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dL Motives: The Logic of Hybrid Systems

differential dynamic logic

dL =

FOLR +

DL + HP
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dL Motives: Regions in First-order Logic

differential dynamic logic

dL = FOLR

+ + HP

∀MA∃SB . . .

∀t≥0 . . .

z

v

MA

v 2 ≤ 2b(MA− z)
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dL Motives: State Transitions in Dynamic Logic

differential dynamic logic

dL = FOLR +

+ HP

v 2 ≤ 2b
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dL Motives: State Transitions in Dynamic Logic

differential dynamic logic

dL = FOLR + ML

+ HP

v 2 ≤ 2b

v 2 ≤ 2b

v 2 ≤ 2b

� v 2 ≤ 2b
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dL Motives: State Transitions in Dynamic Logic

differential dynamic logic

dL = FOLR + DL

+ HP

v 2 ≤ 2b

v 2 ≤ 2b

v 2 ≤ 2b

[ ] v 2 ≤ 2b
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dL Motives: Hybrid Programs as Uniform Model

differential dynamic logic

dL = FOLR + DL + HP

v 2 ≤ 2b

v 2 ≤ 2b

v 2 ≤ 2b

[z ′′ = a] v 2 ≤ 2b
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dL Motives: Hybrid Programs as Uniform Model

differential dynamic logic

dL = FOLR + DL + HP

v 2 ≤ 2b

v 2 ≤ 2b

v 2 ≤ 2b

[if(z > SB) a :=−b; z ′′ = a] v 2 ≤ 2b
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dL Motives: Hybrid Programs as Uniform Model

differential dynamic logic

dL = FOLR + DL + HP

v 2 ≤ 2b

v 2 ≤ 2b

v 2 ≤ 2b

[ if(z > SB) a :=−b; z ′′ = a︸ ︷︷ ︸
hybrid program

] v 2 ≤ 2b

André Platzer (CMU) LAHS/28: Completeness of Differential Dynamic Logic 2 / 32

http://symbolaris.com/meta/andre.html
http://symbolaris.com/meta/andre.html
http://symbolaris.com/lahs/


Verification Calculus for Differential Dynamic Logic
Propositional Rules

10 propositional rules

` φ
¬φ `

φ `
` ¬φ

φ ` ψ
` φ→ ψ

φ, ψ `
φ ∧ ψ `

` φ ` ψ
` φ ∧ ψ

` φ ψ `
φ→ ψ `

φ ` ψ `
φ ∨ ψ `

` φ, ψ
` φ ∨ ψ

φ ` φ

` φ φ `
`
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Verification Calculus for Differential Dynamic Logic
Dynamic Rules

〈α〉〈β〉φ
〈α;β〉φ

[α][β]φ

[α;β]φ

〈α〉φ ∨ 〈β〉φ
〈α ∪ β〉φ

[α]φ ∧ [β]φ

[α ∪ β]φ

φ ∨ 〈α〉〈α∗〉φ
〈α∗〉φ

φ ∧ [α][α∗]φ

[α∗]φ

χ ∧ ψ
〈?χ〉ψ

χ→ ψ

[?χ]ψ

φθ1
x1
. . .θnxn

〈x1 := θ1, . . , xn := θn〉φ

〈x1 := θ1, . . , xn := θn〉φ
[x1 := θ1, . . , xn := θn]φ

∃t≥0
(
(∀0≤t̃≤t 〈S(t̃)〉χ) ∧ 〈S(t)〉φ

)
〈x ′1 = θ1, . . , x ′n = θn ∧ χ〉φ

∀t≥0
(
(∀0≤t̃≤t 〈S(t̃)〉χ)→ 〈S(t)〉φ

)
[x ′1 = θ1, . . , x ′n = θn ∧ χ]φ
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Verification Calculus for Differential Dynamic Logic
First-Order Rules

` φ(s(X1, . . ,Xn))

` ∀x φ(x)

φ(s(X1, . . ,Xn)) `
∃x φ(x) `

s new, {X1, . . ,Xn} = FV (∃x φ(x))

` QE(∀X (Φ(X ) ` Ψ(X )))

Φ(s(X1, . . ,Xn)) ` Ψ(s(X1, . . ,Xn))

X new variable

` φ(X )

` ∃x φ(x)

φ(X ) `
∀x φ(x) `

X new variable

` QE(∃X
∧

i (Φi ` Ψi ))

Φ1 ` Ψ1 . . . Φn ` Ψn

X only in branches Φi ` Ψi

QE needs to be defined in premiss
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Verification Calculus for Differential Dynamic Logic
Global Dynamic Rules

` ∀α(φ→ ψ)

[α]φ ` [α]ψ

` ∀α(φ→ ψ)

〈α〉φ ` 〈α〉ψ
` ∀α(φ→ [α]φ)

φ ` [α∗]φ

` ∀α∀v>0 (ϕ(v)→ 〈α〉ϕ(v − 1))

∃v ϕ(v) ` 〈α∗〉∃v≤0ϕ(v)
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Soundness

Theorem (Soundness)

dL calculus is sound, i.e.,
` φ ⇒ � φ

Challenges (Soundness Proof)

x ′ = f (x)

Side deductions

Free variables & Skolemization
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André Platzer (CMU) LAHS/28: Completeness of Differential Dynamic Logic 7 / 32

http://symbolaris.com/meta/andre.html
http://symbolaris.com/meta/andre.html
http://symbolaris.com/lahs/


Soundness

Theorem (Soundness)

dL calculus is sound, i.e.,
` φ ⇒ � φ

Challenges (Soundness Proof)

x ′ = f (x)

Side deductions

Free variables & Skolemization
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Completeness

Can we prove all valid formulas of dL?

� φ ⇒ ` φ?

Theorem (Incompleteness)

Both the discrete fragment and the continuous fragment of dL are not
effectively axiomatisable, i.e., they have no sound and complete effective
calculus, because natural numbers are definable in both fragments.

Theorem (Gödels’s Incompleteness’31)

First-order logic with (non-linear) arithmetic of natural numbers has no
sound and complete effective calculus.
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Incompleteness

Proof (Incompleteness).

Discrete fragment:
〈(x := x + 1)∗〉 x = n

+1 +1 +1 +1 +1

Continuous fragment:

〈s ′′ = −s, τ ′ = 1〉(s = 0 ∧ τ = n)  s = sin

What’s missing in characterization? s 6= 0 ∨ s ′(0) 6= 0
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Incomplete! But are we missing proof rules?

Theorem (Relative Completeness)

dL calculus is a sound & complete axiomatisation of hybrid systems
relative to differential equations. Proof Outline 15p

+ +

continuous discrete repeat

⇒
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Incomplete! But are we missing proof rules?

Relativity

Cook,Harel: discrete-DL/dataN hybrid-dL/dataR ??

Theorem (Relative Completeness)

dL calculus is a sound & complete axiomatisation of hybrid systems
relative to differential equations. Proof Outline 15p

+ +

continuous discrete repeat
⇒
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Sources of Incompleteness

Theorem (Relative Completeness)

dL calculus is a sound & complete axiomatisation of hybrid systems
relative to differential equations. Proof Outline 15p

+ +

continuous discrete repeat

⇒
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Theorem (Relative Completeness)
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+ +

continuous

discrete repeat

⇒
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Sources of Incompleteness

Theorem (Relative Completeness)

dL calculus is a sound & complete axiomatisation of hybrid systems
relative to differential equations. Proof Outline 15p

+ +

continuous discrete

repeat

⇒
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Relative Completeness

Theorem (Relative Completeness)

dL calculus is a sound & complete axiomatisation of hybrid systems
relative to differential equations. Proof Outline 15p

+ +

continuous discrete repeat⇒

Relativity

Cook,Harel: discrete-DL/data P.: hybrid-dL/differential equations

André Platzer (CMU) LAHS/28: Completeness of Differential Dynamic Logic 10 / 32

http://symbolaris.com/meta/andre.html
http://symbolaris.com/meta/andre.html
http://symbolaris.com/lahs/


First-Order Logic of Differential Equations FOD

Definition (First-Order Logic of Differential Equations)

FOD = FOLR + [x ′1 = θ1, . . . , x
′
n = θn]F

FOD φ ::= θ1 ≥ θ2 | ¬φ | φ1 ∧ φ2 | ∀x φ | ∃x φ | [x ′1 = θ1, . . . , x
′
n = θn]φ

FOD φ ::= θ1 ≥ θ2 | ¬φ | φ1 ∧ φ2 | ∀x φ | ∃x φ | [x ′1 = θ1, . . . , x
′
n = θn]F

with FOLR-formula F
both will do
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Relative Completeness

Theorem (Relative Completeness)

dL calculus is complete relative to first-order logic of differential equations.

� φ iff TautFOD ` φ

where FOD = FOLR + [x ′1 = θ1, . . . , x
′
n = θn]F Proof Outline 15p

Corollary (Proof-theoretical Alignment)

verification of hybrid systems = verification of dynamical systems!
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Relative Completeness Proof

� φ iff TautFOD ` φ
where FOD = FOLR + [x ′1 = θ1, . . . , x

′
n = θn]F Return

Proof (Relative Completeness, 15 pages).

1 Strong enough invariants and variants expressible in dL
2 dL expressible in FOD

3 valid dL formulas dL-derivable from corresponding FOD axioms

4 finite FOD formula characterising unbounded hybrid repetition

5 FOD characterises R-Gödel encoding

6 First-order expressible & program rendition:
for each φ there is F ∈ FOD � φ↔ F

7 Propositionally & first-order complete

8 Relative complete for first-order safety F → [α]G

9 Relative complete for first-order liveness F → 〈α〉G Return
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Relative Completeness Proof

where FOD = FOLR + [x ′1 = θ1, . . . , x
′
n = θn]F Return

Proof (R-Gödel encoding).

FOD characterises constructive bijection R→ R2

not differentiable!

2 Π 4 Π 6 Π 8 Π
t
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Proof (R-Gödel encoding).

FOD characterises constructive bijection R→ R2

not differentiable!

2 Π 4 Π 6 Π 8 Π
t

-4

-2

2

4

x

x¢

x
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Proof (R-Gödel encoding).

FOD characterises constructive bijection R→ R2 not differentiable!

2 Π 4 Π 6 Π 8 Π
t

-4

-2

2

4

x

x¢

x
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i=0

ai
2i

= a0.a1a2 . . .

∞∑
i=0

bi

2i
= b0.b1b2 . . .

∞∑
i=0

(
ai

22i−1
+

bi

22i

)
= a0b0.a1b1a2b2 . . .

at(Z , n, j , z) ↔ ∀i :Z digit(z , i) = digit(Z , n(i − 1) + j) ∧ n > 0 ∧ n, j ∈ N
digit(a, i) = intpart(2 frac(2i−1a))
intpart(a) = a− frac(a)

frac(a) = z ↔ ∃i :Z z = a− i ∧ −1 < z ∧ z < 1 ∧ az ≥ 0 “keep sign”
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Program Rendition in FOD

Lemma (Program rendition)

For every HP α with variables among ~x = x1, . . . , xk there is a
FOD-formula Sα(~x , ~v) with variables among the 2k distinct variables
~x = x1, . . . , xk and ~v = v1, . . . , vk such that

� Sα(~x , ~v)↔ 〈α〉~x = ~v

or, equivalently, for every I , η, v,

I , η, v |= Sα(~x , ~v) iff (v , v [~x 7→ [[~v ]]I ,v ,η]) ∈ ρI ,η(α) .
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Program Rendition Proof

Proof.

Sx1:=θ1,..,xk:=θk (~x , ~v) ≡
k∧

i=1

(vi = θi )

Sx ′1=θ1,..,x ′k=θk (~x , ~v) ≡ 〈x ′1 = θ1, . . , x
′
k = θk〉~v = ~x

Sx ′1=θ1,..,x ′k=θk∧χ(~x , ~v) ≡ 〈t := 0; x ′1=θ1, . . , x
′
k=θk , t

′=1〉
(
~v = ~x

∧ [x ′1 = −θ1, . . , x
′
k = −θk , t ′ = −1](t ≥ 0→ χ)

S?χ(~x , ~v) ≡ ~v = ~x ∧ χ
Sβ∪γ(~x , ~v) ≡ Sβ(~x , ~v) ∨ Sγ(~x , ~v)

Sβ; γ(~x , ~v) ≡ ∃~z (Sβ(~x ,~z) ∧ Sγ(~z , ~v))

Sβ∗(~x , ~v) ≡ ∃Z ∃n :N
(
Z

(n)
1 = ~x ∧ Z

(n)
n = ~v

∧ ∀i :N (1 ≤ i < n→ Sβ(Z
(n)
i ,Z

(n)
i+1))

)
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(
~v = ~x
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t

~x

χ

w revert flow and time
check χ backwards

x′ = θ

0 r
x ′ = −θ
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Expressibility

Lemma (Expressibility)

dL expressible in FOD: for all dL formulas φ ∈ Fml there is a
FOD-formula φ# ∈ FmlFOD that is equivalent, i.e., � φ↔ φ#.

Proof.

The proof follows an induction on the structure of formula φ.

1 φ first-order, then φ# := φ already is a FOD-formula.

2 φ ≡ ϕ ∨ ψ, then by IH there are FOD-formulas ϕ#, ψ# such that
� ϕ↔ ϕ# and � ψ ↔ ψ#. Thus by congruence
� (ϕ ∨ ψ)↔ (ϕ# ∨ ψ#) giving � φ↔ φ# for φ# ≡ ϕ# ∨ ψ#.

� 〈α〉ψ ↔ ∃~v (Sα(~x , ~v) ∧ ψ#~v
~x )

� [α]ψ ↔ ∀~v (Sα(~x , ~v)→ ψ#~v
~x )
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Sequent Derivability

Lemma (Derivability of sequents)

`D φ→ ψ iff the sequent φ ` ψ is derivable from D, denoted by φ `D ψ.

Proof.

When sequents are abbreviations for formulas, both sides are identical.

Otherwise, let `D φ→ ψ be derivable from D.

Using cut (and weakening), derivation can be extended to φ `D ψ:

∗
φ ` φ→ ψ,ψ

∗
Axφ ` φ, ψ

∗
Axψ, φ ` ψ

→l φ, φ→ ψ ` ψ
cut φ ` ψ

The converse direction is by an application of →r.
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Otherwise, let `D φ→ ψ be derivable from D.

Using cut (and weakening), derivation can be extended to φ `D ψ:

∗
φ ` φ→ ψ,ψ

∗
Axφ ` φ, ψ

∗
Axψ, φ ` ψ

→l φ, φ→ ψ ` ψ
cut φ ` ψ

The converse direction is by an application of →r.
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Generalization

Lemma (Generalization)

If `D φ is provable without free logical variables, then so are `D ∀x φ
and `D 〈x1 := θ1, . . . xn := θn〉φ.

Proof Sketch.

Second part: Induction on the structure of proofs with inductive jump
prefix transformation (1page proof).

For reducing the first part of this lemma to the second, let s be a
Skolem constant for state variable x .

By first proof, derive `D 〈x := s〉φ.

Using ∀r, continue derivation to a proof of ∀X 〈x := X 〉φ, which we
abbreviate as ∀x φ.

Rule ∀r is applicable for Skolem constant s as no free logical variables
occur in the proof.
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Relative Completeness on First-Order Safety Assertions

Proposition (Relative completeness of first-order safety)

For every α ∈ HP(Σ) and each F ,G ∈ FmlFOL

� F → [α]G implies `D F → [α]G (thus F `D [α]G )
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Relative Completeness on First-Order Safety Assertions

Proof (α of the form x1 := θ1, . . . , xn := θn, ?χ, β ∪ γ, or β; γ).

This follows from soundness of symmetric rules (equivalent
transformations):

Premiss is valid iff conclusion valid.

Premiss is valid and of smaller complexity (HP get simpler), hence
derivable by IH.

Thus, we can derive F → [α]G by applying the respective rule.

� F → [x ′1 = f (x1)1, . . . , x
′
n = f (xn)n]G is a FOD-formula and hence

derivable as a D axiom.
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André Platzer (CMU) LAHS/28: Completeness of Differential Dynamic Logic 22 / 32

http://symbolaris.com/meta/andre.html
http://symbolaris.com/meta/andre.html
http://symbolaris.com/lahs/


Relative Completeness on First-Order Safety Assertions

Proof (α of the form x1 := θ1, . . . , xn := θn, ?χ, β ∪ γ, or β; γ).

This follows from soundness of symmetric rules (equivalent
transformations):

Premiss is valid iff conclusion valid.

Premiss is valid and of smaller complexity (HP get simpler), hence
derivable by IH.

Thus, we can derive F → [α]G by applying the respective rule.

� F → [x ′1 = f (x1)1, . . . , x
′
n = f (xn)n]G is a FOD-formula and hence

derivable as a D axiom.
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Relative Completeness on First-Order Safety Assertions

Proof (α of the form β; γ).

� F → [β; γ]G , which implies � F → [β][γ]G .

By Expr, there is a FOD-formula G # such that � G # ↔ [γ]G .

From � F → [β]G #, IH implies F `D [β]G # is derivable.

By � G # → [γ]G , we conclude `D G # → [γ]G by IH.

Using Gen, we conclude `D ∀β(G # → [γ]G ).

Extends with []gen to [β]G # `D [β][γ]G .

Combining propositionally by cut with [β]G #, derive F `D [β][γ]G ,

from which composition [; ] yields F `D [β; γ]G .
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André Platzer (CMU) LAHS/28: Completeness of Differential Dynamic Logic 23 / 32

http://symbolaris.com/meta/andre.html
http://symbolaris.com/meta/andre.html
http://symbolaris.com/lahs/


Relative Completeness on First-Order Safety Assertions

Proof (α of the form β∗).

� F → [β∗]G derivable by invariant induction:

Define invariant as FOD representation of [β∗]G :

φ ≡ ([β∗]G )# ≡ ∀~v (Sβ∗(~x , ~v)→ G~v
~x ) .

F → φ and φ→ G are valid FOD-formulas, thus derivable by D
Hence F `D φ derivable by lemma.

By Gen and []gen, [β∗]φ `D [β∗]G is derivable.

Likewise, φ→ [β]φ valid according to semantics of repetition, thus
derivable by IH, since β less complex.

By Gen, derive `D ∀β(φ→ [β]φ), from which ind yields φ `D [β∗]φ.

Combining propositionally by cut with [β∗]φ and φ yields F `D [β∗]G .
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derivable by IH, since β less complex.

By Gen, derive `D ∀β(φ→ [β]φ), from which ind yields φ `D [β∗]φ.

Combining propositionally by cut with [β∗]φ and φ yields F `D [β∗]G .
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Relative Completeness of First-Order Liveness Assertions

Proposition (Relative completeness of first-order liveness)

For every α ∈ HP(Σ) and each F ,G ∈ FmlFOL

� F → 〈α〉G implies `D F → 〈α〉G (thus F `D 〈α〉G ) .
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Proof (α of the form β∗).

� F → 〈β∗〉G derivable by variant convergence:

∃~v ∃Z
(
Z

(n)
1 = ~x∧Z

(n)
n = ~v∧∀i :N (1 ≤ i < n→ Sβ(Z

(n)
i ,Z

(n)
i+1))∧G~v

~x

)
Thus ∃v ϕ(v) `D 〈β∗〉∃v≤0ϕ(v) by convergence con.
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� (∃v≤0ϕ(v))→ G , because v≤0 and the fact, that, by Gödel, ϕ(v)
only holds true for natural numbers, imply ϕ(0). Further, ϕ(0)
entails G , because zero repetitions of β have no effect.

Derive `D ∀β(∃v≤0ϕ(v)→ G ) by Gen

Extend to 〈β∗〉∃v≤0ϕ(v) `D 〈β∗〉G by 〈〉gen.
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Combine propositionally by a cut to F `D 〈β∗〉G .
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André Platzer (CMU) LAHS/28: Completeness of Differential Dynamic Logic 26 / 32

http://symbolaris.com/meta/andre.html
http://symbolaris.com/meta/andre.html
http://symbolaris.com/lahs/


Relative Completeness of First-Order Liveness Assertions

Proof (α of the form β∗).

� F → 〈β∗〉G derivable by variant convergence:

∃~v ∃Z
(
Z

(n)
1 = ~x∧Z

(n)
n = ~v∧∀i :N (1 ≤ i < n→ Sβ(Z

(n)
i ,Z

(n)
i+1))∧G~v

~x

)
Thus ∃v ϕ(v) `D 〈β∗〉∃v≤0ϕ(v) by convergence con.

From assumption, conclude valid FOD-formulas, hence D-axioms:

� F → ∃v ϕ(v), because � F → 〈β∗〉G
� (∃v≤0ϕ(v))→ G , because v≤0 and the fact, that, by Gödel, ϕ(v)
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only holds true for natural numbers, imply ϕ(0). Further, ϕ(0)
entails G , because zero repetitions of β have no effect.

Derive `D ∀β(∃v≤0ϕ(v)→ G ) by Gen

Extend to 〈β∗〉∃v≤0ϕ(v) `D 〈β∗〉G by 〈〉gen.

From `D F → ∃v ϕ(v) conclude F `D ∃v ϕ(v).

Combine propositionally by a cut to F `D 〈β∗〉G .
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(n)
n = ~v∧∀i :N (1 ≤ i < n→ Sβ(Z

(n)
i ,Z

(n)
i+1))∧G~v

~x

)
Thus ∃v ϕ(v) `D 〈β∗〉∃v≤0ϕ(v) by convergence con.

From assumption, conclude valid FOD-formulas, hence D-axioms:

� F → ∃v ϕ(v), because � F → 〈β∗〉G
� (∃v≤0ϕ(v))→ G , because v≤0 and the fact, that, by Gödel, ϕ(v)
only holds true for natural numbers, imply ϕ(0). Further, ϕ(0)
entails G , because zero repetitions of β have no effect.

Derive `D ∀β(∃v≤0ϕ(v)→ G ) by Gen

Extend to 〈β∗〉∃v≤0ϕ(v) `D 〈β∗〉G by 〈〉gen.

From `D F → ∃v ϕ(v) conclude F `D ∃v ϕ(v).

Combine propositionally by a cut to F `D 〈β∗〉G .
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Relative Completeness of Differential Logic Calculus

Theorem (Relative Completeness)

dL calculus is complete relative to first-order logic of differential equations.

� φ iff TautFOD ` φ

where FOD = FOLR + [x ′1 = θ1, . . . , x
′
n = θn]F
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Relative Completeness of Differential Logic Calculus

Proof Idea.

By propositional recombination, inductively identify fragments of φ
that correspond to φ1 → [α]φ2 or φ1 → 〈α〉φ2 logically.

Express subformulas φi equivalently in FOD and resolve these
first-order safety or liveness assertions by previous propositions.

Finally, prove that the original dL formula can be re-derived from the
subproofs.
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Relative Completeness of Differential Logic Calculus

Proof Idea.

Assume φ to be given in conjunctive normal form by appropriate
propositional reasoning:

Push negations inside over modalities using dualities

¬[α]φ ≡ 〈α〉¬φ
¬〈α〉φ ≡ [α]¬φ

Remainder of proof follows induction on a measure |φ| defined as the
number of modalities in φ.

For a simple and uniform proof, assume quantifiers to be
abbreviations for modal formulas:

∃x φ ≡ 〈x ′ = 1〉φ ∨ 〈x ′ = −1〉φ
∀x φ ≡ [x ′ = 1]φ ∧ [x ′ = −1]φ
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Relative Completeness of Differential Logic Calculus

Proof.

|φ| = 0 then φ is a first-order formula, hence derivable by D.

φ is of the form ¬φ1, then φ1 is first-order by NNF, hence |φ| = 0.

φ is of the form φ1 ∧ φ2, then individually deduce the simpler proofs
for `D φ1 and `D φ2 by IH, which can be combined by ∧r.

φ disjunction, hence (otherwise use associativity and commutativity):

φ1 ∨ [α]φ2

φ1 ∨ 〈α〉φ2

Unified notation: φ1 ∨ 〈[α]〉φ2.

Then, |φ2| < |φ|, since φ2 has less modalities.

|φ1| < |φ| as 〈[α]〉φ2 contributes one modality to |φ| that is not in φ1.

There are equivalent FOD-formulas φ#
1 , φ

#
2 with � φi ↔ φ#

i .

By congruence, � φ yields � φ#
1 ∨ 〈[α]〉φ#

2 , thus � ¬φ#
1 → 〈[α]〉φ#

2 .

By previous propositions derive

¬φ#
1 `D 〈[α]〉φ#

2 (1)

� φ1 ↔ φ#
1 implies � ¬φ1 → ¬φ#

1 , which is derivable by IH, because

|φ1| < |φ|. By lemma, ¬φ1 `D ¬φ#
1 , which we combine with (1) by a

cut with ¬φ#
1 to

¬φ1 `D 〈[α]〉φ#
2 . (2)
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Relative Completeness of Differential Logic Calculus

Proof.

� φ2 ↔ φ#
2 implies � φ#

2 → φ2, which is derivable by IH, as
|φ2| < |φ|.

Extend derivation of `D φ#
2 → φ2 to one of `D ∀α(φ#

2 → φ2) by Gen

Thus 〈[α]〉φ#
2 `D 〈[α]〉φ2 by []gen or 〈〉gen.

Combine propositionally with (2) by a cut with 〈[α]〉φ#
2 to derive

¬φ1 `D 〈[α]〉φ2

Conclude `D φ1 ∨ 〈[α]〉φ2 with a cut.
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Thus 〈[α]〉φ#
2 `D 〈[α]〉φ2 by []gen or 〈〉gen.

Combine propositionally with (2) by a cut with 〈[α]〉φ#
2 to derive

¬φ1 `D 〈[α]〉φ2

Conclude `D φ1 ∨ 〈[α]〉φ2 with a cut.
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Relative Completeness

Theorem (Relative Completeness)

dL calculus is a sound & complete axiomatisation of hybrid systems
relative to differential equations. Proof Outline 15p

+ +

continuous discrete repeat⇒

Relativity

Cook,Harel: discrete-DL/data P.: hybrid-dL/differential equations
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