
15-812 Term Paper:
Specifying and proving cluster membership for the Raft

distributed consensus algorithm

Brandon Amos and Huanchen Zhang∗

2015/05/10

∗Equal contribution, alphabetical order.

1

Contents

1 Introduction 3

2 Background 3
2.1 The Raft Consensus Algorithm . 3

2.1.1 Safety and Availability . 4
2.2 Temporal Logic of Actions (TLA) . 4

3 Adding cluster membership changes to Raft’s formal specification 5
3.1 Modeling Network Messages . 5
3.2 New Variables . 6
3.3 Initial state of the system . 6
3.4 State Transitions . 6

3.4.1 AddNewServer . 7
3.4.2 DeleteServer . 7

3.5 Modifying helper functions . 8
3.5.1 Quorum . 8
3.5.2 Getting a server’s configuration . 8

3.6 Handlers for configuration changes . 9
3.6.1 Handling CatchupRequest messages 9
3.6.2 Handling CatchupResponse messages 9
3.6.3 Handling CheckOldConfig messages 11

3.7 Mitigating effects of disruptive servers . 12
3.8 Model checking the specification . 12

4 Proofs 12
4.1 Safety: There is never more than one leader. 12
4.2 Proof Sketch for Availability: A leader can be elected in the future 15

5 Broken Raft? 15
5.1 Cluster membership changes . 15

5.1.1 New servers need to vote for availability 15
5.1.2 New members voting causes inconsistencies 16

6 Conclusion and Future Work 18

References 18

A Original TLA+ Specification 19

B Our Modified TLA+ Specification 31

2

1 Introduction

Distributed consensus is popular in today’s world as many large-scale production systems
rely on reaching consensus among a set of decentralized servers. Consensus algorithms are
notoriously difficult to correctly implement and formal verification methods are helpful in
proving properties of the algorithms.

Raft is a newly released consensus algorithm that is beginning to be adopted in large-
scale systems [OO14]. A partial formal specification of Raft is presented in [Ong14] and used
in hand proofs for a subset of properties.

In this report, we add new functionality to the formal specification in §3. We prove (by
hand) a safety property of there being at most one leader per term under our modifications
in §4.1. We describe a proof sketch in §4.2 showing that at any point, a leader can be elected
in the future.

2 Background

2.1 The Raft Consensus Algorithm

Raft is consensus algorithm that allows a collection of machines to work as a coherent group
that can survive failures of some members and is presented at USENIX ATC’14 [OO14]
and further expanded on in Diego Ongaro’s thesis [Ong14]. The Secret Lives of Data [sec]
provides a visual walkthrough and introduction to Raft.

Raft has moved beyond academia and is being implemented and deployed in large-scale
production systems, as described on the website [raf].

Some important concepts and terms for understanding Raft are:

• Replicated Log. Each node maintains a log that contains values and configuration
entries. Because the system is distributed, the logs aren’t guaranteed to be consistent
on every server. Log entries can be committed, which means that a majority of the
nodes agree on the entry. A majority of nodes is also called a quorum.

• Server states. Servers in the cluster exist in the following three states.

– Leader. The leader receives requests from external entities to append values to
the replicated log.

– Follower. Followers receive commands from the leader to add new entries to
their logs.

– Candidate. If a follower doesn’t hear from a leader within a specified interval,
it times out and becomes a candidate.

• Configuration. The configuration is the set of servers in the Raft system. The
protocol allows servers to be added and removed from the system.

In this report, we study adding and removing servers from the cluster. Adding and
removing servers is done by operating on one server at a time and keeping track of the con-
figuration with the normal log replication mechanisms. The RPC’s for adding and removing
servers are fully described in Figure 1.

3

Figure 1: Implementation of Raft’s Add and Remove RPC’s. Copied from Figure 4.1 of
[Ong14] and included here for completeness.

2.1.1 Safety and Availability

Safety and availability (or liveness) are fundamental properties systems that are important
to formally verify [AS87]. The safety property of Raft we focus on is that two leaders can
never be elected in the same term. An availability property of Raft is that a leader can be
elected at some point in the future.

2.2 Temporal Logic of Actions (TLA)

Lamport’s temporal logic of actions (TLA) [Lam94] is a logic for specifying and reasoning
about concurrent systems. Figure 2 summarizes minimal syntax and semantics of TLA.
TLA+ is formal specification language that describes system behavior using TLA [Lam02].
TLA+ breaks distributed algorithms into state transition functions that specify all possible
behaviors of the system. The TLA+ Model Checker (TLC) [YML99] exhaustively checks
whether a property or invariant holds. The TLA+ Proof System [CDLM08] mechanically
checks TLA+ proofs. [Lam00] provides a helpful summary and description for reading and
writing TLA+.

Appendix B of Ongaro’s thesis [Ong14] provides a TLA+ specification and hand-written
proofs of a subset of Raft’s properties and features. §8 of the thesis provides informal
arguments about correctness. For completeness (and convenience), this report includes the
original TLA+ specification in Appendix A.

4

Figure 2: Summary of TLA’s simple syntax and semantics. Copied from Figure 4 of [Lam94]
and included here for completeness.

3 Adding cluster membership changes to Raft’s formal

specification

We have extended Raft’s formal TLA+ specification to allow server configuration changes.
For completeness, Appendix B provides our modified specification.

3.1 Modeling Network Messages

We utilize the existing specification for messaging between Raft nodes by using the Send,
Discard, and Reply helper functions. Messages in the system are represented as a bag in
messages that maps a message’s content to an integer. This integer counts the number of
active messages in the system and is initialized to one, incremented by one when a message
is duplicated or sent again, and decremented by one when a message is discarded or replied
to.

5

Network packets can be duplicated or dropped, which the TLA+ specification models
with Duplicate and Drop in the state transition function.

3.2 New Variables

We have added the following new variables and constants to the specification. Our original
modifications included other variables that introduced a new state for detached servers and
kept track of additional indexes. However, we realized these could be deduced mathemati-
cally from other variables in the system.

• NumRounds. The number of rounds to catch each server up by.

• InitServer and Server. Previously, there was only a single constant describing the
set of servers in the system. We have modified this to describe both an initial and
global set of servers that can be added and removed.

• ValueEntry and ConfigEntry. Previously, the log only contained homogeneous en-
tries. Now, configuration changes are also stored in the log and each entry is now
identified as either a value or config with a type metadata.

• CatchupRequest, CatchupResponse, and CheckOldConfig. New message types in the
system to catch up servers and check if the old config have been committed.

3.3 Initial state of the system

We have only slightly modified the system initialization in Init to correctly handle the
changed set of servers. Every variable is initialized to contain information for the global set
of servers, even if they aren’t in the initial configuration, so that the lists do not have to be
resized every time a server receives a configuration change. This prevents some corner cases
when server receives a configuration change in it’s log that doesn’t get committed that is
then overwritten by another log entry.

3.4 State Transitions

In the Next state transition definitions, we modify the existential operators to operate on the
global set of servers. Some servers might not be in any configurations, so we add restrictions
to the state transition functions.

• Timeout. A server can only timeout, become a candidate, and start a new election if
it is in its own configuration.

• RequestVote. Candidates only request votes from servers in their configuration.

• AppendEntries. Leaders only send new log entries to servers in their configuration.

• BecomeLeader. A candidate can only become a leader if they receive votes from a
majority of their quorum.

6

• ClientRequest. Unmodified, only leaders receive requests from clients to add new
values to the replicated state machine.

• AdvanceCommitIndex. Leaders can advance the commit index if all servers in their
config agree.

3.4.1 AddNewServer

We have added a new state transition function to add a new server to the system. This can be
called when some server i is the leader and adds a new server that’s not in it’s configuration.
This sends a CatchupRequest message to the server to be added with log entries to append.

The first time this is called, nextIndex[i][j] will be 0 and the entire committed log
will be sent. However, this can be called multiple times before a server is added when i is
still a leader, since j will not be added to it’s configuration until the server is sufficiently
caught up. Therefore, the leader uses nextIndex[i][j] to keep track of the new server’s
state so that duplicate requests are not harmful.

Leader i adds a new server j to the cluster.

AddNewServer(i , j)
∆
=

∧ state[i] = Leader
∧ j /∈ GetConfig(i)
∧ currentTerm ′ = [currentTerm except ! [j] = 1]
∧ votedFor ′ = [votedFor except ! [j] = Nil]
∧ Send([mtype 7→ CatchupRequest ,

mterm 7→ currentTerm[i],
mlogLen 7→ matchIndex [i][j],
mentries 7→ SubSeq(log [i], nextIndex [i][j], commitIndex [i]),
mcommitIndex 7→ commitIndex [i],
msource 7→ i ,
mdest 7→ j ,
mrounds 7→ NumRounds])

∧ unchanged 〈state, leaderVars , logVars , candidateVars〉

3.4.2 DeleteServer

Deleting a server is simpler than adding a server because no catching up needs to be done.
The system needs to wait until a previous configuration change has been committed. One
edge case that we haven’t specified is when a leader is asked to delete itself.

Leader i removes a server j (possibly itself) from the cluster.

DeleteServer(i , j)
∆
=

∧ state[i] = Leader
∧ state[j] ∈ {Follower , Candidate}
∧ j ∈ GetConfig(i)

7

∧ j 6= i TODO : A leader cannot remove itself.

∧ Send([mtype 7→ CheckOldConfig ,
mterm 7→ currentTerm[i],
madd 7→ false,
mserver 7→ j ,
msource 7→ i ,
mdest 7→ i])

∧ unchanged 〈serverVars , candidateVars , leaderVars , logVars〉

3.5 Modifying helper functions

3.5.1 Quorum

With static configurations, the quorum remains constant throughout execution. However,
with dynamically changing configurations, a quorum is specific to each server’s current view
of the system, so we have added a parameter to the Quorum helper function definition so
each server can compute a quorum for it’s current configuration.

The set of all quorums for a server configuration.

This just calculates simple majorities, but the only

important property is that every quorum overlaps with every other.

Quorum(config)
∆
= {i ∈ subset (config) : Cardinality(i) ∗ 2 > Cardinality(config)}

3.5.2 Getting a server’s configuration

Servers immediately start using configuration entries as they are appended to their logs, be-
fore they’re committed. If a server’s log has no configuration entries, the initial set of servers
is used. We introduce the following helper functions GetMaxConfigIndex and GetConfig

because many portions of the handlers and state transition functions require the server’s
configuration.

Return the index of the latest configuration in server i ’s log .

GetMaxConfigIndex (i)
∆
=

let configIndexes
∆
= {index ∈ 1 . . Len(log [i]) : log [i][index].type = ConfigEntry}

in if configIndexes = {} then 0
else Max (configIndexes)

Return the configuration of teh latest configuration in server i ’s log .

GetConfig(i)
∆
=

if GetMaxConfigIndex (i) = 0 then InitServer
else log [i][GetMaxConfigIndex (i)].value

8

3.6 Handlers for configuration changes

We have introduced the following handlers for the new messages in the system.

3.6.1 Handling CatchupRequest messages

When a detached server receives this message, it should first check if the message is still valid,
by checking mterm in the message. If this agrees, the server will appropriately overwrite
and/or append the new entries (mentries) to it’s log and respond to the leader indicating
the current log position and that it has one less round to complete.

Detached server i receives a CatchupRequest from leader j .

HandleCatchupRequest(i , j , m)
∆
=

∨ ∧m.mterm < currentTerm[i]
∧ Reply([mtype 7→ CatchupResponse,

mterm 7→ currentTerm[i],
msuccess 7→ false,
mmatchIndex 7→ 0,
msource 7→ i ,
mdest 7→ j ,
mroundsLeft 7→ 0],
m)

∧ unchanged 〈serverVars , candidateVars ,
leaderVars , logVars〉

∨ ∧m.mterm ≥ currentTerm[i]
∧ currentTerm ′ = [currentTerm except ! [i] = m.mterm]
∧ log ′ = [log except ! [i] = SubSeq(log [i], 1, m.mlogLen) ◦m.mentries]
∧ Reply([mtype 7→ CatchupResponse,

mterm 7→ currentTerm[i],
msuccess 7→ true,
mmatchIndex 7→ Len(log [i]),
msource 7→ i ,
mdest 7→ j ,
mroundsLeft 7→ m.mrounds − 1],
m)

∧ unchanged 〈state, votedFor , candidateVars , leaderVars ,
commitIndex 〉

3.6.2 Handling CatchupResponse messages

When a leader receives the CatchupResponse message, it checks if the server indicated it
was successful in msuccess, then makes sure the mmatchIndex is correctly set. If so, it will
send another request to the server with new log entries to catch up if there are still rounds

9

remaining. Otherwise, it will send a message to itself to wait until any uncommitted entries
in it’s log have been committed.

Leader i receives a CatchupResponse from detached server j .

HandleCatchupResponse(i , j , m)
∆
=

A real system checks for progress every timeout interval.

Assume that if this response is called, the new server

has made progress.

∧ ∨ ∧m.msuccess
∧ ∨ ∧m.mmatchIndex 6= commitIndex [i]
∧m.mmatchIndex 6= matchIndex [i][j]
∨m.mmatchIndex = commitIndex [i]
∧ state[i] = Leader
∧m.mterm = currentTerm[i]
∧ j /∈ GetConfig(i)
∧ nextIndex ′ = [nextIndex except ! [i][j] = m.mmatchIndex + 1]
∧matchIndex ′ = [matchIndex except ! [i][j] = m.mmatchIndex]
∧ ∨ ∧m.mroundsLeft 6= 0
∧ Reply([mtype 7→ CatchupRequest ,

mterm 7→ currentTerm[i],
mentries 7→ SubSeq(log [i],

nextIndex [i][j],
commitIndex [i]),

mLogLen 7→ nextIndex [i][j]− 1,
msource 7→ i ,
mdest 7→ j ,
mrounds 7→ m.mroundsLeft],
m)

∨ ∧m.mroundsLeft = 0
A real system makes sure the final call to this handler is

received after a timeout interval.

We assume that if a timeout happened, the message

has already been dropped.

∧ Reply([mtype 7→ CheckOldConfig ,
mterm 7→ currentTerm[i],
madd 7→ true,
mserver 7→ j ,
msource 7→ i ,
mdest 7→ i], m)

∧ unchanged 〈elections〉
∨ ∧ ∨ ¬m.msuccess
∨ ∧ ∨m.mmatchIndex = commitIndex [i]
∨m.mmatchIndex = matchIndex [i][j]
∧m.mmatchIndex 6= commitIndex [i]
∨ state[i] 6= Leader

10

∨m.mterm 6= currentTerm[i]
∨ j ∈ GetConfig(i)
∧ Discard(m)
∧ unchanged 〈leaderVars〉

∧ unchanged 〈serverVars , candidateVars , logVars〉

3.6.3 Handling CheckOldConfig messages

This handler causes the leader to wait until an uncommitted configuration is committed
before adding a new entry. This is used both for adding and removing servers. If there is
still an uncommitted entry, the leader will send itself another message to check again in the
future. In a real system, this could be implemented by using a background thread on the
server that sleeps and periodically checks, but this is nontrivial to model in the TLA+ spec
and is equivalent to sending itself a message, even though the message can be duplicated or
dropped.

Leader i receives a CheckOldConfig message.

HandleCheckOldConfig(i , m)
∆
=

∨ ∧ state[i] 6= Leader ∨m.mterm = currentTerm[i]
∧ Discard(m)
∧ unchanged 〈serverVars , candidateVars , leaderVars , logVars〉
∨ ∧ state[i] = Leader ∧m.mterm = currentTerm[i]
∧ ∨ ∧GetMaxConfigIndex (i) ≤ commitIndex [i]
∧ let newConfig

∆
= if m.madd then union {GetConfig(i), {m.mserver}}
else GetConfig(i) \ {m.mserver}

newEntry
∆
= [term 7→ currentTerm[i], type 7→ ConfigEntry , value 7→ newConfig]

newLog
∆
= Append(log [i], newEntry)

in log ′ = [log except ! [i] = newLog]
∧ Discard(m)
∧ unchanged 〈commitIndex 〉
∨ ∧GetMaxConfigIndex (i) > commitIndex [i]
∧ Reply([mtype 7→ CheckOldConfig ,

mterm 7→ currentTerm[i],
madd 7→ m.madd ,
mserver 7→ m.mserver ,
msource 7→ i ,
mdest 7→ i],
m)

∧ unchanged 〈logVars〉
∧ unchanged 〈serverVars , candidateVars , leaderVars〉

11

3.7 Mitigating effects of disruptive servers

Configuration changes can servers that have been removed to cause suboptimal (but still
correct) system performance, as illustrated in Figure 3.

By studying our new specification, we have added a slight modification to the Raft
algorithm to lessen the impacts disruptive servers can have: Servers can only timeout if they
are in their own configuration.

Figure 3: An example of how a server can be disruptive even before the Cnew log entry has
been committed. The figure shows the removal of S1 from a four-server cluster. S4 is leader
of the new cluster and has created the Cnew entry in its log, but it hasn’t yet replicated that
entry. Even before Cnew is committed, S1 can time out, increment its term, and send this
larger term number to the new cluster, forcing S4 to step down. Figure and description
copied from Figure 4.7 of [Ong14] and included here for completeness.

3.8 Model checking the specification

We have used the TLC model checker to validate simple cases of our modified specification.
We created invariants that we knew would be broken so that we could obtain a traceback
of the operations and messages that caused the point to be reached. One example is that
a server that’s not in the initial configuration eventually receives log entries because it has
been added to the cluster.

4 Proofs

4.1 Safety: There is never more than one leader.

Lemma 1. Let n ≥ 2, c1 = {1, . . . , n}, c2 = {1, . . . , n−1}. If s ∈ Quorum(c1), t ∈ Quorum(c2),
then s ∩ t 6= ∅.

12

Proof.

|s| ≥
⌊

n

2

⌋
+ 1

|t | ≥
⌊

n − 1

2

⌋
+ 1

|s|+ |t | ≥ n + 1

Since there are only n unique elements in c1 ∪ c2, s ∩ t 6= ∅.

Lemma 2. Let n ≥ 1, c1 = {1, . . . , n}, c2 = {1, . . . , n+1}. If s ∈ Quorum(c1), t ∈ Quorum(c2),
then s ∩ t 6= ∅.

Proof.

|s| ≥
⌊

n

2

⌋
+ 1

|t | ≥
⌊

n + 1

2

⌋
+ 1

|s|+ |t | ≥ n + 2

Since there are only n + 1 unique elements in c1 ∪ c2, s ∩ t 6= ∅.

Lemma 3. Let n ≥ 1, c1 = {1, . . . , n−1}, c2 = {1, . . . , n+1}. If s ∈ Quorum(c1), t ∈ Quorum(c2),
then s ∩ t 6= ∅.

Proof.

|s| ≥
⌊

n − 1

2

⌋
+ 1

|t | ≥
⌊

n + 1

2

⌋
+ 1

|s|+ |t | ≥ n + 2

Since there are only n + 1 unique elements in c1 ∪ c2, s ∩ t 6= ∅.

Lemma 4. A quorum cannot be formed based on a stale config (i.e. a config that is before
the latest committed config)

Proof. Let Clatest be the latest committed config and Clatest−1 be the config that is committed
right before Clatest.

Suppose Clatest = {1, . . . , n}. Then, Clatest−1 can either be {1, . . . , n−1} or {1, . . . , n +1}.
For simplicity, assume the last server is the one that changes.

Since Clatest is committed, at least bn/2c+ 1 servers have Clatest in their logs.

• Case 1. Clatest−1 = {1, . . . , n − 1}. In order to form a quorum based on Clatest−1, it

requires at least
⌊
n−1
2

⌋
+ 1 votes.

However, any server with Clatest in its log won’t vote yes because of the “Election
Restriction” (§3.6.1 in [Ong14]) that “the voter denies its vote if its own log is more
up-to-date than that of the candidate.”

13

Therefore, it can only get at most n − bn/2c − 1 votes.

Since (
n −

⌊
n

2

⌋
− 1

)
−
(⌊

n − 1

2

⌋
− 1

)
= −1 < 0,

it can never get enough votes to form a quorum based on Clatest−1.

• Case 2. Clatest−1 = {1, . . . , n + 1}. Similar argument as in Case 1.

Therefore, as long as Clatest is committed, a quorum cannot be formed based on Clatest−1.
Induction can show that any config prior to Clatest cannot be the basis to form a quorum.

Lemma 5. Let Clatest be the latest committed config. Let Cnew be any uncommitted config in
the system, suppose Clatest = {1, . . . , n}. Then, Cnew is either {1, . . . , n−1} or {1, . . . , n +1}.
For simplicity, assume the last server is the one that changes.

Proof. By Lemma 4, since any stale config cannot be the basis of a quorum, any leader
before a newer config gets committed in the system must have Clatest in its log. Since
in HandleCheckOldConfig, we require GetMaxConfigIndex (i) ≤ commitIndex (i) to hold
before the leader can append any newer config to its log, Cnew can only be “one step” away
from Clatest.

Theorem 1. There is at most one leader per term. This is the “Election Safety” property
in Figure 3.2 and is proved for statically sized configurations in Lemma 2 of B.3 of [Ong14].

∀e, f ∈ elections

e.eterm = f .eterm ⇒ e.eleader = f .eleader

Proof. By Lemma 4 and Lemma 5, there can only be 3 possible configurations in the system
at a time to form quorums:

Clatest = {1, . . . , n}
Cnew+ = {1, . . . , n + 1}
Cnew− = {1, . . . , n − 1}

For simplicity, assume the last server is the one that changes. Also note that if n ≥ 2,
all 3 are possible. If n = 1, only Clatest and Cnew+ are possible.

• Case 1. e.evotes , f .evotes ∈ Quorum(Clatest).

Because any two quorums of a config overlap, e.evotes ∩ f .evotes 6= ∅. Suppose
s ∈ (e.evotes ∩ f .evotes). In HandleRequestVoteRequest,

grant
∆
= ∧m.mterm = currentTerm[i] (1)

∧ logOk

∧ votedFor [i] ∈ {Nil , j} (3)

Properties (1) and (3) guarantee that a server can only vote for at most one server per
term.

Since s ∈ e.evotes and s ∈ f .evotes , e.eleader = f .eleader .

14

• Case 2. e.evotes , f .evotes ∈ Quorum(Cnew+). Similar proof to Case 1.

• Case 3. e.evotes , f .evotes ∈ Quorum(Cnew−). Similar proof to Case 1.

• Case 4. e.evotes ∈ Quorum(Clatest), f .evotes ∈ Quorum(Cnew+).

By Lemma 2, e.evotes ∩ f .evotes 6= ∅. Afterwards, similar proof to Case 1.

• Case 5. e.evotes ∈ Quorum(Clatest), f .evotes ∈ Quorum(Cnew−).

By Lemma 1, e.evotes ∩ f .evotes 6= ∅. Afterwards, similar proof to Case 1.

• Case 6. e.evotes ∈ Quorum(Cnew+), f .evotes ∈ Quorum(Cnew−).

By Lemma 3, e.evotes ∩ f .evotes 6= ∅. Afterwards, similar proof to Case 1.

Therefore, there is at most one leader per term.

4.2 Proof Sketch for Availability: A leader can be elected in the
future

One availability property of the system is that a leader is able to be elected in some future
state from any state. Our proof sketch is to choose a server that has the most updated log.
Then, this server can time out and cause a quorum of it’s configuration to vote for it, which
will always be able to happen because servers will vote if a candidate’s log is up-to-date and
the term is greater than theirs.

Other servers can also time out while this server times out. It is not harmful for another
server to receive a majority of the votes and become leader, nor is a split vote harmful, since
the randomized timeouts will not collide in future elections in practice.

5 Broken Raft?

5.1 Cluster membership changes

We present two possible edge cases during cluster membership changes that illustrate a
possible area where Raft’s description might be inconsistent. We could be misinterpreting
the wording in [OO14,Ong14] and plan to send these cases to the author.

5.1.1 New servers need to vote for availability

Consider the following initial cluster, where s1 is the leader, represented with the ∗ and the
log of each server is shown on the right. Note the log is a 3-tuple of the term it was appended,
the type (configuration or value), and the contents.

s∗1 (1, config, {1,2,3})
s2 (1, config, {1,2,3})
s3 (1, config, {1,2,3})
s4

15

s1 gets a request to add s4, so catches up s4 with the config entry.

s∗1 (1, config, {1,2,3})
s2 (1, config, {1,2,3})
s3 (1, config, {1,2,3})
s4 (1, config, {1,2,3})

s1 then appends a new config to its log to add s4.

s∗1 (1, config, {1,2,3}), (1, config, {1,2,3,4})
s2 (1, config, {1,2,3})
s3 (1, config, {1,2,3})
s4 (1, config, {1,2,3})

s3 dies and s1 replicates the new config to s2.

s∗1 (1, config, {1,2,3}), (1, config, {1,2,3,4})
s2 (1, config, {1,2,3}), (1, config, {1,2,3,4})
s3 (1, config, {1,2,3})
s4 (1, config, {1,2,3})

s2 times out and starts an election and s1 steps down. In this case, both s1 and s2
need s4’s vote to become the leader. Otherwise the system won’t have a leader and is thus
non-available.

5.1.2 New members voting causes inconsistencies

Consider the following situation with 4 initial servers and s5 is added.
Use s∗n to denote a server being leader and sTn to denote a server timing out, both in

term n.

s∗11 (1, config, {1,2,3,4})
s2 (1, config, {1,2,3,4})
s3 (1, config, {1,2,3,4})
s4 (1, config, {1,2,3,4})
s5

s1 catches up s5.

s∗11 (1, config, {1,2,3,4})
s2 (1, config, {1,2,3,4})
s3 (1, config, {1,2,3,4})
s4 (1, config, {1,2,3,4})
s5 (1, config, {1,2,3,4})

s1 appends new config.

16

s∗11 (1, config, {1,2,3,4}), (1,config,{1,2,3,4,5})
s2 (1, config, {1,2,3,4})
s3 (1, config, {1,2,3,4})
s4 (1, config, {1,2,3,4})
s5 (1, config, {1,2,3,4})

s1 replicates new config to s5.

s∗11 (1, config, {1,2,3,4}), (1,config,{1,2,3,4,5})
s2 (1, config, {1,2,3,4})
s3 (1, config, {1,2,3,4})
s4 (1, config, {1,2,3,4})
s5 (1, config, {1,2,3,4}), (1,config,{1,2,3,4,5})

s1 dies temporarily.

sD∗1
1 (1, config, {1,2,3,4}), (1,config,{1,2,3,4,5})

s2 (1, config, {1,2,3,4})
s3 (1, config, {1,2,3,4})
s4 (1, config, {1,2,3,4})
s5 (1, config, {1,2,3,4}), (1,config,{1,2,3,4,5})

s2 times out and starts an election.

sD∗1
1 (1, config, {1,2,3,4}), (1,config,{1,2,3,4,5})

sT2
2 (1, config, {1,2,3,4})

s3 (1, config, {1,2,3,4})
s4 (1, config, {1,2,3,4})
s5 (1, config, {1,2,3,4}), (1,config,{1,2,3,4,5})

s2, s3, s4 vote for s2. s5 rejects. s2 becomes leader.

sD∗1
1 (1, config, {1,2,3,4}), (1,config,{1,2,3,4,5})

s∗22 (1, config, {1,2,3,4})
s3 (1, config, {1,2,3,4})
s4 (1, config, {1,2,3,4})
s5 (1, config, {1,2,3,4}), (1,config,{1,2,3,4,5})

s2 appends a new config to its log.

sD∗1
1 (1, config, {1,2,3,4}), (1,config,{1,2,3,4,5})

s∗22 (1, config, {1,2,3,4}), (2, config, {2,3,4})
s3 (1, config, {1,2,3,4})
s4 (1, config, {1,2,3,4})
s5 (1, config, {1,2,3,4}), (1,config,{1,2,3,4,5})

s2 replicates new config to s3 and is committed!

17

sD∗1
1 (1, config, {1,2,3,4}), (1,config,{1,2,3,4,5})

s∗22 (1, config, {1,2,3,4}), (2, config, {2,3,4})
s3 (1, config, {1,2,3,4}), (2, config, {2,3,4})
s4 (1, config, {1,2,3,4})
s5 (1, config, {1,2,3,4}), (1,config,{1,2,3,4,5})

s1 comes backs alive and times out and starts an election.

sT3
1 (1, config, {1,2,3,4}), (1,config,{1,2,3,4,5})

s∗22 (1, config, {1,2,3,4}), (2, config, {2,3,4})
s3 (1, config, {1,2,3,4}), (2, config, {2,3,4})
s4 (1, config, {1,2,3,4})
s5 (1, config, {1,2,3,4}), (1,config,{1,2,3,4,5})

If s5 can vote, then s1 can receive s1, s4, and s5’s votes and become the new leader.
Then s1 will try to replicate its log to everyone, including s2 and s3, which will conflict and
overwrite the already committed entry (2, config, {2,3,4}) with an older uncommitted entry.
This breaks the leader completeness property presented in Figure 3.2 of [Ong14]: “If a log
entry is committed in a given term, then that entry will be present in the logs of the leaders
for all higher-numbered terms.”

6 Conclusion and Future Work

We have presented a formal specification for Raft cluster membership changes and have
proved that properties of the cluster are preserved during these changes. Future work involves
further validating our modifications to the specification and modeling more invariants and
properties of Raft. An interesting direction could be to study other formal verifications of
Raft, such as Verdi’s case study of Raft in PLDI 2015 [WWP+15].

References

[AS87] Bowen Alpern and Fred B Schneider. Recognizing safety and liveness. Dis-
tributed computing, 2(3):117–126, 1987.

[CDLM08] Kaustuv C Chaudhuri, Damien Doligez, Leslie Lamport, and Stephan Merz. A
tla+ proof system. arXiv preprint arXiv:0811.1914, 2008.

[Lam94] Leslie Lamport. The temporal logic of actions. ACM Transactions on Program-
ming Languages and Systems (TOPLAS), 16(3):872–923, 1994.

[Lam00] Leslie Lamport. A summary of TLA+. 2000.

[Lam02] Leslie Lamport. Specifying systems: The TLA+ language and tools for hardware
and software engineers. Addison-Wesley Longman Publishing Co., Inc., 2002.

[Ong14] Diego Ongaro. Consensus: Bridging theory and practice. PhD thesis, Stanford
University, 2014.

18

[OO14] Diego Ongaro and John Ousterhout. In search of an understandable consensus
algorithm. In Proc. USENIX Annual Technical Conference, pages 305–320, 2014.

[raf] https://raftconsensus.github.io/.

[sec] http://thesecretlivesofdata.com/raft/.

[WWP+15] James R Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang,
Michael D Ernst, and Thomas Anderson. Verdi: A framework for implementing
and formally verifying distributed systems. PLDI, 2015.

[YML99] Yuan Yu, Panagiotis Manolios, and Leslie Lamport. Model checking tla+ spec-
ifications. In Correct Hardware Design and Verification Methods, pages 54–66.
Springer, 1999.

A Original TLA+ Specification

Starts on next page.

19

https://raftconsensus.github.io/
http://thesecretlivesofdata.com/raft/

module raft orig
This is the formal specification for the Raft consensus algorithm.

Copyright 2014 Diego Ongaro.

This work is licensed under the Creative Commons Attribution− 4.0

International License https://creativecommons.org/licenses/by/4.0/

extends Naturals, FiniteSets, Sequences, TLC

The set of server IDs

constants Server

The set of requests that can go into the log

constants Value

Server states.

constants Follower , Candidate, Leader

A reserved value.

constants Nil

Message types:

constants RequestVoteRequest , RequestVoteResponse,
AppendEntriesRequest , AppendEntriesResponse

Global variables

A bag of records representing requests and responses sent from one server

to another. TLAPS doesn’t support the Bags module, so this is a function

mapping Message to Nat .

variable messages

A history variable used in the proof. This would not be present in an

implementation.

Keeps track of successful elections, including the initial logs of the

leader and voters’ logs. Set of functions containing various things about

successful elections (see BecomeLeader).

variable elections

A history variable used in the proof. This would not be present in an

implementation.

Keeps track of every log ever in the system (set of logs).

variable allLogs

The following variables are all per server (functions with domain Server).

The server’s term number.

1

20

variable currentTerm
The server’s state (Follower, Candidate, or Leader).

variable state
The candidate the server voted for in its current term, or

Nil if it hasn’t voted for any.

variable votedFor
serverVars

∆
= 〈currentTerm, state, votedFor〉

A Sequence of log entries. The index into this sequence is the index of the

log entry. Unfortunately, the Sequence module defines Head(s) as the entry

with index 1, so be careful not to use that!

variable log
The index of the latest entry in the log the state machine may apply.

variable commitIndex
logVars

∆
= 〈log , commitIndex 〉

The following variables are used only on candidates:

The set of servers from which the candidate has received a RequestVote

response in its currentTerm.

variable votesResponded
The set of servers from which the candidate has received a vote in its

currentTerm.

variable votesGranted
A history variable used in the proof. This would not be present in an

implementation.

Function from each server that voted for this candidate in its currentTerm

to that voter’s log.

variable voterLog
candidateVars

∆
= 〈votesResponded , votesGranted , voterLog〉

The following variables are used only on leaders:

The next entry to send to each follower.

variable nextIndex
The latest entry that each follower has acknowledged is the same as the

leader’s. This is used to calculate commitIndex on the leader.

variable matchIndex
leaderVars

∆
= 〈nextIndex , matchIndex , elections〉

End of per server variables.

All variables; used for stuttering (asserting state hasn’t changed).

vars
∆
= 〈messages, allLogs, serverVars, candidateVars, leaderVars, logVars〉

Helpers

2

21

The set of all quorums. This just calculates simple majorities, but the only

important property is that every quorum overlaps with every other.

Quorum
∆
= {i ∈ subset (Server) : Cardinality(i) ∗ 2 > Cardinality(Server)}

The term of the last entry in a log, or 0 if the log is empty.

LastTerm(xlog)
∆
= if Len(xlog) = 0 then 0 else xlog [Len(xlog)].term

Helper for Send and Reply. Given a message m and bag of messages, return a

new bag of messages with one more m in it.

WithMessage(m, msgs)
∆
=

if m ∈ domain msgs then
[msgs except ! [m] = msgs[m] + 1]

else
msgs @@(m :> 1)

Helper for Discard and Reply. Given a message m and bag of messages, return

a new bag of messages with one less m in it.

WithoutMessage(m, msgs)
∆
=

if m ∈ domain msgs then
[msgs except ! [m] = msgs[m]− 1]

else
msgs

Add a message to the bag of messages.

Send(m)
∆
= messages ′ = WithMessage(m, messages)

Remove a message from the bag of messages. Used when a server is done

processing a message.

Discard(m)
∆
= messages ′ = WithoutMessage(m, messages)

Combination of Send and Discard

Reply(response, request)
∆
=

messages ′ = WithoutMessage(request , WithMessage(response, messages))

Return the minimum value from a set, or undefined if the set is empty.

Min(s)
∆
= choose x ∈ s : ∀ y ∈ s : x ≤ y

Return the maximum value from a set, or undefined if the set is empty.

Max (s)
∆
= choose x ∈ s : ∀ y ∈ s : x ≥ y

Define initial values for all variables

InitHistoryVars
∆
= ∧ elections = {}
∧ allLogs = {}
∧ voterLog = [i ∈ Server 7→ [j ∈ {} 7→ 〈〉]]

InitServerVars
∆
= ∧ currentTerm = [i ∈ Server 7→ 1]
∧ state = [i ∈ Server 7→ Follower]
∧ votedFor = [i ∈ Server 7→ Nil]

3

22

InitCandidateVars
∆
= ∧ votesResponded = [i ∈ Server 7→ {}]
∧ votesGranted = [i ∈ Server 7→ {}]

The values nextIndex [i][i] and matchIndex [i][i] are never read, since the

leader does not send itself messages. It’s still easier to include these

in the functions.

InitLeaderVars
∆
= ∧ nextIndex = [i ∈ Server 7→ [j ∈ Server 7→ 1]]
∧matchIndex = [i ∈ Server 7→ [j ∈ Server 7→ 0]]

InitLogVars
∆
= ∧ log = [i ∈ Server 7→ 〈〉]
∧ commitIndex = [i ∈ Server 7→ 0]

Init
∆
= ∧messages = [m ∈ {} 7→ 0]
∧ InitHistoryVars
∧ InitServerVars
∧ InitCandidateVars
∧ InitLeaderVars
∧ InitLogVars

Define state transitions

Server i restarts from stable storage.

It loses everything but its currentTerm, votedFor , and log.

Restart(i)
∆
=

∧ state ′ = [state except ! [i] = Follower]
∧ votesResponded ′ = [votesResponded except ! [i] = {}]
∧ votesGranted ′ = [votesGranted except ! [i] = {}]
∧ voterLog ′ = [voterLog except ! [i] = [j ∈ {} 7→ 〈〉]]
∧ nextIndex ′ = [nextIndex except ! [i] = [j ∈ Server 7→ 1]]
∧ matchIndex ′ = [matchIndex except ! [i] = [j ∈ Server 7→ 0]]
∧ commitIndex ′ = [commitIndex except ! [i] = 0]
∧ unchanged 〈messages, currentTerm, votedFor , log , elections〉

Server i times out and starts a new election.

Timeout(i)
∆
= ∧ state[i] ∈ {Follower , Candidate}
∧ state ′ = [state except ! [i] = Candidate]
∧ currentTerm ′ = [currentTerm except ! [i] = currentTerm[i] + 1]
Most implementations would probably just set the local vote

atomically, but messaging localhost for it is weaker.

∧ votedFor ′ = [votedFor except ! [i] = Nil]
∧ votesResponded ′ = [votesResponded except ! [i] = {}]
∧ votesGranted ′ = [votesGranted except ! [i] = {}]
∧ voterLog ′ = [voterLog except ! [i] = [j ∈ {} 7→ 〈〉]]
∧ unchanged 〈messages, leaderVars, logVars〉

Candidate i sends j a RequestVote request.

RequestVote(i , j)
∆
=

∧ state[i] = Candidate

4

23

∧ j /∈ votesResponded [i]
∧ Send([mtype 7→ RequestVoteRequest ,

mterm 7→ currentTerm[i],
mlastLogTerm 7→ LastTerm(log [i]),
mlastLogIndex 7→ Len(log [i]),
msource 7→ i ,
mdest 7→ j])

∧ unchanged 〈serverVars, candidateVars, leaderVars, logVars〉

Leader i sends j an AppendEntries request containing up to 1 entry.

While implementations may want to send more than 1 at a time, this spec uses

just 1 because it minimizes atomic regions without loss of generality.

AppendEntries(i , j)
∆
=

∧ i 6= j
∧ state[i] = Leader
∧ let prevLogIndex

∆
= nextIndex [i][j]− 1

prevLogTerm
∆
= if prevLogIndex > 0 then

log [i][prevLogIndex].term
else

0
Send up to 1 entry, constrained by the end of the log.

lastEntry
∆
= Min({Len(log [i]), nextIndex [i][j]})

entries
∆
= SubSeq(log [i], nextIndex [i][j], lastEntry)

in Send([mtype 7→ AppendEntriesRequest ,
mterm 7→ currentTerm[i],
mprevLogIndex 7→ prevLogIndex ,
mprevLogTerm 7→ prevLogTerm,
mentries 7→ entries,
mlog is used as a history variable for the proof.

It would not exist in a real implementation.

mlog 7→ log [i],
mcommitIndex 7→ Min({commitIndex [i], lastEntry}),
msource 7→ i ,
mdest 7→ j])

∧ unchanged 〈serverVars, candidateVars, leaderVars, logVars〉

Candidate i transitions to leader.

BecomeLeader(i)
∆
=

∧ state[i] = Candidate
∧ votesGranted [i] ∈ Quorum
∧ state ′ = [state except ! [i] = Leader]
∧ nextIndex ′ = [nextIndex except ! [i] =

[j ∈ Server 7→ Len(log [i]) + 1]]
∧matchIndex ′ = [matchIndex except ! [i] =

[j ∈ Server 7→ 0]]

5

24

∧ elections ′ = elections ∪
{[eterm 7→ currentTerm[i],
eleader 7→ i ,
elog 7→ log [i],
evotes 7→ votesGranted [i],
evoterLog 7→ voterLog [i]]}

∧ unchanged 〈messages, currentTerm, votedFor , candidateVars, logVars〉

Leader i receives a client request to add v to the log.

ClientRequest(i , v)
∆
=

∧ state[i] = Leader
∧ let entry

∆
= [term 7→ currentTerm[i],

value 7→ v]
newLog

∆
= Append(log [i], entry)

in log ′ = [log except ! [i] = newLog]
∧ unchanged 〈messages, serverVars, candidateVars,

leaderVars, commitIndex 〉

Leader i advances its commitIndex .

This is done as a separate step from handling AppendEntries responses,

in part to minimize atomic regions, and in part so that leaders of

single-server clusters are able to mark entries committed.

AdvanceCommitIndex (i)
∆
=

∧ state[i] = Leader
∧ let The set of servers that agree up through index.

Agree(index)
∆
= {i} ∪ {k ∈ Server :

matchIndex [i][k] ≥ index}
The maximum indexes for which a quorum agrees

agreeIndexes
∆
= {index ∈ 1 . . Len(log [i]) :

Agree(index) ∈ Quorum}
New value for commitIndex ′[i]

newCommitIndex
∆
=

if ∧ agreeIndexes 6= {}
∧ log [i][Max (agreeIndexes)].term = currentTerm[i]

then
Max (agreeIndexes)

else
commitIndex [i]

in commitIndex ′ = [commitIndex except ! [i] = newCommitIndex]
∧ unchanged 〈messages, serverVars, candidateVars, leaderVars, log〉

Message handlers

i = recipient, j = sender, m = message

Server i receives a RequestVote request from server j with

6

25

m.mterm ≤ currentTerm[i].

HandleRequestVoteRequest(i , j , m)
∆
=

let logOk
∆
= ∨m.mlastLogTerm > LastTerm(log [i])
∨ ∧m.mlastLogTerm = LastTerm(log [i])
∧m.mlastLogIndex ≥ Len(log [i])

grant
∆
= ∧m.mterm = currentTerm[i]
∧ logOk
∧ votedFor [i] ∈ {Nil , j}

in ∧m.mterm ≤ currentTerm[i]
∧ ∨ grant ∧ votedFor ′ = [votedFor except ! [i] = j]
∨ ¬grant ∧ unchanged votedFor

∧ Reply([mtype 7→ RequestVoteResponse,
mterm 7→ currentTerm[i],
mvoteGranted 7→ grant ,
mlog is used just for the elections history variable for

the proof. It would not exist in a real implementation.

mlog 7→ log [i],
msource 7→ i ,
mdest 7→ j],
m)

∧ unchanged 〈state, currentTerm, candidateVars, leaderVars, logVars〉

Server i receives a RequestVote response from server j with

m.mterm = currentTerm[i].

HandleRequestVoteResponse(i , j , m)
∆
=

This tallies votes even when the current state is not Candidate, but

they won’t be looked at, so it doesn’t matter.

∧m.mterm = currentTerm[i]
∧ votesResponded ′ = [votesResponded except ! [i] =

votesResponded [i] ∪ {j}]
∧ ∨ ∧m.mvoteGranted

∧ votesGranted ′ = [votesGranted except ! [i] =
votesGranted [i] ∪ {j}]

∧ voterLog ′ = [voterLog except ! [i] =
voterLog [i] @@ (j :> m.mlog)]

∨ ∧ ¬m.mvoteGranted
∧ unchanged 〈votesGranted , voterLog〉

∧Discard(m)
∧ unchanged 〈serverVars, votedFor , leaderVars, logVars〉

Server i receives an AppendEntries request from server j with

m.mterm ≤ currentTerm[i]. This just handles m.entries of length 0 or 1, but

implementations could safely accept more by treating them the same as

multiple independent requests of 1 entry.

HandleAppendEntriesRequest(i , j , m)
∆
=

7

26

let logOk
∆
= ∨m.mprevLogIndex = 0
∨ ∧m.mprevLogIndex > 0
∧m.mprevLogIndex ≤ Len(log [i])
∧m.mprevLogTerm = log [i][m.mprevLogIndex].term

in ∧m.mterm ≤ currentTerm[i]
∧ ∨ ∧ reject request

∨m.mterm < currentTerm[i]
∨ ∧m.mterm = currentTerm[i]
∧ state[i] = Follower
∧ ¬logOk

∧ Reply([mtype 7→ AppendEntriesResponse,
mterm 7→ currentTerm[i],
msuccess 7→ false,
mmatchIndex 7→ 0,
msource 7→ i ,
mdest 7→ j],
m)

∧ unchanged 〈serverVars, logVars〉
∨ return to follower state

∧m.mterm = currentTerm[i]
∧ state[i] = Candidate
∧ state ′ = [state except ! [i] = Follower]
∧ unchanged 〈currentTerm, votedFor , logVars, messages〉

∨ accept request

∧m.mterm = currentTerm[i]
∧ state[i] = Follower
∧ logOk
∧ let index

∆
= m.mprevLogIndex + 1

in ∨ already done with request

∧ ∨m.mentries = 〈〉
∨ ∧ Len(log [i]) ≥ index
∧ log [i][index].term = m.mentries[1].term

This could make our commitIndex decrease (for

example if we process an old, duplicated request),

but that doesn’t really affect anything.

∧ commitIndex ′ = [commitIndex except ! [i] =
m.mcommitIndex]

∧ Reply([mtype 7→ AppendEntriesResponse,
mterm 7→ currentTerm[i],
msuccess 7→ true,
mmatchIndex 7→ m.mprevLogIndex +

Len(m.mentries),
msource 7→ i ,
mdest 7→ j],
m)

8

27

∧ unchanged 〈serverVars, logVars〉
∨ conflict: remove 1 entry

∧m.mentries 6= 〈〉
∧ Len(log [i]) ≥ index
∧ log [i][index].term 6= m.mentries[1].term
∧ let new

∆
= [index2 ∈ 1 . . (Len(log [i])− 1) 7→

log [i][index2]]
in log ′ = [log except ! [i] = new]
∧ unchanged 〈serverVars, commitIndex , messages〉

∨ no conflict: append entry

∧m.mentries 6= 〈〉
∧ Len(log [i]) = m.mprevLogIndex
∧ log ′ = [log except ! [i] =

Append(log [i], m.mentries[1])]
∧ unchanged 〈serverVars, commitIndex , messages〉

∧ unchanged 〈candidateVars, leaderVars〉

Server i receives an AppendEntries response from server j with

m.mterm = currentTerm[i].

HandleAppendEntriesResponse(i , j , m)
∆
=

∧m.mterm = currentTerm[i]
∧ ∨ ∧m.msuccess successful

∧ nextIndex ′ = [nextIndex except ! [i][j] = m.mmatchIndex + 1]
∧matchIndex ′ = [matchIndex except ! [i][j] = m.mmatchIndex]

∨ ∧ ¬m.msuccess not successful

∧ nextIndex ′ = [nextIndex except ! [i][j] =
Max ({nextIndex [i][j]− 1, 1})]

∧ unchanged 〈matchIndex 〉
∧Discard(m)
∧ unchanged 〈serverVars, candidateVars, logVars, elections〉

Any RPC with a newer term causes the recipient to advance its term first.

UpdateTerm(i , j , m)
∆
=

∧m.mterm > currentTerm[i]
∧ currentTerm ′ = [currentTerm except ! [i] = m.mterm]
∧ state ′ = [state except ! [i] = Follower]
∧ votedFor ′ = [votedFor except ! [i] = Nil]

messages is unchanged so m can be processed further.

∧ unchanged 〈messages, candidateVars, leaderVars, logVars〉

Responses with stale terms are ignored.

DropStaleResponse(i , j , m)
∆
=

∧m.mterm < currentTerm[i]
∧Discard(m)
∧ unchanged 〈serverVars, candidateVars, leaderVars, logVars〉

9

28

Receive a message.

Receive(m)
∆
=

let i
∆
= m.mdest

j
∆
= m.msource

in Any RPC with a newer term causes the recipient to advance

its term first. Responses with stale terms are ignored.

∨UpdateTerm(i , j , m)
∨ ∧m.mtype = RequestVoteRequest
∧HandleRequestVoteRequest(i , j , m)

∨ ∧m.mtype = RequestVoteResponse
∧ ∨DropStaleResponse(i , j , m)
∨HandleRequestVoteResponse(i , j , m)

∨ ∧m.mtype = AppendEntriesRequest
∧HandleAppendEntriesRequest(i , j , m)

∨ ∧m.mtype = AppendEntriesResponse
∧ ∨DropStaleResponse(i , j , m)
∨HandleAppendEntriesResponse(i , j , m)

End of message handlers.

Network state transitions

The network duplicates a message

DuplicateMessage(m)
∆
=

∧ Send(m)
∧ unchanged 〈serverVars, candidateVars, leaderVars, logVars〉

The network drops a message

DropMessage(m)
∆
=

∧Discard(m)
∧ unchanged 〈serverVars, candidateVars, leaderVars, logVars〉

Defines how the variables may transition.

Next
∆
= ∧ ∨ ∃ i ∈ Server : Restart(i)

∨ ∃ i ∈ Server : Timeout(i)
∨ ∃ i , j ∈ Server : RequestVote(i , j)
∨ ∃ i ∈ Server : BecomeLeader(i)
∨ ∃ i ∈ Server , v ∈ Value : ClientRequest(i , v)
∨ ∃ i ∈ Server : AdvanceCommitIndex (i)
∨ ∃ i , j ∈ Server : AppendEntries(i , j)
∨ ∃m ∈ domain messages : Receive(m)
∨ ∃m ∈ domain messages : DuplicateMessage(m)
∨ ∃m ∈ domain messages : DropMessage(m)
History variable that tracks every log ever:

∧ allLogs ′ = allLogs ∪ {log [i] : i ∈ Server}

10

29

The specification must start with the initial state and transition according

to Next .

Spec
∆
= Init ∧2[Next]vars

\ ∗ Changelog:

\ ∗
\ ∗ 2014− 12− 02:

\ ∗ − Fix AppendEntries to only send one entry at a time, as originally

\ ∗ intended. Since SubSeq is inclusive, the upper bound of the range should

\ ∗ have been nextIndex , not nextIndex + 1. Thanks to Igor Kovalenko for

\ ∗ reporting the issue.

\ ∗ − Change matchIndex ′ to matchIndex (without the apostrophe) in

\ ∗AdvanceCommitIndex . This apostrophe was not intentional and perhaps

\ ∗ confusing, though it makes no practical difference (matchIndex ′ equals

\ ∗matchIndex). Thanks to Hugues Evrard for reporting the issue.

\ ∗
\ ∗ 2014− 07− 06:

\ ∗ − Version from PhD dissertation

11

30

B Our Modified TLA+ Specification

Starts on next page.

31

module raft
This is the formal specification for the Raft consensus algorithm.

Original Copyright 2014 Diego Ongaro

Modifications for cluster membership changes by

Brandon Amos and Huanchen Zhang, 2015

This work is licensed under the Creative Commons Attribution− 4.0

International License https://creativecommons.org/licenses/by/4.0/

extends Naturals, FiniteSets, Sequences, TLC

The number of rounds to catch new servers up for.

Must be ≥ 1.

constants NumRounds

The initial and global set of servers.

constants InitServer , Server

Log metadata to distinguish values from configuration changes.

constant ValueEntry , ConfigEntry

The set of values that can go into the log.

constants Value

Server states.

constants Follower , Candidate, Leader

A reserved value.

constants Nil

Message types:

constants RequestVoteRequest , RequestVoteResponse,
AppendEntriesRequest , AppendEntriesResponse,
CatchupRequest , CatchupResponse,
CheckOldConfig

Global variables

A bag of records representing requests and responses sent from one server

to another. TLAPS doesn’t support the Bags module, so this is a function

mapping Message to Nat .

variable messages

A history variable used in the proof. This would not be present in an

implementation.

Keeps track of successful elections, including the initial logs of the

1

32

leader and voters’ logs. Set of functions containing various things about

successful elections (see BecomeLeader).

variable elections

A history variable used in the proof. This would not be present in an

implementation.

Keeps track of every log ever in the system (set of logs).

variable allLogs

The following variables are all per server (functions with domain Server).

The server’s term number.

variable currentTerm
The server’s state (Follower, Candidate, or Leader).

variable state
The candidate the server voted for in its current term, or

Nil if it hasn’t voted for any.

variable votedFor

serverVars
∆
= 〈currentTerm, state, votedFor〉

A Sequence of log entries. The index into this sequence is the index of the

log entry. Unfortunately, the Sequence module defines Head(s) as the entry

with index 1, so be careful not to use that!

variable log
The index of the latest entry in the log the state machine may apply.

variable commitIndex
logVars

∆
= 〈log , commitIndex 〉

The following variables are used only on candidates:

The set of servers from which the candidate has received a RequestVote

response in its currentTerm.

variable votesResponded
The set of Server from which the candidate has received a vote in its

currentTerm.

variable votesGranted
A history variable used in the proof. This would not be present in an

implementation.

Function from each server that voted for this candidate in its currentTerm

to that voter’s log.

variable voterLog
candidateVars

∆
= 〈votesResponded , votesGranted , voterLog〉

The following variables are used only on leaders:

The next entry to send to each follower.

variable nextIndex

2

33

The latest entry that each follower has acknowledged is the same as the

leader’s. This is used to calculate commitIndex on the leader.

variable matchIndex
leaderVars

∆
= 〈nextIndex , matchIndex , elections〉

End of per server variables.

All variables; used for stuttering (asserting state hasn’t changed).

vars
∆
= 〈messages, allLogs, serverVars, candidateVars,

leaderVars, logVars〉

Helpers

The set of all quorums for a server configuration.

This just calculates simple majorities, but the only

important property is that every quorum overlaps with every other.

Quorum(config)
∆
= {i ∈ subset (config) : Cardinality(i) ∗ 2 > Cardinality(config)}

The term of the last entry in a log, or 0 if the log is empty.

LastTerm(xlog)
∆
= if Len(xlog) = 0 then 0 else xlog [Len(xlog)].term

Helper for Send and Reply. Given a message m and bag of messages, return a

new bag of messages with one more m in it.

WithMessage(m, msgs)
∆
=

if m ∈ domain msgs then
[msgs except ! [m] = msgs[m] + 1]

else
msgs @@(m :> 1)

Helper for Discard and Reply. Given a message m and bag of messages, return

a new bag of messages with one less m in it.

WithoutMessage(m, msgs)
∆
=

if m ∈ domain msgs then
[msgs except ! [m] = msgs[m]− 1]

else
msgs

Add a message to the bag of messages.

Send(m)
∆
= messages ′ = WithMessage(m, messages)

Remove a message from the bag of messages. Used when a server is done

processing a message.

Discard(m)
∆
= messages ′ = WithoutMessage(m, messages)

Combination of Send and Discard

Reply(response, request)
∆
=

3

34

messages ′ = WithoutMessage(request , WithMessage(response, messages))

Return the minimum value from a set, or undefined if the set is empty.

Min(s)
∆
= choose x ∈ s : ∀ y ∈ s : x ≤ y

Return the maximum value from a set, or undefined if the set is empty.

Max (s)
∆
= choose x ∈ s : ∀ y ∈ s : x ≥ y

Return the index of the latest configuration in server i ’s log.

GetMaxConfigIndex (i)
∆
=

let configIndexes
∆
= {index ∈ 1 . . Len(log [i]) : log [i][index].type = ConfigEntry}

in if configIndexes = {} then 0
else Max (configIndexes)

Return the configuration of teh latest configuration in server i ’s log.

GetConfig(i)
∆
=

if GetMaxConfigIndex (i) = 0 then InitServer
else log [i][GetMaxConfigIndex (i)].value

Define initial values for all variables

InitHistoryVars
∆
= ∧ elections = {}
∧ allLogs = {}
∧ voterLog = [i ∈ Server 7→ [j ∈ {} 7→ 〈〉]]

InitServerVars
∆
= ∧ currentTerm = [i ∈ Server 7→ 1]
∧ state = [i ∈ Server 7→ Follower]
∧ votedFor = [i ∈ Server 7→ Nil]

InitCandidateVars
∆
= ∧ votesResponded = [i ∈ Server 7→ {}]
∧ votesGranted = [i ∈ Server 7→ {}]

The values nextIndex [i][i] and matchIndex [i][i] are never read, since the

leader does not send itself messages. It’s still easier to include these

in the functions.

InitLeaderVars
∆
= ∧ nextIndex = [i ∈ Server 7→ [j ∈ Server 7→ 1]]
∧matchIndex = [i ∈ Server 7→ [j ∈ Server 7→ 0]]

InitLogVars
∆
= ∧ log = [i ∈ Server 7→ 〈〉]
∧ commitIndex = [i ∈ Server 7→ 0]

Init
∆
= ∧messages = [m ∈ {} 7→ 0]
∧ InitHistoryVars
∧ InitServerVars
∧ InitCandidateVars
∧ InitLeaderVars
∧ InitLogVars

Define state transitions

4

35

Server i restarts from stable storage.

It loses everything but its currentTerm, votedFor , and log.

Restart(i)
∆
=

∧ i ∈ GetConfig(i)
∧ state ′ = [state except ! [i] = Follower]
∧ votesResponded ′ = [votesResponded except ! [i] = {}]
∧ votesGranted ′ = [votesGranted except ! [i] = {}]
∧ voterLog ′ = [voterLog except ! [i] = [j ∈ {} 7→ 〈〉]]
∧ nextIndex ′ = [nextIndex except ! [i] = [j ∈ Server 7→ 1]]
∧ matchIndex ′ = [matchIndex except ! [i] = [j ∈ Server 7→ 0]]
∧ commitIndex ′ = [commitIndex except ! [i] = 0]
∧ unchanged 〈messages, currentTerm, votedFor , log , elections〉

Server i times out and starts a new election.

Timeout(i)
∆
= ∧ state[i] ∈ {Follower , Candidate}
∧ i ∈ GetConfig(i)
∧ state ′ = [state except ! [i] = Candidate]
∧ currentTerm ′ = [currentTerm except ! [i] = currentTerm[i] + 1]
Most implementations would probably just set the local vote

atomically, but messaging localhost for it is weaker.

∧ votedFor ′ = [votedFor except ! [i] = Nil]
∧ votesResponded ′ = [votesResponded except ! [i] = {}]
∧ votesGranted ′ = [votesGranted except ! [i] = {}]
∧ voterLog ′ = [voterLog except ! [i] = [j ∈ {} 7→ 〈〉]]
∧ unchanged 〈messages, leaderVars, logVars〉

Candidate i sends j a RequestVote request.

RequestVote(i , j)
∆
=

∧ state[i] = Candidate
∧ j ∈ (GetConfig(i) \ votesResponded [i])
∧ Send([mtype 7→ RequestVoteRequest ,

mterm 7→ currentTerm[i],
mlastLogTerm 7→ LastTerm(log [i]),
mlastLogIndex 7→ Len(log [i]),
msource 7→ i ,
mdest 7→ j])

∧ unchanged 〈serverVars, candidateVars, leaderVars, logVars〉

Leader i sends j an AppendEntries request containing up to 1 entry.

While implementations may want to send more than 1 at a time, this spec uses

just 1 because it minimizes atomic regions without loss of generality.

AppendEntries(i , j)
∆
=

∧ i 6= j
∧ state[i] = Leader
∧ j ∈ GetConfig(i)
∧ let prevLogIndex

∆
= nextIndex [i][j]− 1

5

36

prevLogTerm
∆
= if prevLogIndex > 0 then

log [i][prevLogIndex].term
else

0
Send up to 1 entry, constrained by the end of the log.

lastEntry
∆
= Min({Len(log [i]), nextIndex [i][j]})

entries
∆
= SubSeq(log [i], nextIndex [i][j], lastEntry)

in Send([mtype 7→ AppendEntriesRequest ,
mterm 7→ currentTerm[i],
mprevLogIndex 7→ prevLogIndex ,
mprevLogTerm 7→ prevLogTerm,
mentries 7→ entries,

mlog is used as a history variable for the proof.

It would not exist in a real implementation.

mlog 7→ log [i],
mcommitIndex 7→ Min({commitIndex [i], lastEntry}),
msource 7→ i ,
mdest 7→ j])

∧ unchanged 〈serverVars, candidateVars, leaderVars, logVars〉

Candidate i transitions to leader.

BecomeLeader(i)
∆
=

∧ state[i] = Candidate
∧ votesGranted [i] ∈ Quorum(GetConfig(i))
∧ state ′ = [state except ! [i] = Leader]
∧ nextIndex ′ = [nextIndex except ! [i] =

[j ∈ Server 7→ Len(log [i]) + 1]]
∧matchIndex ′ = [matchIndex except ! [i] =

[j ∈ Server 7→ 0]]
∧ elections ′ = elections ∪

{[eterm 7→ currentTerm[i],
eleader 7→ i ,
elog 7→ log [i],
evotes 7→ votesGranted [i],
evoterLog 7→ voterLog [i]]}

∧ unchanged 〈messages, currentTerm, votedFor , candidateVars, logVars〉

Leader i receives a client request to add v to the log.

ClientRequest(i , v)
∆
=

∧ state[i] = Leader
∧ let entry

∆
= [term 7→ currentTerm[i],

type 7→ ValueEntry ,
value 7→ v]

newLog
∆
= Append(log [i], entry)

in log ′ = [log except ! [i] = newLog]

6

37

∧ unchanged 〈messages, serverVars, candidateVars,
leaderVars, commitIndex 〉

Leader i advances its commitIndex .

This is done as a separate step from handling AppendEntries responses,

in part to minimize atomic regions, and in part so that leaders of

single-server clusters are able to mark entries committed.

AdvanceCommitIndex (i)
∆
=

∧ state[i] = Leader
∧ let The set of servers that agree up through index.

Agree(index)
∆
= {i} ∪ {k ∈ GetConfig(i) :

matchIndex [i][k] ≥ index}
The maximum indexes for which a quorum agrees

agreeIndexes
∆
= {index ∈ 1 . . Len(log [i]) :

Agree(index) ∈ Quorum(GetConfig(i))}
New value for commitIndex ′[i]

newCommitIndex
∆
=

if ∧ agreeIndexes 6= {}
∧ log [i][Max (agreeIndexes)].term = currentTerm[i]

then
Max (agreeIndexes)

else
commitIndex [i]

in commitIndex ′ = [commitIndex except ! [i] = newCommitIndex]
∧ unchanged 〈messages, serverVars, candidateVars, leaderVars, log〉

Leader i adds a new server j to the cluster.

AddNewServer(i , j)
∆
=

∧ state[i] = Leader
∧ j /∈ GetConfig(i)
∧ currentTerm ′ = [currentTerm except ! [j] = 1]
∧ votedFor ′ = [votedFor except ! [j] = Nil]
∧ Send([mtype 7→ CatchupRequest ,

mterm 7→ currentTerm[i],
mlogLen 7→ matchIndex [i][j],
mentries 7→ SubSeq(log [i], nextIndex [i][j], commitIndex [i]),
mcommitIndex 7→ commitIndex [i],
msource 7→ i ,
mdest 7→ j ,
mrounds 7→ NumRounds])

∧ unchanged 〈state, leaderVars, logVars, candidateVars〉

Leader i removes a server j (possibly itself) from the cluster.

DeleteServer(i , j)
∆
=

∧ state[i] = Leader

7

38

∧ state[j] ∈ {Follower , Candidate}
∧ j ∈ GetConfig(i)
∧ j 6= i TODO : A leader cannot remove itself.

∧ Send([mtype 7→ CheckOldConfig ,
mterm 7→ currentTerm[i],
madd 7→ false,
mserver 7→ j ,
msource 7→ i ,
mdest 7→ i])

∧ unchanged 〈serverVars, candidateVars, leaderVars, logVars〉

Message handlers

i = recipient, j = sender, m = message

Server i receives a RequestVote request from server j with

m.mterm ≤ currentTerm[i].

HandleRequestVoteRequest(i , j , m)
∆
=

let logOk
∆
= ∨m.mlastLogTerm > LastTerm(log [i])
∨ ∧m.mlastLogTerm = LastTerm(log [i])
∧m.mlastLogIndex ≥ Len(log [i])

grant
∆
= ∧m.mterm = currentTerm[i]
∧ logOk
∧ votedFor [i] ∈ {Nil , j}

in ∧m.mterm ≤ currentTerm[i]
∧ ∨ grant ∧ votedFor ′ = [votedFor except ! [i] = j]
∨ ¬grant ∧ unchanged votedFor

∧ Reply([mtype 7→ RequestVoteResponse,
mterm 7→ currentTerm[i],
mvoteGranted 7→ grant ,

mlog is used just for the elections history variable for

the proof. It would not exist in a real implementation.

mlog 7→ log [i],
msource 7→ i ,
mdest 7→ j],
m)

∧ unchanged 〈state, currentTerm, candidateVars, leaderVars, logVars〉

Server i receives a RequestVote response from server j with

m.mterm = currentTerm[i].

HandleRequestVoteResponse(i , j , m)
∆
=

This tallies votes even when the current state is not Candidate, but

they won’t be looked at, so it doesn’t matter.

∧m.mterm = currentTerm[i]
∧ votesResponded ′ = [votesResponded except ! [i] =

8

39

votesResponded [i] ∪ {j}]
∧ ∨ ∧m.mvoteGranted

∧ votesGranted ′ = [votesGranted except ! [i] =
votesGranted [i] ∪ {j}]

∧ voterLog ′ = [voterLog except ! [i] =
voterLog [i] @@ (j :> m.mlog)]

∨ ∧ ¬m.mvoteGranted
∧ unchanged 〈votesGranted , voterLog〉

∧Discard(m)
∧ unchanged 〈serverVars, votedFor , leaderVars, logVars〉

Server i receives an AppendEntries request from server j with

m.mterm ≤ currentTerm[i]. This just handles m.entries of length 0 or 1, but

implementations could safely accept more by treating them the same as

multiple independent requests of 1 entry.

HandleAppendEntriesRequest(i , j , m)
∆
=

let logOk
∆
= ∨m.mprevLogIndex = 0
∨ ∧m.mprevLogIndex > 0
∧m.mprevLogIndex ≤ Len(log [i])
∧m.mprevLogTerm = log [i][m.mprevLogIndex].term

in ∧m.mterm ≤ currentTerm[i]
∧ ∨ ∧ reject request

∨m.mterm < currentTerm[i]
∨ ∧m.mterm = currentTerm[i]
∧ state[i] = Follower
∧ ¬logOk

∧ Reply([mtype 7→ AppendEntriesResponse,
mterm 7→ currentTerm[i],
msuccess 7→ false,
mmatchIndex 7→ 0,
msource 7→ i ,
mdest 7→ j],
m)

∧ unchanged 〈serverVars, logVars〉
∨ return to follower state

∧m.mterm = currentTerm[i]
∧ state[i] = Candidate
∧ state ′ = [state except ! [i] = Follower]
∧ unchanged 〈currentTerm, votedFor , logVars, messages〉

∨ accept request

∧m.mterm = currentTerm[i]
∧ state[i] = Follower
∧ logOk
∧ let index

∆
= m.mprevLogIndex + 1

in ∨ already done with request

9

40

∧ ∨m.mentries = 〈〉
∨ ∧ Len(log [i]) ≥ index
∧ log [i][index].term = m.mentries[1].term

This could make our commitIndex decrease (for

example if we process an old, duplicated request),

but that doesn’t really affect anything.

∧ commitIndex ′ = [commitIndex except ! [i] =
m.mcommitIndex]

∧ Reply([mtype 7→ AppendEntriesResponse,
mterm 7→ currentTerm[i],
msuccess 7→ true,
mmatchIndex 7→ m.mprevLogIndex +

Len(m.mentries),
msource 7→ i ,
mdest 7→ j],
m)

∧ unchanged 〈votedFor , currentTerm, log , state〉
∨ conflict: remove 1 entry

∧m.mentries 6= 〈〉
∧ Len(log [i]) ≥ index
∧ log [i][index].term 6= m.mentries[1].term
∧ let new

∆
= [index2 ∈ 1 . . (Len(log [i])− 1) 7→

log [i][index2]]
in log ′ = [log except ! [i] = new]
∧ unchanged 〈serverVars, commitIndex , messages〉

∨ no conflict: append entry

∧m.mentries 6= 〈〉
∧ Len(log [i]) = m.mprevLogIndex
∧ log ′ = [log except ! [i] =

Append(log [i], m.mentries[1])]
∧ unchanged 〈serverVars, commitIndex , messages〉

∧ unchanged 〈candidateVars, leaderVars〉

Server i receives an AppendEntries response from server j with

m.mterm = currentTerm[i].

HandleAppendEntriesResponse(i , j , m)
∆
=

∧m.mterm = currentTerm[i]
∧ ∨ ∧m.msuccess successful

∧ nextIndex ′ = [nextIndex except ! [i][j] = m.mmatchIndex + 1]
∧matchIndex ′ = [matchIndex except ! [i][j] = m.mmatchIndex]

∨ ∧ ¬m.msuccess not successful

∧ nextIndex ′ = [nextIndex except ! [i][j] =
Max ({nextIndex [i][j]− 1, 1})]

∧ unchanged 〈matchIndex 〉
∧Discard(m)

10

41

∧ unchanged 〈serverVars, candidateVars, logVars, elections〉

Detached server i receives a CatchupRequest from leader j .

HandleCatchupRequest(i , j , m)
∆
=

∨ ∧m.mterm < currentTerm[i]
∧ Reply([mtype 7→ CatchupResponse,

mterm 7→ currentTerm[i],
msuccess 7→ false,
mmatchIndex 7→ 0,
msource 7→ i ,
mdest 7→ j ,
mroundsLeft 7→ 0],
m)

∧ unchanged 〈serverVars, candidateVars,
leaderVars, logVars〉

∨ ∧m.mterm ≥ currentTerm[i]
∧ currentTerm ′ = [currentTerm except ! [i] = m.mterm]
∧ log ′ = [log except ! [i] = SubSeq(log [i], 1, m.mlogLen) ◦m.mentries]
∧ Reply([mtype 7→ CatchupResponse,

mterm 7→ currentTerm[i],
msuccess 7→ true,
mmatchIndex 7→ Len(log [i]),
msource 7→ i ,
mdest 7→ j ,
mroundsLeft 7→ m.mrounds − 1],

m)
∧ unchanged 〈state, votedFor , candidateVars, leaderVars,

commitIndex 〉

Leader i receives a CatchupResponse from detached server j .

HandleCatchupResponse(i , j , m)
∆
=

A real system checks for progress every timeout interval.

Assume that if this response is called, the new server

has made progress.

∧ ∨ ∧m.msuccess
∧ ∨ ∧m.mmatchIndex 6= commitIndex [i]

∧m.mmatchIndex 6= matchIndex [i][j]
∨m.mmatchIndex = commitIndex [i]

∧ state[i] = Leader
∧m.mterm = currentTerm[i]
∧ j /∈ GetConfig(i)
∧ nextIndex ′ = [nextIndex except ! [i][j] = m.mmatchIndex + 1]
∧matchIndex ′ = [matchIndex except ! [i][j] = m.mmatchIndex]
∧ ∨ ∧m.mroundsLeft 6= 0

∧ Reply([mtype 7→ CatchupRequest ,

11

42

mterm 7→ currentTerm[i],
mentries 7→ SubSeq(log [i],

nextIndex [i][j],
commitIndex [i]),

mLogLen 7→ nextIndex [i][j]− 1,
msource 7→ i ,
mdest 7→ j ,
mrounds 7→ m.mroundsLeft],
m)

∨ ∧m.mroundsLeft = 0
A real system makes sure the final call to this handler is

received after a timeout interval.

We assume that if a timeout happened, the message

has already been dropped.

∧ Reply([mtype 7→ CheckOldConfig ,
mterm 7→ currentTerm[i],
madd 7→ true,
mserver 7→ j ,
msource 7→ i ,
mdest 7→ i], m)

∧ unchanged 〈elections〉
∨ ∧ ∨ ¬m.msuccess

∨ ∧ ∨m.mmatchIndex = commitIndex [i]
∨m.mmatchIndex = matchIndex [i][j]

∧m.mmatchIndex 6= commitIndex [i]
∨ state[i] 6= Leader
∨m.mterm 6= currentTerm[i]
∨ j ∈ GetConfig(i)

∧Discard(m)
∧ unchanged 〈leaderVars〉

∧ unchanged 〈serverVars, candidateVars, logVars〉

Leader i receives a CheckOldConfig message.

HandleCheckOldConfig(i , m)
∆
=

∨ ∧ state[i] 6= Leader ∨m.mterm = currentTerm[i]
∧Discard(m)
∧ unchanged 〈serverVars, candidateVars, leaderVars, logVars〉

∨ ∧ state[i] = Leader ∧m.mterm = currentTerm[i]
∧ ∨ ∧GetMaxConfigIndex (i) ≤ commitIndex [i]

∧ let newConfig
∆
= if m.madd then union {GetConfig(i), {m.mserver}}

else GetConfig(i) \ {m.mserver}
newEntry

∆
= [term 7→ currentTerm[i], type 7→ ConfigEntry , value 7→ newConfig]

newLog
∆
= Append(log [i], newEntry)

in log ′ = [log except ! [i] = newLog]
∧Discard(m)

12

43

∧ unchanged 〈commitIndex 〉
∨ ∧GetMaxConfigIndex (i) > commitIndex [i]
∧ Reply([mtype 7→ CheckOldConfig ,

mterm 7→ currentTerm[i],
madd 7→ m.madd ,
mserver 7→ m.mserver ,
msource 7→ i ,
mdest 7→ i],
m)

∧ unchanged 〈logVars〉
∧ unchanged 〈serverVars, candidateVars, leaderVars〉

Any RPC with a newer term causes the recipient to advance its term first.

UpdateTerm(i , j , m)
∆
=

∧m.mterm > currentTerm[i]
∧ currentTerm ′ = [currentTerm except ! [i] = m.mterm]
∧ state ′ = [state except ! [i] = Follower]
∧ votedFor ′ = [votedFor except ! [i] = Nil]

messages is unchanged so m can be processed further.

∧ unchanged 〈messages, candidateVars, leaderVars, logVars〉

Responses with stale terms are ignored.

DropStaleResponse(i , j , m)
∆
=

∧m.mterm < currentTerm[i]
∧Discard(m)
∧ unchanged 〈serverVars, candidateVars, leaderVars, logVars〉

Receive a message.

Receive(m)
∆
=

let i
∆
= m.mdest

j
∆
= m.msource

in Any RPC with a newer term causes the recipient to advance

its term first. Responses with stale terms are ignored.

∨UpdateTerm(i , j , m)
∨ ∧m.mtype = RequestVoteRequest
∧HandleRequestVoteRequest(i , j , m)

∨ ∧m.mtype = RequestVoteResponse
∧ ∨DropStaleResponse(i , j , m)
∨HandleRequestVoteResponse(i , j , m)

∨ ∧m.mtype = AppendEntriesRequest
∧HandleAppendEntriesRequest(i , j , m)

∨ ∧m.mtype = AppendEntriesResponse
∧ ∨DropStaleResponse(i , j , m)
∨HandleAppendEntriesResponse(i , j , m)

∨ ∧m.mtype = CatchupRequest
∧HandleCatchupRequest(i , j , m)

13

44

∨ ∧m.mtype = CatchupResponse
∧HandleCatchupResponse(i , j , m)

∨ ∧m.mtype = CheckOldConfig
∧HandleCheckOldConfig(i , m)

End of message handlers.

Network state transitions

The network duplicates a message

DuplicateMessage(m)
∆
=

∧ Send(m)
∧ unchanged 〈serverVars, candidateVars, leaderVars, logVars〉

The network drops a message

DropMessage(m)
∆
=

∧Discard(m)
∧ unchanged 〈serverVars, candidateVars, leaderVars, logVars〉

Model invariants.

Safety property that only a single leader can be elected at a time.

OneLeader
∆
= Cardinality({i ∈ Server : state[i] = Leader}) ≤ 1

Defines how the variables may transition.

Next
∆
= ∧ ∨ ∃ i ∈ Server : Restart(i)

∨ ∃ i ∈ Server : Timeout(i)
∨ ∃ i , j ∈ Server : RequestVote(i , j)
∨ ∃ i ∈ Server : BecomeLeader(i)
∨ ∃ i ∈ Server , v ∈ Value : ClientRequest(i , v)
∨ ∃ i , j ∈ Server : AddNewServer(i , j)
∨ ∃ i , j ∈ Server : DeleteServer(i , j)
∨ ∃ i ∈ Server : AdvanceCommitIndex (i)
∨ ∃ i , j ∈ Server : AppendEntries(i , j)
∨ ∃m ∈ domain messages : Receive(m)
∨ ∃m ∈ domain messages : DuplicateMessage(m)
∨ ∃m ∈ domain messages : DropMessage(m)
History variable that tracks every log ever:

∧ allLogs ′ = allLogs ∪ {log [i] : i ∈ Server}

The specification must start with the initial state and transition according

to Next .

Spec
∆
= Init ∧2[Next]vars

14

45

\ ∗ Changelog:

\ ∗
\ ∗ 2015− 05− 10:

\ ∗ − Add cluster membership changes as described in Section 4 of

\ ∗ Diego Ongaro. Consensus: Bridging theory and practice.

\ ∗ PhD thesis, Stanford University, 2014.

\ ∗ This introduces: InitServer , ValueEntry, ConfigEntry, CatchupRequest ,

\ ∗ CatchupResponse, CheckOldConfig, GetMaxConfigIndex ,

\ ∗ GetConfig (parameterized), AddNewServer , DeleteServer ,

\ ∗ HandleCatchupRequest , HandleCatchupResponse,

\ ∗ HandleCheckOldConfig

\ ∗
\ ∗ 2014− 12− 02:

\ ∗ − Fix AppendEntries to only send one entry at a time, as originally

\ ∗ intended. Since SubSeq is inclusive, the upper bound of the range should

\ ∗ have been nextIndex , not nextIndex + 1. Thanks to Igor Kovalenko for

\ ∗ reporting the issue.

\ ∗ − Change matchIndex ′ to matchIndex (without the apostrophe) in

\ ∗AdvanceCommitIndex . This apostrophe was not intentional and perhaps

\ ∗ confusing, though it makes no practical difference (matchIndex ′ equals

\ ∗matchIndex). Thanks to Hugues Evrard for reporting the issue.

\ ∗
\ ∗ 2014− 07− 06:

\ ∗ − Version from PhD dissertation

15

46

	Introduction
	Background
	The Raft Consensus Algorithm
	Safety and Availability

	Temporal Logic of Actions (TLA)

	Adding cluster membership changes to Raft's formal specification
	Modeling Network Messages
	New Variables
	Initial state of the system
	State Transitions
	AddNewServer
	DeleteServer

	Modifying helper functions
	Quorum
	Getting a server's configuration

	Handlers for configuration changes
	Handling CatchupRequest messages
	Handling CatchupResponse messages
	Handling CheckOldConfig messages

	Mitigating effects of disruptive servers
	Model checking the specification

	Proofs
	Safety: There is never more than one leader.
	Proof Sketch for Availability: A leader can be elected in the future

	Broken Raft?
	Cluster membership changes
	New servers need to vote for availability
	New members voting causes inconsistencies

	Conclusion and Future Work
	References
	Original TLA+ Specification
	Our Modified TLA+ Specification

