15-819N/18-879L Logical Analysis of Hybrid Systems

Assignment 2 $(\sum 60)$ due 02/24/11 in class

André Platzer

Carnegie Mellon University, Computer Science Department, Pittsburgh, PA

Disclaimer: No solution will be accepted that comes without an **explanation**!

Exercise 1 Hybrid Systems in the Real World (5p)

- 1. Give three new examples of hybrid systems (not from class or Bestiarium collection). Explain where their discrete and continuous dynamics and their hybrid interactions come from.
- 2. Discuss safety-critical properties of these systems and explain to what extent hybridness is crucial in establishing or analyzing these properties faithfully.

Exercise 2 Semantics of First-Order Logic (15p)

In class, we have seen several important semantic concepts that have to do with the semantics of first-order logic (or logic in general):

- an interpretation I that assigns relations and functions to symbols
- variable assignment β that assigns objects to variables
- the valuation function $\llbracket \cdot \rrbracket_{I,\beta}$ that assigns a meaning to formulas.

In this exercise, we try to understand the relation between the two.

- 1. Given an interpretation I and variable assignment β , is there a valuation function $[\![\cdot]\!]: FOL \to \{true, false\}$ that corresponds to it? And in what sense does it correspond to it? Prove or disprove.
- 2. Given a valuation function $\llbracket \cdot \rrbracket : FOL \to \{true, false\}$ are there an interpretation I and a variable assignment β that corresponds to it? And in what sense does it correspond to it? Prove or disprove.
- 3. Is there a bijection between valuation functions and interpretations/assignments? Prove or disprove. What properties does it preserve?

Exercise 3 Logic and the Reals (16p)

- 1. Give a quantifier-free formula in $FOL_{\mathbb{R}}$ of the same vocabulary that is equivalent to each of the following formulas and explain why they are equivalent.
 - a) $\exists x (ax^2 + bx + c = 0)$
 - b) $\forall x (y < x^2) \rightarrow \exists z (a = yz^2)$
 - c) $\forall x (\exists y (ax < y^2) \rightarrow bx < z)$
 - d) $\forall a ((\exists x \ ax^3 + 2x^2 5x + 10 = 0) \Rightarrow \forall b \exists c \neg \exists x \ ax^2 + bx c = 0)$
 - e) $\forall a (\exists x \ ax^3 + 2x^2 5x + 10 = 0) \Rightarrow \forall c \exists b \neg \exists x \ ax^2 + bx + c = 0)$

2. Are the following two formulas (ϕ and ψ) equivalent in first-order real arithmetic?

$$\phi \equiv \forall x_0 \forall y_0 \forall u_0 \exists v_0 \forall b \exists p \forall b \forall T \ (b \ge 0 \land p > 0 \land T \ge 0 \land (x_0 - y_0)^2 + (u_0 - v_0)^2 \ge (p + 2bT)^2 \rightarrow \forall d_2 \forall d_1 \forall x \forall u \forall e_2 \forall e_1 \forall y \forall v \forall t (t \le T \land d_1^2 + d_2^2 \le b^2 \land e_1^2 + e_2^2 \le b^2$$

$$\land -t * b \le x - x_0 \land x - x_0 \le t * b \land -t * b \le u - u_0 \land u - u_0 \le t * b \land -t * b \le y - y_0$$

$$\land y - y_0 \le t * b \land -t * b \le v - v_0 \land v - v_0 \le t * b \rightarrow (x - y)^2 + (u - v)^2 \ge p^2)$$

$$\psi \equiv \forall b \forall c \forall d \exists x \ ax^4 + 2bx^3 - 5cx^2 + dx - 10 = 0$$

Exercise 4 Definability and First-Order Real Arithmetic (18p)

- 1. Prove that the sets definable in first-order real arithmetic using $\exists, \forall, \land, \lor, \rightarrow, \leftrightarrow, \neg, >$, $=, \geq, \leq, <, \neq$ with polynomial terms are exactly the semialgebraic sets.
- 2. Are the logics $FOL_{\mathbb{R}}[+,\cdot,=]$ and $FOL_{\mathbb{R}}[+,\cdot,=,<,\leq]$ equally expressive, i.e., any formula in one logic can be stated equivalently using a formula in the other? Prove or disprove.
- 3. Can you give a quantifier free formula in $FOL_{\mathbb{R}}[+,\cdot,=]$ that is equivalent to $\exists x (ax > b)$? If so, prove equivalence. Otherwise, explain why.
- 4. Show that division (/) is definable in first-order real arithmetic, i.e., give a translation from the logic $FOL_{\mathbb{R}}[+,\cdot,/,=]$ to the logic $FOL_{\mathbb{R}}[+,\cdot,=]$. Explain why your translation is correct. How does quantifier elimination work for this logic? Give a construction and explain.

Exercise 5 Hybrid Systems and \mathbb{C} (6p)

Your advisor has implemented a quantifier elimination procedure for the first-order logic of complex arithmetic. He asks you to use it for verifying the following hybrid automaton and show that |x| stays bounded by 4c.

What do you do now? How do you accomplish this task? When you meet with him in the next meeting, what do you tell him?