ricardo Rocha, Seth Copen Goldstein, and Frank Pfenning. A linear logic programming language
for concurrent programming over graph structures. TPLP, 14(4-5):493–507, 2014.

[16] Dawson Engler and Madanlal Musuvathi. Model-checking large network protocol implementations. In NSDI,
2004.

[17] Nick Feamster and Hari Balakrishnan. Detecting bgp configuration faults with static analysis. In NDSI, 2005.

[18] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-Sullivan, Ramesh Govindan, Ratul Mahajan, and Todd
Millstein. A general approach to network configuration analysis. In NSDI, 2015.

[19] Alwyn Goodloe, Carl A. Gunter, and Mark-Oliver Stehr. Formal prototyping in early stages of protocol design.
In WITS, 2005.

[20] Stéphane Grumbach and Fang Wang. Netlog, a rule-based language for distributed programming. In PADL,
2010.

[21] Stephen Gutz, Alec Story, Cole Schlesinger, and Nate Foster. Splendid isolation: A slice abstraction for
software-defined networks. In HotSDN, 2012.

46

[22] P Kazemian, M Chan, H Zeng, G Varghese, N McKeown, and S Whyte. Real time network policy checking
using header space analysis. In NSDI, 2013.

[23] Peyman Kazemian, George Varghese, and Nick McKeown. Header space analysis: static checking for networks.
In NSDI, 2012.

[24] Ahmed Khurshid, Wenxuan Zhou, Matthew Caesar, and P. Brighten Godfrey. Veriflow: Verifying network-wide
invariants in real time. In HotSDN, 2012.

[25] Charles Killian, James Anderson, Ranjit Jhala, and Amin Vahdat. Life, death, and the critical transition:
Finding liveness bugs in systems code. In NSDI, 2007.

[26] Changbin Liu, Ricardo Correa, Harjot Gill, Tanveer Gill, Xiaozhou Li, Shivkumar Muthukumar, Taher Saeed,
Boon Thau Loo, and Prithwish Basu. PUMA: Policy-based Unified Multi-radio Architecture for Agile Mesh
Networking. In COMSNETS, 2012.

[27] Changbin Liu, Ricardo Correa, Xiaozhou Li, Prithwish Basu, Boon Thau Loo, and Yun Mao. Declarative
policy-based adaptive mobile ad hoc networking. IEEE/ACM Trans. Netw., 20(3):770–783, 2012.

[28] Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E. Gay, Joseph M. Hellerstein, Petros Maniatis,
Raghu Ramakrishnan, Timothy Roscoe, and Ion Stoica. Declarative Networking: Language, Execution and
Optimization. In SIGMOD, 2006.

[29] Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E. Gay, Joseph M. Hellerstein, Petros Maniatis,
Raghu Ramakrishnan, Timothy Roscoe, and Ion Stoica. Declarative Networking. In CACM, 2009.

[30] Boon Thau Loo, Tyson Condie, Joseph M. Hellerstein, Petros Maniatis, Timothy Roscoe, and Ion Stoica.
Implementing Declarative Overlays. In SOSP, 2005.

[31] Boon Thau Loo, Joseph M. Hellerstein, Ion Stoica, and Raghu Ramakrishnan. Declarative Routing: Extensible
Routing with Declarative Queries. In SIGCOMM, 2005.

[32] Nuno P. Lopes, Juan A. Navarro, Andrey Rybalchenko, and Atul Singh. Applying prolog to develop distributed
systems. In ICLP, 2010.

[33] Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Caesar, P. Brighten Godfrey, and Samuel Talmadge
King. Debugging the data plane with anteater. In SIGCOMM, 2011.

[34] Yun Mao, Boon Thau Loo, Zachary Ives, and Jonathan M. Smith. MOSAIC: Unified Platform for Dynamic
Overlay Selection and Composition. In Co-NEXT, 2008.

[35] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jennifer Rexford, Scott
Shenker, and Jonathan Turner. Openflow: Enabling innovation in campus networks. SIGCOMM Comput.
Commun. Rev., 38(2):69–74, 2008.

[36] Shivkumar C. Muthukumar, Xiaozhou Li, Changbin Liu, Joseph B. Kopena, Mihai Oprea, Ricardo Correa,
Boon Thau Loo, and Prithwish Basu. RapidMesh: declarative toolkit for rapid experimentation of wireless
mesh networks. In WINTECH, 2009.

[37] Tim Nelson, Andrew D. Ferguson, Michael J. G. Scheer, and Shriram Krishnamurthi. Tierless programming
and reasoning for software-defined networks. In NSDI, 2014.

[38] Timothy Nelson, Christopher Barratt, Daniel Dougherty, Kathi Fisler, and Shriram Krishnamurthi. The
margrave tool for firewall analysis. In LISA, 2010.

[39] Network Simulator 3. http://www.nsnam.org/.

[40] Vivek Nigam, Limin Jia, Boon Thau Loo, and Andre Scedrov. Maintaining Distributed Logic Programs
Incrementally. In PPDP, 2011.

[41] P Porras, S Shin, V Yegneswaran, M Fong, M Tyson, and G Gu. A security enforcement kernel for openflow
networks. In HotSDN, 2012.

47

http://www.nsnam.org/

[42] Raghu Ramakrishnan and Jeffrey D. Ullman. A Survey of Research on Deductive Database Systems. Journal
of Logic Programming, 23(2):125–149, 1993.

[43] RapidNet. http://netdb.cis.upenn.edu/rapidnet/.

[44] Micah Sherr, Andrew Mao, William R. Marczak, Wenchao Zhou, Boon Thau Loo, and Matt Blaze. A3: An
extensible platform for application-aware anonymity. In NDSS, 2010.

[45] Atul Singh, Tathagata Das, Petros Maniatis, Peter Druschel, and Timothy Roscoe. BFT Protocols Under
Fire. In NSDI, 2008.

[46] R. W Skowyra, A Lapets, A Bestavros, and A Kfoury. Verifiably-safe software-defined networks for cps. In
HiCoNS, 2013.

[47] Anduo Wang, Prithwish Basu, Boon Thau Loo, and Oleg Sokolsky. Declarative network verification. In PADL,
2009.

[48] Anduo Wang, Boon Thau Loo, Changbin Liu, Oleg Sokolsky, and Prithwish Basu. A Theorem Proving
Approach towards Declarative Networking. In TPHOLs, 2009.

[49] L Yuan, H Chen, J Mai, C. N. Chuah, Z Su, and P Mohapatra. Fireman: A toolkit for firewall modeling and
analysis. In SRSP, 2006.

[50] Z3. http://z3.codeplex.com/.

[51] Hongyi Zeng, Shidong Zhang, Fei Ye, Vimalkumar Jeyakumar, Mickey Ju, Junda Liu, Nick McKeown, , and
Amin Vahdat. Libra: Divide and conquer to verify forwarding tables in huge networks. In NSDI, 2014.

[52] Fuyuan Zhang, Limin Jia, Cristina Basescu, Tiffany Hyun-Jin Kim, Yih-Chun Hu, and Adrian Perrig. Mech-
anized network origin and path authenticity proofs. In CCS, 2014.

[53] Wenchao Zhou, Qiong Fei, Arjun Narayan, Andreas Haeberlen, Boon Thau Loo, and Micah Sherr. Secure
Network Provenance. In SOSP, 2011.

[54] Wenchao Zhou, Suyog Mapara, Yiqing Ren, Yang Li, Andreas Haeberlen, Zachary Ives, Boon Thau Loo, and
Micah Sherr. Distributed Time-aware Provenance. In VLDB, 2013.

[55] Wenchao Zhou, Micah Sherr, Tao Tao, Xiaozhou Li, Boon Thau Loo, and Yun Mao. Efficient Querying and
Maintenance of Network Provenance at Internet-Scale. In SIGMOD, 2010.

48

http://netdb.cis.upenn.edu/rapidnet/
http://z3.codeplex.com/

	Introduction
	Overview
	Declarative Networking
	Analysis Overview
	Example Constraint Pool

	Analyzing Non-recursive Programs
	Derivation Pool Construction
	Property Query
	Network Constraints
	Correctness

	Extension to Recursive Programs
	Derivation Pool for Recursive Predicates
	Property Query
	Correctness

	Case Studies
	Verification process
	Ethernet Source Learning
	Firewall
	Load Balancing
	Address Resolution Protocol
	Discussion

	Related Work
	Conclusion

